1、結(jié)合具體情境,體會生活中變化的量,感覺變化的量之間的關(guān)系,認識變化特征。2、通過自主探究,合作交流,在活動過程中培養(yǎng)學生用多種方法解決問題的能力,進一步發(fā)展學生觀察、比較、概括等能力,滲透分類的數(shù)學思想。3、經(jīng)歷數(shù)學活動的過程,體驗用多種方法研究問題的樂趣,感覺成功的快樂,增強學好數(shù)學的信心。教材安排了多個生活情境,以表格、圖像、關(guān)系式等不同方式呈現(xiàn),目的是讓學生通過多種方式認識變化的量的特征。因此,我確定本課的教學重點是結(jié)合具體情境,感覺變化的量之間的關(guān)系,認識變化特征。六年級的學生,抽象思維得到了一定的發(fā)展,但以前從未接觸過變化的量,從之前熟悉的定向思維模式轉(zhuǎn)向多向思維模式,并認識變化特征會有一定的困難。因此,我確定本課的教學難點是用多種方式認識變化的量的變化特征。本課需要教師準備多媒體課件,為學生準備學習單。
知識與能力目標是:理解反比例的意義,能判斷兩個量是不是成反比例過程與方法目標是:通過討論、探究、觀察等活動,提高分析問題解決問題人的能力情感態(tài)度價值觀目標是:培養(yǎng)學生對學習數(shù)學的興趣,感知數(shù)學與生活的聯(lián)系。此外,根據(jù)我對教材的解讀,我將本節(jié)課的教學重點確定為:理解反比例的意義教學難點確定為:判斷兩個量是不是成反比例二、教法與學法新課標指出:學生是學習的主體,教師是學習的組織者、引導者和合作者,因此首先我采用情境教學法,通過創(chuàng)設(shè)情境,激發(fā)學生對學習數(shù)學的興趣,;再通過師生互動,探究式教學,為學生創(chuàng)設(shè)一個寬松的數(shù)學學習環(huán)境,相對教師的教法學生采用自主探索,研討發(fā)現(xiàn)的學習方法,讓學生成為學習的主人,發(fā)揮學生學習數(shù)學的積極性和主動性,最后利用練習法:通過適當?shù)木毩?,鞏固所學的知識,解決生活中簡單的實際問題
2.放大空間,升華思考由于我對教材的二度開發(fā)留給了學生足夠的探索空間,課上學生探索數(shù)學的熱情被充分調(diào)動,我們欣喜地看到:有的學生嘗試著不同平面圖形的旋轉(zhuǎn);有的學生只用一種平面圖形,卻旋轉(zhuǎn)出不同的立體圖形;有的學生的思維并沒有停留在表象上,而是在深入地思考產(chǎn)生這一現(xiàn)象的原因……交流時學生的發(fā)現(xiàn)遠遠超出了我們的想象,這份生成帶給我們的是驚喜,是贊嘆,更是“以操作促思考”的教學行為結(jié)出的碩果。3.巧用課件,形成表象本節(jié)課,我充分運用現(xiàn)代信息技術(shù)將平面圖形經(jīng)過旋轉(zhuǎn)形成立體圖形的過程生動、逼真地再現(xiàn)出來,幫助學生將抽象的空間想象化為直觀,進而形成表象,深植于學生的腦海中,促進了學生空間觀念的形成。總之,在這節(jié)課上,我堅持把“促進學生發(fā)展”作為第一要素貫穿于課堂教學的始終,讓學生在充滿著民主、探究、思考的氛圍中,積極操作、主動思考,發(fā)展了學生的空間觀念。
二、說學情學生有了前面學習的基礎(chǔ),課堂上盡可能放手讓學生自主探索出兩位數(shù)減兩位數(shù)(不退位)的計算方法。關(guān)注學生豎式的書寫。三、教學目標:1、學生在具體情境下,進一步體會加減法的意義。2、探索并掌握兩位數(shù)減兩位數(shù)(不退位)的計算方法3、初步學會應用加減法解決生活中的簡單問題,感受加減法與日常生活的密切聯(lián)系教學重點:本節(jié)課的重點是理解筆算兩位數(shù)不退位減的算理,能正確用豎式計算。教學難點:理解兩位數(shù)減兩位數(shù)不退位減法的算理。三、精選教法。針對本節(jié)課抽象性較強,算理比較復雜,而一年級學生以形象思維為主,抽象思維相對較弱的特點,教學時應采用多種方法來激發(fā)學生興趣,引導探究新知。教師主要采用:情境教學法、嘗試教學法、講授法、直觀演示法、練習法等,并使這些方法相互交融,融為一體。
本課時教師根據(jù)教材內(nèi)容,從學生的年齡特點及認知規(guī)律出發(fā),精心設(shè)計“圖書館”這一問題情境,讓學生在具體的情景中提出問題、解決問題、掌握算理,培養(yǎng)學生提出問題、分析問題、解決問題的能力。同時也培養(yǎng)學生的觀察能力,激發(fā)學生的學習興趣,使學生真正體會到生活中處處有數(shù)學、數(shù)學來源于生活。本課的教學目標是:1.在生動活潑的情境中,激發(fā)學生的學習興趣,發(fā)展學生的思維能力,培養(yǎng)學生的合作意識和主動探索的精神。2.通過觀察和操作等學習活動,使學生掌握100以內(nèi)兩位數(shù)加一位數(shù)進位加的計算方法,初步體會計算方法的多樣化。3.感受數(shù)的計算與生活的密切聯(lián)系,進一步體會加法的意義,培養(yǎng)觀察、動手和運用數(shù)學解決問題的能力。本課的教學重點是:使學生理解并掌握一種適合他自己的算法,尤其是豎式計算的方法,正確計算100以內(nèi)(兩位數(shù)加一位數(shù))的進位加法。教學難點是:理解不同算法的算理,尤其是滿十進一的運算規(guī)律。
{二}、努力實現(xiàn)扶與放的和諧統(tǒng)一,共同構(gòu)建有效課堂。學生能自己解決的決不包辦代替:學生可能完成的,充分相信學生,發(fā)揮自主探索與合作交流的優(yōu)點,讓學生有一個充分體驗成功展示自我的舞臺;學生有困難的,給予適當引導,拒絕無效探究,提高課堂效率。四、教學目標:基于對教材的理解和分析,我將該節(jié)課的教學目標定位為:1、幫助學生理解正比例的意義。用字母表示變量之間的關(guān)系,加深對正比例的認識。2、通過觀察、比較、判斷、歸納等方法,培養(yǎng)學生用事物相互聯(lián)系和發(fā)展變化的觀點來分析問題,使學生能夠根據(jù)正比例的意義判斷兩種量是不是成正比例。3、學生在自主探索,合作交流中獲得積極的數(shù)學情感體驗,得到必要的數(shù)學思維訓練。
三、說教學重點、難點重點是小數(shù)乘法的豎式計算方法和積與乘數(shù)的大小關(guān)系。難點是小數(shù)乘法中乘數(shù)末位有0的計算。四、說學情在進行本節(jié)內(nèi)容學習之前,學生已經(jīng)學習了整數(shù)乘法的運算規(guī)律,小數(shù)的意義及其加減法,還有小數(shù)乘法的計算規(guī)律。本節(jié)內(nèi)容重點是學會把小數(shù)乘法的運算方法應用到解決實際問題中去。根據(jù)四年級學生的認知特點和課堂注意力時間有限的特點,在教學中一定要提高課堂效率五、說教法、學法在本課教學中,我采取的教學方法是:1.通過復習,回顧計算規(guī)律,并把它應用到豎式中去。2.情境展示,把數(shù)學問題直接放在實際問題中來學習并解決。3.解決問題時采用自主探索、獨立思考和小組合作交流的學習方式。通過這些教學法激發(fā)學生學習的積極性和主動性,引導學生把學到的規(guī)律應用到現(xiàn)實生活中來解決實際問題。六、說教學過程(一)舉例說明積的小數(shù)位數(shù)與乘數(shù)小數(shù)位數(shù)的關(guān)系。通過比眼力,做一做,復習前一節(jié)課所學內(nèi)容,為本節(jié)課打下基礎(chǔ)。
一、教材:《畫一畫》這一內(nèi)容是在學生學習了《變化的量》和《正比例》這兩節(jié)內(nèi)容以后安排的,學生已經(jīng)結(jié)合大量的生活情境認識了生活中存在的許多相互依賴的變量,而且體會了這些變量之間的關(guān)系,認識了正比例及其意義,能初步判斷兩個相關(guān)聯(lián)的兩是不是成正比例,感受了正比例在生活中的應用,學生對正比例的認識有了一定的基礎(chǔ)。教材安排這一內(nèi)容,一是讓學生進一步認識正比例,以及正比例中兩個相關(guān)聯(lián)的量之間的關(guān)系;二是通過讓學生在方格紙上描出成正比例的量所對應的點并能在圖中根據(jù)一個變量的值估計它所對應的變量的值,從而認識正比例圖像的特點。主要意圖是引導學生運用已有的知識,用圖的形式去直觀表示兩個成正比例的量的變化關(guān)系,鼓勵學生發(fā)現(xiàn)當兩個變量成正比例關(guān)系時,所繪成的圖像是一條直線,在此基礎(chǔ)上,鼓勵學生利用圖,進行一些估計,解決一些問題,為以后進一步學習正比例函數(shù)打下一定的基礎(chǔ)。
發(fā)展應用意識,運用所學知識解決兩位數(shù)加減兩位數(shù)(不進位,不退位)的計算方法。4、教學難點學生學會在理解圖意的基礎(chǔ)上,自己提出數(shù)學問題,引導學生嘗試用自己的方法進行計算,體現(xiàn)算法多樣化的思想,進一步體會加減法的意義。二、說教學法學生已有整十數(shù)加減整十數(shù)、兩位數(shù)加減一位數(shù)(不進位、不退位)的知識作為基礎(chǔ),有一小部分學生在上學前已對豎式有簡單的了解。對于看圖編故事和從圖中提出問題,前面的學習中已有過練習。這些都是本節(jié)課學生學習的前提條件。在本節(jié)課中,力圖體現(xiàn)出學生學習方法的轉(zhuǎn)變:從被動接受學習變?yōu)樵谧灾鳌⑻骄?、合作中學習。讓學生自己提出問題,再自己想辦法解決,并能以小組為單位共同合作完成;讓學生親自體驗知識的形成過程,促進學生思維的發(fā)展。三、說教學流程(一)創(chuàng)設(shè)情境。
一、說教材分析《采松果》一課講的主要內(nèi)容是:兩位數(shù)加、減一位數(shù)(不進位、不退位),是在學生熟練掌握20以內(nèi)加、減法以及整十數(shù)加、減整十數(shù)的基礎(chǔ)上安排的。教材內(nèi)容分為兩部分:一部分是教學兩位數(shù)加一位數(shù),另一部分是教學兩位數(shù)減一位數(shù)。這兩部分內(nèi)容呈現(xiàn)在同一情境圖——“采松果”中,創(chuàng)設(shè)了一個充滿童趣的生活故事場景,引發(fā)學生在讀懂圖意的基礎(chǔ)上,發(fā)現(xiàn)其中的數(shù)學信息,并能利用這些數(shù)學信息提出數(shù)學問題。二、說學情分析在學習本節(jié)課內(nèi)容之前,學生已認識了100以內(nèi)的數(shù),掌握了20以內(nèi)的加減法以及整十數(shù)加、減整十數(shù)的計算方法,對于加減法的意義有了一個基本的了解。另外經(jīng)過上半學期的目標性訓練,學生已具有了初步的合作交流意識和提出問題、解決問題的能力,能夠有目的地進行探索性學習。但是,對于單純的口算學習學生的學習興趣并不是很濃,因此,激發(fā)學生的學習興趣,使學生想學、樂學便顯得尤為重要。
《包裝》是北師大版四年級下冊第三單元第四課時的內(nèi)容。本課主要讓學生探索小數(shù)乘小數(shù)的豎式計算方法,是在學生掌握小數(shù)點位置的移動引起小數(shù)大小變化的規(guī)律以及積的小數(shù)位數(shù)與兩個乘數(shù)的小數(shù)位數(shù)之間關(guān)系的基礎(chǔ)上教學的。小數(shù)乘法的豎式計算是本單元的重點,是學生正確進行小數(shù)乘法計算的關(guān)鍵。課本首先安排了三個問題:第一個問題是結(jié)合解決實際問題的過程,會選擇適當方法估計運算結(jié)果,發(fā)展數(shù)感,并通過交流進一步理解小數(shù)乘法與整數(shù)乘法之間相互轉(zhuǎn)化的條件;第二個問題也是結(jié)合解決實際問題的過程,掌握小數(shù)乘法轉(zhuǎn)化為整數(shù)乘法進行運算的一般步驟,從而歸納總結(jié)小數(shù)乘法的豎式計算方法;第三個問題是經(jīng)歷獨立計算和交流小數(shù)乘法的過程,體驗算法的多樣化,發(fā)展運算能力。其次安排了6道練習題,目的是為了進一步發(fā)展數(shù)感,鞏固小數(shù)乘法的豎式計算方法,體會小數(shù)乘法的豎式計算在生活中的應用。
【類型四】 含整數(shù)指數(shù)冪、零指數(shù)冪與絕對值的混合運算計算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分別根據(jù)有理數(shù)的乘方、零指數(shù)冪、負整數(shù)指數(shù)冪及絕對值的性質(zhì)計算出各數(shù),再根據(jù)實數(shù)的運算法則進行計算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法總結(jié):熟練掌握有理數(shù)的乘方、零指數(shù)冪、負整數(shù)指數(shù)冪及絕對值的性質(zhì)是解答此題的關(guān)鍵.三、板書設(shè)計1.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.2.零次冪:任何一個不等于零的數(shù)的零次冪都等于1.即a0=1(a≠0).3.負整數(shù)次冪:任何一個不等于零的數(shù)的-p(p是正整數(shù))次冪,等于這個數(shù)p次冪的倒數(shù).即a-p=1ap(a≠0,p是正整數(shù)).從計算具體問題中的同底數(shù)冪的除法,逐步歸納出同底數(shù)冪除法的一般性質(zhì).教學時要多舉幾個例子,讓學生從中總結(jié)出規(guī)律,體驗自主探究的樂趣和數(shù)學學習的魅力,為以后的學習奠定基礎(chǔ)
問題:2015年9月24日,美國國家航空航天局(下簡稱:NASA)對外宣稱將有重大發(fā)現(xiàn)宣布,可能發(fā)現(xiàn)除地球外適合人類居住的星球,一時間引起了人們的廣泛關(guān)注.早在2014年,NASA就發(fā)現(xiàn)一顆行星,這顆行星是第一顆在太陽系外恒星旁發(fā)現(xiàn)的適居帶內(nèi)、半徑與地球相若的系外行星,這顆行星環(huán)繞紅矮星開普勒186,距離地球492光年.1光年是光經(jīng)過一年所行的距離,光的速度大約是3×105km/s.問:這顆行星距離地球多遠(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.問題:“10×105×107×102”等于多少呢?二、合作探究探究點:同底數(shù)冪的乘法【類型一】 底數(shù)為單項式的同底數(shù)冪的乘法計算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)mn+1·mn·m2·m.解析:(1)根據(jù)同底數(shù)冪的乘法法則進行計算即可;(2)先算乘方,再根據(jù)同底數(shù)冪的乘法法則進行計算即可;(3)根據(jù)同底數(shù)冪的乘法法則進行計算即可.
(8)物價部門規(guī)定,此新型通訊產(chǎn)品售價不得高于每件80元。在此情況下,售價定為多少元時,該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計劃年初投入進貨成本m不超過200萬元,請你分析一下,售價定為多少元,公司獲利最大?售價定為多少元,公司獲利最少?三、小練兵:某商場經(jīng)營某種品牌的童裝,購進時的單價是60元.根據(jù)市場調(diào)查,銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務,那么商場銷售該品牌童裝獲得的最大利潤是多少元?
如圖所示,要用長20m的鐵欄桿,圍成一個一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時,才能使y的值最大?二、合作探究探究點一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練” 第1題探究點二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值
③設(shè)每件襯衣降價x元,獲得的利潤為y元,則定價為 元 ,每件利潤為 元 ,每星期多賣 件,實際賣出 件。所以Y= 。(0<X<20)何時有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價多少元時,才能使利潤最大?☆ 歸納反思 ☆總結(jié)得出求最值問題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內(nèi),運用公式法或通過配方法求出二次函數(shù)的最值?!? 達標檢測 ☆ 1、用長為6m的鐵絲做成一個邊長為xm的矩形,設(shè)矩形面積是ym2,,則y與x之間函數(shù)關(guān)系式為 ,當邊長為 時矩形面積最大.2、藍天汽車出租公司有200輛出租車,市場調(diào)查表明:當每輛車的日租金為300元時可全部租出;當每輛車的日租金提高10元時,每天租出的汽車會相應地減少4輛.問每輛出租車的日租金提高多少元,才會使公司一天有最多的收入?
(2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進行討論,利用利潤=每件的利潤×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)分別求得最值,然后兩種情況下取最大的即可.解:(1)當1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000;當50≤x≤90時,y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當1≤x<50時,y=-2x2+180x+2000,二次函數(shù)開口向下,對稱軸為x=45,當x=45時,y最大=-2×452+180×45+2000=6050;當50≤x≤90時,y=-120x+12000,y隨x的增大而減小,當x=50時,y最大=6000.綜上所述,銷售該商品第45天時,當天銷售利潤最大,最大利潤是6050元.方法總結(jié):本題考查了二次函數(shù)的應用,讀懂表格信息、理解利潤的計算方法,即利潤=每件的利潤×銷售的件數(shù),是解決問題的關(guān)鍵.
解析:根據(jù)AB∥CD,∠ACD=120°,得出∠CAB=60°.再根據(jù)尺規(guī)作圖得出AM是∠CAB的平分線,即可得出∠MAB的度數(shù).解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺規(guī)作圖知AM是∠CAB的平分線,∴∠MAB=12∠CAB=30°.方法總結(jié):通過本題要掌握角平分線的作圖步驟,根據(jù)作圖明確AM是∠BAC的角平分線是解題的關(guān)鍵.三、板書設(shè)計1.角平分線的性質(zhì):角平分線上的點到這個角的兩邊的距離相等.2.角平分線的作法本節(jié)課由于采用了動手操作以及討論交流等教學方法,從而有效地增強了學生對角以及角平分線的性質(zhì)的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生在性質(zhì)的運用上還存在問題,需要在今后的教學與作業(yè)中進一步的加強鞏固和訓練
解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2.∵積不含x2項,也不含x項,∴-2a+3b=0,-2b+3=0,解得b=32,a=94,∴系數(shù)a、b的值分別是94,32.方法總結(jié):解決此類問題首先要利用多項式乘法法則計算出展開式,合并同類項后,再根據(jù)不含某一項,可得這一項系數(shù)等于零,再列出方程解答.三、板書設(shè)計1.多項式與多項式的乘法法則:多項式和多項式相乘,先用一個多項式的每一項與另一個多項式的每一項相乘,再把所得的積相加.2.多項式與多項式乘法的應用本節(jié)知識的綜合性較強,要求學生熟練掌握前面所學的單項式與單項式相乘及單項式與多項式相乘的知識,同時為了讓學生理解并掌握多項式與多項式相乘的法則,教學中一定要精講精練,讓學生從練習中再次體會法則的內(nèi)容,為以后的學習奠定基礎(chǔ)
解析:先求出長方形的面積,再求出綠化的面積,兩者相減即可求出剩下的面積.解:長方形的面積是xym2,綠化的面積是35x×34y=920xy(m2),則剩下的面積是xy-920xy=1120xy(m2).方法總結(jié):掌握長方形的面積公式和單項式乘單項式法則是解題的關(guān)鍵.三、板書設(shè)計1.單項式乘以單項式的運算法則:單項式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對于只在一個單項式里面含有的字母,則連同它的指數(shù)作為積的一個因式.2.單項式乘以單項式的應用本課時的重點是讓學生理解單項式的乘法法則并能熟練應用.要求學生在乘法的運算律以及冪的運算律的基礎(chǔ)上進行探究.教師在課堂上應該處于引導位置,鼓勵學生“試一試”,學生通過動手操作,能夠更為直接的理解和應用該知識點