雖然在此之前已經(jīng)聽過多節(jié)有關的研討課,但臨到自己教學時才真正體會到本課教學的艱難。一是信息化時代對郵政編碼的沖突。其實我在教學前也僅僅只知道學校和家庭住址的郵編,至于郵政編碼的結構含義等是完全陌生。在課堂前測中了解到,全班僅3人有寫信寄信的經(jīng)歷(這三名學生的老家都遠離湖北?。麄冎览霞业泥]編,全班有半數(shù)左右的家庭收集不到已經(jīng)郵寄過的舊信封??梢哉f在學習本課前師生對郵政編碼都是知之甚少,教師本身都只“半勺水”,何以給學生“一杯水”?雖然在課前布置學生收集了一些有關郵政編碼的知識,自己也進行了大量的查詢,但在實際教學中仍舊倍感吃力。如有學生質(zhì)疑“為什么書上北京人民出版社的郵編是100008,它的第三、四位都是0呢”;“為什么我們學校的郵編4300XX第三、四位也是0呢”;“郵區(qū)是不是指什么市?”“郵區(qū)與市、區(qū)、縣有什么關系?”一個接一個問題“炮轟”過來,著實招架不住。
教學內(nèi)容:課本P104、108頁。教學目標:1、通過復習使學生加深了解統(tǒng)計的意義。2、鞏固學生對條形統(tǒng)計圖的認知,明確用1格表示2個單位的表現(xiàn)形式,能根據(jù)統(tǒng)計圖提出問題。3、在學習過程中培養(yǎng)學生的實踐能力與合作意識。教學重點、難點:1、在復習中進一步了解統(tǒng)計的意義,加深對條形統(tǒng)計圖的認識。2、能根據(jù)條形統(tǒng)計圖的條件提出數(shù)學問題。教學過程:一、復習統(tǒng)計1、觀察討論(1)、教師出示條形統(tǒng)計圖:這張圖叫什么名字?它有什么作用?仔細觀察統(tǒng)計圖你有哪些發(fā)現(xiàn)?(2)、學生觀察討論,思考,依據(jù)自己的體驗回答。仔細觀察統(tǒng)計圖,在小組內(nèi)交流自己的發(fā)現(xiàn)。(3)、組織全班匯報交流,梳理統(tǒng)計圖信息。2、回答問題根據(jù)條形統(tǒng)計圖上的信息,你能回答下列問題嗎?1)、最受二年級同學歡迎的飲料是什么?你是怎么看出來的?2)、喜歡哪兩種飲料的人數(shù)同樣多?你是怎么知道的?
(4)學校買10套課桌用500元,已知桌子的單價是凳子的4倍,每張桌子多少元?三、作業(yè)。第四課時課題:可能性和編碼復習目標:1、認識簡單的可能性事件。2、會求簡單事件發(fā)生的可能性,并用分數(shù)表示。3、通過日常生活中的一些事例,使學生初步體會數(shù)字編碼思想在解決實際問題中的應用。4、讓學生學會運用數(shù)進行編碼,初步培養(yǎng)學生的抽象、概括能力。一、基本練習。1、盒子中有紅、白、黃、綠四種顏色的球各一個,只取一次,拿出紅色球的可能性是多少?白色呢?2、商場促銷,將獎品放置于1到10號的罐子里,幸運顧客有一次猜獎機會,一位顧客猜中得獎的可能性是多少?3、盒子中有紅色球8個,藍色球10個,取一次,取出紅色球的可能性大還是藍色球?4、說出下面各組數(shù)據(jù)的中位數(shù)。
五、說課件設計及板書隨著教育現(xiàn)代化的發(fā)展,多媒體課件在課堂中輔助教師授課,幫助學生練習,已成為非常重要的教學輔助工具之一。在本節(jié)課的授課過程中,本人也使用了多媒體教學課件。課件在設計上遵循實用性原則、輔助性原則、創(chuàng)新性原則,緊緊圍繞教學目標,服務于課堂教學,設計科學合理,制作精美細致;課件的有效使用很好地優(yōu)化了課堂,極大地擴充了容量,有力地突出了重點,輕松地化解了難點;使學生學習興趣濃郁,使教學效率大大提高;特別是在演示多邊形對應角相等的設計,使這一教學環(huán)節(jié)變得更直觀、更高效、更方便,讓學生輕松地進行探究,很好地保護了學生的學習熱情,方便了教師的策略實現(xiàn)。在授課過程中,我又不是完全依賴于多媒體課件,而成了課件反映員;我充分發(fā)揮教師的主導作用,合理地利用黑板板書有關內(nèi)容,靈活動配合多媒體課件為學生呈現(xiàn)有關知識點,以彌補課件的不足。
課堂教學設計說明求比一個數(shù)少幾的數(shù)的應用題是低年級教學的一個難點.為了分散難點,在復習準備階段做了孕伏.如:圓比三角形多2個,也可以說三角形比圓少2個.為了突破難點,讓學生動手擺、動口說、動筆寫,全方位地調(diào)動學生的各種感官參與教學全過程,使學生在參與學習的活動中領悟出“求比一個數(shù)少幾的數(shù)”的應用題仍然是把較大數(shù)看作兩部分組成的,從大數(shù)中去掉大數(shù)比小數(shù)多的部分,就是小數(shù)與大數(shù)同樣多的部分,也就是小數(shù)的數(shù)值.也可以通過“假設同樣多”去透徹地理解比一個數(shù)少幾的實際意義.確實使學生理解和掌握了這類應用題用減法計算的道理和解答方法.為了讓學生進一步加深理解和掌握“求比一個數(shù)少幾的數(shù)”的應用題的數(shù)量關系和解答方法,在鞏固練習的最后設計了一組對比題目.
經(jīng)過探究發(fā)現(xiàn)只有10與11出現(xiàn)的概率最大且相等(在探究的過程中提醒學生按求等可能性事件的概率步驟來做,在判斷是否等可能和求某個事件的基本數(shù)上多啟發(fā)和引導,幫助學生順利突破難點。)及時表揚答對的學生,因為這個問題整整過了三個世紀,才被意大利著名的天文學家伽利略解決。后來法國數(shù)學家拉普拉斯在他的著作《分析概率論》中,把伽利略的這個解答作為概率的一個基本原理來引用。(適當?shù)臐B透一些數(shù)學史,學生對學習的興趣更濃厚,可以激發(fā)學生課后去進一步的探究前輩們是如何從不考慮順序到想到考慮順序的)8、課堂小結:通過這節(jié)課的學習,同學們回想一下有什么收獲?1、基本事件和等可能性事件的定義。2、等可能性事件的特征:(1)、一次試驗中有可能出現(xiàn)的結果是有限的。(2)、每一結果出現(xiàn)的可能性相等。3、求等可能性事件概率的步驟:(1)審清題意,判斷本試驗是否為等可能性事件。
一.情境引入:師:我們生活在一個變化的世界中,很多東西都在悄悄地發(fā)生變化你能從生活中舉出一些發(fā)生變化的例子嗎?生1:從春季到夏季氣溫在逐漸增加.生2:小樹每年都在長高長粗.生3:我杯子里的水喝一口少一口.(說著就拿起杯子喝水,引起同學哈哈大笑)師: 你這個變化中有幾個量在變化?生3:兩個,一個是喝的口數(shù),一個是水的多少?師: 它們的變化有什么聯(lián)系嗎?生3:有,隨著喝的口數(shù)的增加,瓶中的水越來越少.生4:那我的這張紙越撕越?。ù藭r該同學順便從自己本子上撕下一張紙并將這張紙一次一次的撕下去,其他同學們點頭稱是)師: 你這個變化中又有幾個量?它們又是怎么變化的?生4:兩個,一個是撕的次數(shù),另一個是紙的大小.師:那么哪個量隨哪個量的變化而變化的呢?
教學不應僅僅傳授課本上的知識內(nèi)容,而應該在傳授知識內(nèi)容的同時,注意對學生綜合能力的培養(yǎng).在本節(jié)課中,教師并沒有直接將運算法則告訴學生,而是由學生利用已有知識探究得到.在探究過程中,學生的數(shù)學思想得到了進一步的拓展,學生的綜合能力得到了進一步的提高.當然一節(jié)課的提高并不顯著,但只要堅持這種方式方法,最終會有一個美好的結果.2.充分挖掘知識內(nèi)涵,使學生體會數(shù)學知識間的密切聯(lián)系在教學中,有意識、有計劃的設計教學活動,引導學生體會單項式乘法與單項式除法之間的聯(lián)系與區(qū)別,感受數(shù)學的整體性,不斷豐富學生的解題策略,提高解決問題的能力.3.課堂上應當把更多的時間留給學生在課堂教學中應當把更多時間交給學生.本節(jié)課中計算法則的探究,例題的講解,習題的完成,知識的總結盡可能的全部由學生完成,教師所起的作用是點撥,評價和指導.這樣做,可以更好的體現(xiàn)以學生為中心的教學思想,能更好的提高學生的綜合能力.
6、袋子里有8個紅球,m個白球,3個黑球,每個球除顏色外都相同,從中任意摸出一個球,若摸到紅球的可能性最大,則m的值不可能是( )A.1 B.3 C. 5 D.10活動目的:拓寬學生的思路,對本節(jié)知識進行查缺補漏,并進一步的鞏固加深,鼓勵學生大膽猜測,培養(yǎng)學生勤于動腦、勇于探究的精神. 注意事項:對于第4題與第5題可適當?shù)恼f出事件發(fā)生的可能性的大小,即概率的大小,為今后學習概率做鋪墊;對于第6題可根據(jù)回答情況講解.七、學習小結:師生共同回顧新知探究的整個過程,互相交流總結本節(jié)的知識點:(1)理解確定事件與不確定事件;(2)知道不確定事件發(fā)生的可能性有大有?。唬?)合理運用所學知識分析解決相關問題.目的:鍛煉學生的口頭表達能力,體會學習的成果,感受成功的喜悅,增強學好數(shù)學的信心.(學生暢所欲言,教師給予鼓勵)
一、教材的地位與作用 本節(jié)主要學習一元一次不等式組及其解集的概念,并要求學生會用數(shù)軸確定解集。它是一元一次不等式的后續(xù)學習,也是一種基本的數(shù)學模型,也為下節(jié)和今后解決實際生產(chǎn)和生活問題奠定了堅實的知識基礎。另外,整個學習的過程中數(shù)軸起著不可替代的作用,處處滲透著數(shù)形結合的思想,這種數(shù)學思想會一直影響著學生今后數(shù)學的學習。二、學情分析從學生學習的心理基礎和認知特點來說,學生已經(jīng)學習了一元一次不等式,并能較熟練地解一元一次不等式,能將簡單的實際問題抽象為數(shù)學模型,有一定的數(shù)學化歸能力。但學生將兩個一元一次不等式的解集在同一數(shù)軸上表示會產(chǎn)生一定的困惑。這個年齡段的學生,以感性認識為主,并向理性認知過渡,所以,本節(jié)課的設計是通過學生所熟悉的問題情境,讓學生獨立思考,合作交流,從而引導其自主學習。
1、互逆命題:在兩個命題中,如果第一個命題的條件是第二個命題的 ,而第一個命題的結論是第二個命題的 ,那么這兩個命題互逆命題,如果把其中一個命題叫做原命題,那么另一個命題叫做它的 .2、互逆定理:如果一個定理的逆命題也是 ,那么這個逆命題就是原來定理的逆定理.注意(1):逆命題、互逆命題不一定是真命題,但逆定理、互逆定理,一定是真命題.(2):不是所有的定理都有逆定理.自主學習診斷:如圖所示:(1)若∠A= ,則AC∥ED,( ).(2)若∠EDB= ,則AC∥ED,( ).(3)若∠A+ =1800,則AB∥FD,( ).(4)若∠A+ =1800,則AC∥ED,( ).
由于任何一個一元一次不等式都能寫成ax+b>0(或<0)的形式,而此式的左邊與一次函數(shù)y=ax+b的右邊一致,所以從變化與對應的觀點考慮問題,解一元一次不等式也可以歸結為兩種認識:⑴從函數(shù)值的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于0)的自變量x的取值范圍。⑵從函數(shù)圖像的角度看,就是確定直線y=ax+b在x軸上(或下)方部分所有的點的橫坐標所構成的集合。教學過程中,主要從以上兩個角度探討一元一次不等式與一次函數(shù)的關系。1、“動”―――學生動口說,動腦想,動手做,親身經(jīng)歷知識發(fā)生發(fā)展的過程。2、“探”―――引導學生動手畫圖,合作討論。通過探究學習激發(fā)強烈的探索欲望。3、“樂”―――本節(jié)課的設計力求做到與學生的生活實際聯(lián)系緊一點,直觀多一點,動手多一點,使學生興趣高一點,自信心強一點,使學生樂于學習,樂于思考。4、“滲”―――在整個教學過程中,滲透用聯(lián)系的觀點看待數(shù)學問題的辨證思想。
這是本節(jié)課的重點。讓同學們將∠aob對折,再折出一個直角三角形(使第一條折痕為斜邊),然后展開,請同學們觀察并思考:后折疊的二條折痕的交點在什么地方?這兩條折痕與角的兩邊有什么位置關系?這兩條折痕在數(shù)量上有什么關系?這時有的同學會說:“角的平分線上的點到角的兩邊的距離相等”.即得到了角平分線的性質(zhì)定理的猜想。接著我會讓同學們理論證明,并轉化為符號語言,注意分清題設和結論。有的同學會用全等三角形的判定定理aas證明,從而證明了猜想得到了角平分線的性質(zhì)定理。
由于三角函數(shù)是刻畫周期變化現(xiàn)象的數(shù)學模型,這也是三角函數(shù)不同于其他類型函數(shù)的最重要的地方,而且對于周期函數(shù),我們只要認識清楚它在一個周期的區(qū)間上的性質(zhì),那么它的性質(zhì)也就完全清楚了,因此本節(jié)課利用單位圓中的三角函數(shù)的定義、三角函數(shù)值之間的內(nèi)在聯(lián)系性等來作圖,從畫出的圖形中觀察得出五個關鍵點,得到“五點法”畫正弦函數(shù)、余弦函數(shù)的簡圖.課程目標1.掌握“五點法”畫正弦曲線和余弦曲線的步驟和方法,能用“五點法”作出簡單的正弦、余弦曲線.2.理解正弦曲線與余弦曲線之間的聯(lián)系. 數(shù)學學科素養(yǎng)1.數(shù)學抽象:正弦曲線與余弦曲線的概念; 2.邏輯推理:正弦曲線與余弦曲線的聯(lián)系; 3.直觀想象:正弦函數(shù)余弦函數(shù)的圖像; 4.數(shù)學運算:五點作圖; 5.數(shù)學建模:通過正弦、余弦圖象圖像,解決不等式問題及零點問題,這正是數(shù)形結合思想方法的應用.
1、試驗性操作實驗師:大家說紅花的照片能不能用方格代表?下面請同學們用方格代表紅花的照片,用我們的學具卡片擺出紅花的朵數(shù)。(學生操作,教師巡視。)師:大家說黃花的朵數(shù)能不能也可以這樣操作出?請同學們用上面的方法再操作出黃花的朵數(shù)。(學生操作)師:同學們已經(jīng)擺出了紅花的朵數(shù)和黃花的朵數(shù),怎么操作才能知道紅花和黃花一共是多少朵?(把紅花的朵數(shù)和黃花的朵數(shù)合并起來數(shù)一數(shù))(學生操作,教師巡視。)師:請把合并起來的數(shù)整理一下,讓人一看就能知道是多少朵好嗎?請同學們寫出算式的答案。(即操作表達式)教師多媒體演示全部操作實驗過程,并簡單小結。2、驗證性操作實驗師:同學們,假如紅花是56朵,黃花是38朵,求“紅花和黃花共幾朵?”你們還能不能用上面的操作實驗方法來解決?(能)好!那就請你們試試看。(學生操作,教師巡視。)
教學目標: 1.理解、掌握梯形面積的計算公式,并能運用公式正確計算梯形的面積。2.發(fā)展學生空間觀念。培養(yǎng)抽象、概括和解決實際問題的能力。3.掌握“轉化”的思想和方法,進一步明白事物之間是相互聯(lián)系,可以轉化的。教學重點:理解、掌握梯形面積的計算公式。教學難點:理解梯形面積公式的推導過程。教學過程:1.導入新課(1)投影出示一個三角形,提問:這是一個三角形,怎樣求它的面積?三角形面積計算公式是怎樣推導得到的?學生回答后,指名學生操作演示轉化的方法。(2)展示臺出示梯形,讓學生說出它的上底、下底和各是多少厘米。(3)教師導語:我們已學會了用轉化的方法推導三角形面積的計算公式,那怎樣計算梯形的面積呢?這節(jié)課我們就來解決這個問題。(板書課題,梯形面積的計算)
等式性質(zhì)與不等式性質(zhì)是高中數(shù)學的主要內(nèi)容之一,在高中數(shù)學中占有重要地位,它是刻畫現(xiàn)實世界中量與量之間關系的有效數(shù)學模型,在現(xiàn)實生活中有著廣泛的應,有著重要的實際意義.同時等式性質(zhì)與不等式性質(zhì)也為學生以后順利學習基本不等式起到重要的鋪墊.課程目標1. 掌握等式性質(zhì)與不等式性質(zhì)以及推論,能夠運用其解決簡單的問題.2. 進一步掌握作差、作商、綜合法等比較法比較實數(shù)的大?。?3. 通過教學培養(yǎng)學生合作交流的意識和大膽猜測、樂于探究的良好思維品質(zhì)。數(shù)學學科素養(yǎng)1.數(shù)學抽象:不等式的基本性質(zhì);2.邏輯推理:不等式的證明;3.數(shù)學運算:比較多項式的大小及重要不等式的應用;4.數(shù)據(jù)分析:多項式的取值范圍,許將單項式的范圍之一求出,然后相加或相乘.(將減法轉化為加法,將除法轉化為乘法);5.數(shù)學建模:運用類比的思想有等式的基本性質(zhì)猜測不等式的基本性質(zhì)。
第一:說教材?!百|(zhì)數(shù)和合數(shù)”是九年義務教育小學數(shù)學五年級(上)第三單元的內(nèi)容,在教材第39~40頁;是學生學習了因數(shù)和倍數(shù)的意義,了解了2、5、3倍數(shù)的特征之后的重要知識,它是學生學習分解質(zhì)因數(shù)、求最大公約數(shù)和最小公倍數(shù)的基礎,在本章教學中起著承前啟后的重要作用。第二:說教法:根據(jù)新課標的精神和學生實際,我將本節(jié)課教學目標定為:1)找因數(shù)填表格經(jīng)歷探索質(zhì)數(shù)與合數(shù)的過程,理解質(zhì)數(shù)與合數(shù)的意義;2)能正確判斷一個數(shù)是質(zhì)數(shù)或合數(shù);3)在研究質(zhì)數(shù)的過程中豐富對數(shù)學發(fā)展的認識,感受數(shù)學發(fā)展的文化魅力;4)、在猜想——驗證——概括——理解的過程中體會學習數(shù)學的樂趣,積累數(shù)學學習的方法。第三:說教學重難點重點:理解質(zhì)數(shù)與合數(shù)的意義。難點:能正確判斷一個數(shù)是質(zhì)數(shù)還是合數(shù),體會數(shù)學學習的方法。教學準備:課件教學安排:兩課時。
2、提出問題:3張大餅怎樣能夠平均分給唐僧師徒四人呢?每人得到大餅的多少張呢?3、揭示課題:分餅二、動手操作,探究新知:活動操作一:3張餅平均分給4個人。1、要求學生用準備好的圓紙片代表餅,剪一剪,拼一拼,畫一畫,小組交流自己的想法。教師巡視并進行指導。2、各小組匯報分法及分得的結果。(指名回答)第一種分法:把一張一張的餅平均分成4份,每人分每張餅的,共分一張餅的。并請學生上臺演示分的整個過程。第二種分法:把3張餅疊起來,平均分成4份,每人分得3張餅的,也是張餅,請學生上臺演示分的整個過程。3、演示學生兩種分法的圖片:4、請觀察,這個分數(shù)有什么特點,分子比分母小,你還能舉幾個這樣的例子嗎?像這樣的分數(shù)叫作真分數(shù),真分數(shù)小于1。
教學目標:1、學生經(jīng)歷體驗由具體數(shù)到用字母表示數(shù)的抽象過程;2、學生能用含有字母的式子表示計算公式;教學重、難點:目標1教學過程:一、引入。1、師:同學們,我們開始上課,先做一個游戲:首先,我說a表示舉左手一次,我說b表示舉右手一次,我說c表示拍手一次。聽好了沒有,現(xiàn)在老師說,你們做,好不好?師:abc,acb,bac,bca,cab,cba。師:剛才我們用字母表示一個信息,其實,在日常生活中,字母可以表示很多東西,今天,我們就一起來研究“用字母表示數(shù)”。(板書課題)2、復習數(shù)量關系式:(學生讀一次)每份數(shù)×份數(shù)=總數(shù) 單價×數(shù)量=總價 速度×時間=路程總數(shù)÷份數(shù)=每份數(shù) 總價÷數(shù)量=單價 路程÷速度=時間總數(shù)÷每份數(shù)=份數(shù) 總價÷單價=數(shù)量 路程÷時間=速度評析:以學生感興趣的游戲入手,激發(fā)學生的學習興趣,同時復習數(shù)量關系式,為學習新知識奠定基礎。