答:所有陰影部分的面積和是5050cm2.方法總結(jié):首先應(yīng)找出圖形中哪些部分發(fā)生了變化,是按照什么規(guī)律變化的,通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解.探尋規(guī)律要認真觀察、仔細思考,善用聯(lián)想來解決這類問題.三、板書設(shè)計1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特點:能夠運用平方差公式分解因式的多項式必須是二項式,兩項都能寫成平方的形式,且符號相反.運用平方差公式因式分解,首先應(yīng)注意每個公式的特征.分析多項式的次數(shù)和項數(shù),然后再確定公式.如果多項式是二項式,通常考慮應(yīng)用平方差公式;如果多項式中有公因式可提,應(yīng)先提取公因式,而且還要“提”得徹底,最后應(yīng)注意兩點:一是每個因式要化簡,二是分解因式時,每個因式都要分解徹底.
解:設(shè)另一個因式為2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一個因式為2x2+x-3.方法總結(jié):因為整式的乘法和分解因式互為逆運算,所以分解因式后的兩個因式的乘積一定等于原來的多項式.三、板書設(shè)計1.因式分解的概念把一個多項式轉(zhuǎn)化成幾個整式的積的形式,這種變形叫做因式分解.2.因式分解與整式乘法的關(guān)系因式分解是整式乘法的逆運算.本課是通過對比整式乘法的學(xué)習(xí),引導(dǎo)學(xué)生探究因式分解和整式乘法的聯(lián)系,通過對比學(xué)習(xí)加深對新知識的理解.教學(xué)時采用新課探究的形式,鼓勵學(xué)生參與到課堂教學(xué)中,以興趣帶動學(xué)習(xí),提高課堂學(xué)習(xí)效率.
方法總結(jié):作平移圖形時,找關(guān)鍵點的對應(yīng)點是關(guān)鍵的一步.平移作圖的一般步驟為:①確定平移的方向和距離,先確定一組對應(yīng)點;②確定圖形中的關(guān)鍵點;③利用第一組對應(yīng)點和平移的性質(zhì)確定圖中所有關(guān)鍵點的對應(yīng)點;④按原圖形順序依次連接對應(yīng)點,所得到的圖形即為平移后的圖形.三、板書設(shè)計1.平移的定義在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移.2.平移的性質(zhì)一個圖形和它經(jīng)過平移所得的圖形中,對應(yīng)點所連的線段平行(或在一條直線上)且相等,對應(yīng)線段平行(或在一條直線上)且相等,對應(yīng)角相等.3.簡單的平移作圖教學(xué)過程中,強調(diào)學(xué)生自主探索和合作交流,學(xué)生經(jīng)歷將實際問題抽象成圖形問題,培養(yǎng)學(xué)生的邏輯思維能力和空間想象能力,使得學(xué)生能將所學(xué)知識靈活運用到生活中.
探究點三:作中心對稱圖形如圖,網(wǎng)格中有一個四邊形和兩個三角形.(1)請你畫出三個圖形關(guān)于點O的中心對稱圖形;(2)將(1)中畫出的圖形與原圖形看成一個整體圖形,請寫出這個整體圖形對稱軸的條數(shù);這個整體圖形至少旋轉(zhuǎn)多少度能與自身重合?解:(1)如圖所示;(2)這個整體圖形的對稱軸有4條;此圖形最少旋轉(zhuǎn)90°能與自身重合.三、板書設(shè)計1.中心對稱如果把一個圖形繞著某一點旋轉(zhuǎn)180°,它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱.2.中心對稱圖形把一個圖形繞著某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形.教學(xué)過程中,強調(diào)學(xué)生自主探索和合作交流,結(jié)合圖形,多觀察,多歸納,體會識別中心對稱圖形的方法,理解中心對稱圖形的特征.
解析:整個陰影部分比較復(fù)雜和分散,像此類問題通常使用割補法來計算.連接BD、AC,由正方形的對稱性可知,AC與BD必交于點O,正好把左下角的陰影部分分成(Ⅰ)與(Ⅱ)兩部分(如圖②),把陰影部分(Ⅰ)繞點O逆時針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點O順時針旋轉(zhuǎn)90°至陰影部分②處,使整個陰影部分割補成半個正方形.解:如圖②,把陰影部分(Ⅰ)繞點O逆時針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點O順時針旋轉(zhuǎn)90°至陰影部分②處,使原陰影部分變?yōu)槿鐖D②的陰影部分,即正方形的一半,故陰影部分面積為12×10×10=50(cm2).方法總結(jié):本題是利用旋轉(zhuǎn)的特征:旋轉(zhuǎn)前、后圖形的形狀和大小不變,把圖形利用割補法補全為一個面積可以計算的規(guī)則圖形.三、板書設(shè)計1.簡單的旋轉(zhuǎn)作圖2.旋轉(zhuǎn)圖形的應(yīng)用教學(xué)過程中,強調(diào)學(xué)生自主探索和合作交流,經(jīng)歷觀察、歸納和動手操作,利用旋轉(zhuǎn)的性質(zhì)作圖.
1、導(dǎo)語:同學(xué)們,在與人相處,與人交流的過程中,文明用語不可少。我們在不同的地點,不同的場合正確使用文明用語,有助于我們與人交往。尤其是對于我們學(xué)生來說,如果經(jīng)常使用文明用語,那么人人都會喜歡我們,夸獎我們。 2、講故事:一個年輕人去張村,可他不認識去張村的路。半路上遇見一位老人,年輕人喊道“喂,老頭兒,這里離張村有多遠?”老頭脫口而出:“無禮!”年輕人足足走了五里路,一直沒有看見有叫張村的地方。年輕人停下來想了又想,似乎悟出了什么。年輕人的行為給自己帶來了什么結(jié)果?(小結(jié))什么是禮貌,它與尊重的關(guān)系。 你想做個懂禮貌的孩子嗎?要想懂禮貌必須先知道什么? 3、學(xué)生說出常用的文明語言及使用的場合和對象。(小組討論,選代表發(fā)言) 4、考察情況,即興表演。同學(xué)們說得都很不錯,現(xiàn)在我們就來比一比,哪一組是文明禮貌大組。必須認真聽老師提出的問題,然后派人表演,表演合格就能領(lǐng)到通行證,得到通行證最多的組就是文明禮貌大組。
教學(xué)反思:1、引導(dǎo)學(xué)生體驗抽象除法豎式的過程。學(xué)生在學(xué)習(xí)表內(nèi)乘除法時,利用乘法口訣已經(jīng)能夠在算式上直接寫出得數(shù)。教材安排了“18個蘋果,每盤放6個,可以放幾盤”的“分蘋果”活動,列舉了四種解決這一問題的方法。在此基礎(chǔ)上,引導(dǎo)學(xué)生按照自己的想法來分這些蘋果,進而再由對除法豎式有一定了解的學(xué)生介紹豎式計算,并且把豎式中的每一步所表示的含義和分蘋果的活動緊密聯(lián)系起來。2、在探究中理解除法的試商方法。學(xué)生通過實際操作、觀察比較,培養(yǎng)學(xué)生質(zhì)疑和創(chuàng)新精神,學(xué)會學(xué)習(xí)、積累數(shù)學(xué)活動經(jīng)驗的有意義的學(xué)習(xí)過程。3、不足:這節(jié)課上得不夠生動、活潑。
【設(shè)計意圖】這個環(huán)節(jié)的設(shè)計是在學(xué)生掌握了學(xué)法的基礎(chǔ)上,放手讓學(xué)生自主學(xué)習(xí),從而真正做到“將課堂還給學(xué)生”。這樣的設(shè)計不僅充分激發(fā)了學(xué)生的學(xué)習(xí)興趣,而且更能促使學(xué)生真正掌握初步分析人物形象的方法。四、聯(lián)系實際,拓展延伸1.作者臧克家筆下的聞一多先生是一位潛心于學(xué)術(shù)研究,“做了再說,做了不說”的學(xué)者;也是一位英勇無畏,“說了就做,言論與行動完全一致”的革命家。中國自古以來就重視言行一致,并把它當(dāng)成做人的準則之一。請收集關(guān)于言和行的成語或名言,選取一句作為你的座右銘,并說明理由。2.課外閱讀聞一多的《太陽吟》《死水》《靜夜》等詩作,欣賞其藝術(shù)特色,感受其中的精神追求。
《回憶魯迅先生》(節(jié)選)是一篇典型的有較長篇幅的散文。本教學(xué)設(shè)計以點帶面,長文短教,設(shè)計了這樣一個問題:“作者在文中為魯迅先生塑造了多個身份,具體有哪些?”如此化繁為簡,使課堂教學(xué)脈絡(luò)清晰。學(xué)生在閱讀長篇幅文章時有了抓手,就可以有條理地去思考,形成系統(tǒng)性思維,直達教學(xué)目標。本教學(xué)設(shè)計還要求學(xué)生進行批注式閱讀,直入文本。學(xué)生圍繞“說說魯迅先生身上有哪些優(yōu)秀的品質(zhì)讓學(xué)生蕭紅印象深刻?”做賞析式或者評價式批注,讓學(xué)生在自讀這篇文章時,將無目的閱讀變?yōu)橛行ч喿x,既提高了課堂效率,也讓學(xué)生真正做到潛入文字之中,通過關(guān)注文章細節(jié)來深入把握文本。本教學(xué)設(shè)計整體上以學(xué)生自主學(xué)習(xí)為主,教師適當(dāng)引導(dǎo)。遵從“整體感知內(nèi)容—局部探究—體會情感”的一般閱讀規(guī)律,以讀為指引,讓學(xué)生在讀中感知內(nèi)容,在讀中把握人物形象,在讀中體悟情感。各環(huán)節(jié)之間環(huán)環(huán)相扣,由淺入深,層層推進。
【設(shè)計意圖】這三個活動對培養(yǎng)學(xué)生的思維能力各有不同的目的和針對性。繪制航海路線圖,講述旅途精彩故事,可以幫助學(xué)生梳理全書的故事情節(jié);寫航海日記讓學(xué)生深入到作品的情節(jié)中,對幾個主人公的形象有更深入的理解;主題辯論既讓學(xué)生對人物形象有更深入的思考,也有助于學(xué)生深入理解作品主題。三、活動結(jié)語師:讀完《海底兩萬里》,相信同學(xué)們心中一定還有很多沒有得到解答的疑問。尼摩船長的身世究竟是什么?他的親人是怎么死的?他為什么要復(fù)仇?“諾第留斯號”潛艇最后的結(jié)局是什么呢?想要解開這些謎團,請看凡爾納的另外兩部科幻小說《格蘭特船長的兒女》《神秘島》,它們會帶你揭開這些謎底?!驹O(shè)計意圖】本環(huán)節(jié)旨在激發(fā)學(xué)生拓展閱讀的興趣,引導(dǎo)學(xué)生課外閱讀凡爾納的另外兩部作品,擴大學(xué)生的閱讀量。
我來到書房,找到了字典,既想快點知曉答案,和媽媽比個勝負,又想慢點兒,萬一又錯了怎么辦。我緊張地翻開字典,找到了“偌”字的讀音。天吶,我是對的,我太開心了!(不足1:缺少動作描寫,沒有展現(xiàn)出“我”的緊張。修改:我使勁地捏著字典,顫抖著雙手,慢慢地打開字典。不足2:結(jié)尾缺少人物的語言和神態(tài)描寫,沒有展現(xiàn)出人物開心的心理。修改:我眉飛色舞地大叫道:“天吶,我贏啦!我贏啦!”)我捧著字典,連蹦帶跳地來到媽媽面前,欣喜若狂地說:“媽媽,你想不到吧,你一個堂堂初中老師,居然敗在拼音不太好的女兒手下。哈哈,我終于報‘仇’了……”此時的我,簡直比中了五百萬還要開心一百倍。媽媽一聽便傻了眼,剛才那堅定的神情已經(jīng)蕩然無存,媽媽連忙接過字典看了又看,生怕我看錯了似的??吹阶值渖系淖x音,媽媽啞口無言。
我榮幸地以中華民族一員的資格,而成為世界公民。我是中國人民的兒子。我深情地愛著我的祖國和人民。 ——鄧小平一個人只要熱愛自己的祖國,有一顆愛國之心,就什么事情都能解決。什么苦楚,什么冤屈都受得了。 ——冰心做人最大的事情是什么呢?就是要知道怎么樣愛國。 ——孫中山能夠獻身于自己祖國的事業(yè),為實現(xiàn)理想而斗爭,這是最光榮不過的事情了。——吳玉章外國愛國名言示例:我們?yōu)樽鎳?wù),也不能都采用同一方式,每個人應(yīng)該按照資稟,各盡所能。——歌德縱使世界給我珍寶和榮譽,我也不愿離開我的祖國。因為縱使我的祖國在恥辱之中,我還是喜歡、熱愛、祝福我的祖國。 ——裴多菲我重視祖國的利益,甚于自己的生命和我所珍愛的兒女。 ——莎士比亞我無論做什么,始終在想著,只要我的精力允許我的話,我就要首先為我的祖國服務(wù)。 ——巴甫洛夫
本環(huán)節(jié)旨在通過展示、評價踐行“孝親敬老”的活動成果,深化 “孝”的境界,培養(yǎng)學(xué)生回報家人、關(guān)愛他人的美德。展示過程中,學(xué)生的語言表達能力、誦讀能力、搜集和整理資料的能力、寫作能力得到了提升,同時也增強了自信心。二、談“孝”心1.在這為期一周的踐行“孝”的活動中,你有哪些體會和感受?請與大家分享。(生小組內(nèi)交流,小組代表發(fā)言)預(yù)設(shè) 示例一:在這次踐行“孝”的活動中,我做了許多表達孝心的事情,從中體會到了父母工作的艱辛、賺錢的不易,更能體諒他們了。我也了解到平時我不經(jīng)意說的話傷害了父母,讓父母擔(dān)憂難過了?,F(xiàn)在我與父母之間的關(guān)系變得更加融洽,父母對我的一些事情也能夠理解了,我發(fā)現(xiàn)只要我們對父母多一些尊重和理解,他們就會非常開心。示例二:我在采訪爺爺奶奶時,了解到祖輩們的人生經(jīng)歷和具體事跡,被他們身上的一些精神品質(zhì)所感動,更加欽佩他們了。這次的采訪活動增強了我與家人之間的溝通,增進了我與家人之間的情感交流,也讓我進一步了解了我們家族的一些歷史,讓我有了為家族努力奮斗的使命感。
教學(xué)目標:1.會畫直棱柱(僅限于直三棱柱和直四棱柱)的三種視圖,體會這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。2. 會根據(jù)三視圖描述原幾何體。教學(xué)重點:掌握直棱柱的三視圖的畫法。能根據(jù)三視圖描述原幾何體。教學(xué)難點:幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學(xué)方法:觀察實踐法一、實物觀察、空間想像觀察:請同學(xué)們拿出事先準備好的直三棱柱、直四棱柱,根據(jù)你所擺放的位置經(jīng)過 想像,再抽象出這兩個直棱柱的主視圖,左視圖和俯視圖。繪制:請你將抽象出來的三種視圖畫出來,并與同伴交流。比較:小亮畫出了其中一個幾何體的主視圖、左視圖和俯視圖,你認為他畫的對不對?談?wù)勀愕目捶?。拓展:?dāng)你手中的兩個直棱柱擺放的角度變化時,它們的三種視圖是否會隨之改變?試一試。
解析:熟記常見幾何體的三種視圖后首先可排除選項A,因為長方體的三視圖都是矩形;因為所給的主視圖中間是兩條虛線,故可排除選項B;選項D的幾何體中的俯視圖應(yīng)為一個梯形,與所給俯視圖形狀不符.只有C選項的幾何體與已知的三視圖相符.故選C.方法總結(jié):由幾何體的三種視圖想象其立體形狀可以從如下途徑進行分析:(1)根據(jù)主視圖想象物體的正面形狀及上下、左右位置,根據(jù)俯視圖想象物體的上面形狀及左右、前后位置,再結(jié)合左視圖驗證該物體的左側(cè)面形狀,并驗證上下和前后位置;(2)從實線和虛線想象幾何體看得見部分和看不見部分的輪廓線.在得出原立體圖形的形狀后,也可以反過來想象一下這個立體圖形的三種視圖,看與已知的三種視圖是否一致.探究點四:三視圖中的計算如圖所示是一個工件的三種視圖,圖中標有尺寸,則這個工件的體積是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三種視圖可以看出,該工件是上下兩個圓柱的組合,其中下面的圓柱高為4cm,底面直徑為4cm;上面的圓柱高為1cm,底面直徑為2cm,則V=4×π×22+1×π×12=17π(cm3).故選B.
教學(xué)目標:1.經(jīng)歷由實物抽象出幾何體的過程,進一步發(fā)展空間觀念。2.會畫圓柱、圓錐、球的三視圖,體會這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。3.會根據(jù)三視圖描述原幾何體。教學(xué)重點:掌握部分幾何體的三視圖的畫法,能根據(jù)三視圖描述原幾何體。教學(xué)難點:幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學(xué)方法:觀察實踐法教學(xué)過程設(shè)計一、實物觀察、空間想像設(shè)置:學(xué)生利用準備好的大小相同的正方形方塊,搭建一個立體圖形,讓同學(xué)們畫出三視圖。而后,再要求學(xué)生利用手中12塊正方形的方塊實物,搭建2個立體圖形,并畫出它們的三視圖。學(xué)生分小組合作交流、觀察、作圖。議一議1.圖5-14中物體的形狀分別可以看成什么樣的幾何體?從正面、側(cè)面、上面看這些幾何體,它們的形狀各是什么樣的?2.在圖5-15中找出圖5-14中各物體的主視圖。3.圖5-14中各物體的左視圖是什么?俯視圖呢?
解:方法一:因為DE∥BC,所以∠ADE=∠B,∠AED=∠C,所以△ADE∽△ABC,所以ADAB=DEBC,即44+8=5BC,所以BC=15cm.又因為DF∥AC,所以四邊形DFCE是平行四邊形,所以FC=DE=5cm,所以BF=BC-FC=15-5=10(cm).方法二:因為DE∥BC,所以∠ADE=∠B.又因為DF∥AC,所以∠A=∠BDF,所以△ADE∽△DBF,所以ADDB=DEBF,即48=5BF,所以BF=10cm.方法總結(jié):求線段的長,常通過找三角形相似得到成比例線段而求得,因此選擇哪兩個三角形就成了解題的關(guān)鍵,這就需要通過已知的線段和所求的線段分析得到.三、板書設(shè)計(1)相似三角形的定義:三角分別相等、三邊成比例的兩個三角形叫做相似三角形;(2)相似三角形的判定定理1:兩角分別相等的兩個三角形相似.感受相似三角形與相似多邊形、相似三角形與全等三角形的區(qū)別與聯(lián)系,體驗事物間特殊與一般的關(guān)系.讓學(xué)生經(jīng)歷從實驗探究到歸納證明的過程,發(fā)展學(xué)生的合情推理能力,培養(yǎng)學(xué)生的觀察、動手探究、歸納總結(jié)的能力.
當(dāng)Δ=l2-4mn<0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的一個點P;當(dāng)Δ=l2-4mn=0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的兩個點P;當(dāng)Δ=l2-4mn>0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的三個點P.方法總結(jié):由于相似情況不明確,因此要分兩種情況討論,注意要找準對應(yīng)邊.三、板書設(shè)計相似三角形判定定理的證明判定定理1判定定理2判定定理3本課主要是證明相似三角形判定定理,以學(xué)生的自主探究為主,鼓勵學(xué)生獨立思考,多角度分析解決問題,總結(jié)常見的輔助線添加方法,使學(xué)生的推理能力和幾何思維都獲得提高,培養(yǎng)學(xué)生的探索精神和合作意識.
故最少由9個小立方體搭成,最多由11個小立方體搭成;(3)左視圖如右圖所示.方法點撥:這類問題一般是給出一個由相同的小正方體搭成的立體圖形的兩種視圖,要求想象出這個幾何體可能的形狀.解答時可以先由三種視圖描述出對應(yīng)的該物體,再由此得出組成該物體的部分個體的個數(shù).三、板書設(shè)計視圖概念:用正投影的方法繪制的物體在投影 面上的圖形三視圖的組成主視圖:從正面得到的視圖左視圖:從左面得到的視圖俯視圖:從上面得到的視圖三視圖的畫法:長對正,高平齊,寬相等由三視圖推斷原幾何體的形狀通過觀察、操作、猜想、討論、合作等活動,使學(xué)生體會到三視圖中位置及各部分之間大小的對應(yīng)關(guān)系.通過具體活動,積累學(xué)生的觀察、想象物體投影的經(jīng)驗,發(fā)展學(xué)生的動手實踐能力、數(shù)學(xué)思考能力和空間觀念.
合探2 與同伴合作,兩個人分別畫△ABC和△A′B′ C′,使得∠A和∠A′都等于∠α,∠B和∠B′都等于∠β,此時,∠C與∠C′相等嗎?三邊的比 相等嗎?這樣的兩個三角形相似嗎?改變∠α,∠β的大小,再試一試.四、導(dǎo)入定理判定 定理1:兩角分別相等的兩個三角形相似.這個定理的 出 現(xiàn)為判定兩三角形相似增加了一條新的途徑.例:如圖,D ,E分別是△ABC的邊AB,AC上的點,DE∥BC,AB= 7,AD=5,DE=10,求B C的長。解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴△ADE∽△ABC(兩角分別相等的兩 個三角形相似).∴ ADAB=DEBC.∴BC=AB×DEAD = 7×105=14.五、學(xué)生練習(xí):1. 討論隨堂練 習(xí)第1題有一個銳角相等的兩個直角三角形是否相似?為什么?2.自己獨立完成隨堂練習(xí)第2題六、小結(jié)本節(jié)主要學(xué)習(xí)了相似三角形的定義及相似三角形的判定定理1,一定要掌握好這個定理.七、作業(yè):