1.理解角的概念,掌握角的表示方法.2.理解平角、周角的概念,掌握角的常用度量單位:度、分、秒,及它們之間的換算關系,并會進行簡單的換算.一、情境導入鐘表是我們生活中常見的物品,同學們,你能說出圖中每個鐘表時針與分針所成的角度嗎?學完了下面的內容,就會知道答案.二、合作探究探究點一:角的概念及其表示方法【類型一】 對角的概念的考查下列關于角的說法中正確的有()①角是由兩條射線組成的圖形;②角的邊越長,角越大;③在角一邊的延長線上取一點;④角可以看作由一條射線繞著它的端點旋轉而形成的圖形.A.1個 B.2個 C.3個 D.4個解析:①角是由有公共端點的兩條射線組成的圖形,錯誤;②角的大小與開口大小有關,角的邊是射線,沒有長短之分,錯誤;③角的邊是射線,不能延長,錯誤;④角可以看作由一條射線繞著它的端點旋轉而形成的圖形,說法正確.所以只有④正確.故選A.
一、情境導入游泳是一項深受青少年喜愛的體育活動,學校為了加強學生的安全意識,組織學生觀看了紀實片《孩子,請不要私自下水》,并于觀看后在本校的2000名學生中作了抽樣調查.你能根據下面兩個不完整的統(tǒng)計圖回答以下問題嗎?(1)這次抽樣調查中,共調查了多少名學生?(2)補全兩個統(tǒng)計圖;(3)根據抽樣調查的結果,估算該校2000名學生中大約有多少人“一定會下河游泳”?二、合作探究探究點一:頻數直方圖的制作小紅家開了一個報亭,為了使每天進的某種報紙適量,小紅對這種報紙40天的銷售情況作了調查,這40天賣出這種報紙的份數如下:136 175 153 135 161 140 155 180 179 166188 142 144 154 155 157 160 162 135 156148 173 154 145 158 150 154 168 168 155169 157 157 149 134 167 151 144 155 131將上述數據分組,并繪制相應的頻數直方圖.解析:先找出這組數據的最大值和最小值,再以10為組距把數據分組,然后制作頻數直方圖.解:通過觀察這組數據的最大值為188,最小值為131,它們的差是57,所以取組距為10,分6組,整理可得下面的頻數分布表:
方法總結:本題考查了利用數軸,比較數的大小關系,對于含有絕對值的式子的化簡,要根據絕對值內的式子的正負,去掉絕對值符號.探究點四:含括號的整式的化簡應用某商店有一種商品每件成本a元,原來按成本增加b元定出售價,售出40件后,由于庫存積壓,調整為按售價的80%出售,又銷售了60件.(1)銷售100件這種商品的總售價為多少元?(2)銷售100件這種商品共盈利多少元?解析:(1)求出前40件的售價與后60件的售價即可確定出總售價;(2)由“利潤=售價-成本”列出關系式即可得到結果.解:(1)根據題意得:40(a+b)+60(a+b)×80%=88a+88b(元),則銷售100件這種商品的總售價為(88a+88b)元;(2)根據題意得:88a+88b-100a=-12a+88b(元),則銷售100件這種商品共盈利(-12a+88b)元.方法總結:解決此類題目的關鍵是熟記去括號法則和熟練運用合并同類項的法則.
新建成的紅星中學,首次招收七年級新生12個班共500人,學校準備修建一個自行車車棚.請問需要修建多大面積的自行車車棚?請你設計一個調查方案解決這個問題.解析:決定自行車車棚面積的因素有兩個,即自行車的數量與每輛自行車的占地面積.因此收集數據的重點應圍繞這兩個因素進行.解:調查方案如下:(1)對全體新生的到校方式進行問卷調查.調查問卷如下:你到校的方式是騎自行車嗎?A.經常是 B.不經常是C.很少是 D.從不是(2)根據調查問卷結果分類統(tǒng)計騎自行車的人數;(3)實際測量或估計存放1輛自行車的大約占地面積;(4)根據學校的建設規(guī)劃、財力等因素確定自行車車棚的面積.方法總結:確定調查方案時必須明確兩個問題:(1)需要收集哪些數據?(2)采用什么方式進行調查可以獲得這些數據?探究點三:從圖表中獲取信息小冰就公眾對在餐廳吸煙的態(tài)度進行了調查,并將調查結果制作成如圖所示的統(tǒng)計圖,請根據圖中的信息回答下列問題:
1. 小明的腳長23.6厘米,鞋號應是 號。2.小亮的腳長25.1厘米,鞋號應是 號。3.小王選了25號鞋,那么他的腳長約是大于等于 厘米且小于 厘米。小結:剛才同學們都體會到了分組編碼使原來繁多,無敘的數據簡化、有序。因此分組、編碼是整理數據的一種重要的方法,在工商業(yè)、科研等活動中有廣泛的應用(四)反饋練習課內練習以下是某校七年級南,女生各10名右眼裸視的檢測結果:0.2,0.5,0.7(女),1.0,0.3(女),1.2(女),1.5,1.2,1.5(女),0.4(女),1.5,1.1,1.2(女),0.8(女),1.5(女),0.6(女),1.0(女),0.8,1.5,1.2(1)這組數據是用什么方法獲得的?(2)學生右眼視力跟性別有關嗎?為了回答這個問題,你將怎樣處理這組數據?你的結論是什么?(五). 歸納小結,體味數學快樂通過本節(jié)課的學習,你有那些收獲?(課堂小結交給學生)數據收集的方法:直接觀察、測量、調查、實驗、查閱文獻資料、使用互連網等。整理數據的方法:分類、排序、分組編碼等。(學生可能還會指出鞋碼和腳長之間的關系等)
議一議數軸上的兩個點,右邊點表示的數與左邊點表示的數有怎樣的大小關系?數軸上表示的數,▁▁▁邊的總比▁▁▁邊的大;正數▁▁▁0,負數▁▁▁0,正數▁▁▁負數。練習:比較大?。?3▁5; 0 ▁-4 ;-3 ▁-2.5。3、合作交流(1) 什么是數軸?怎樣畫數軸。(2) 有理數與數軸上的點之間存在怎樣的關系?(3) 什么是相反數?怎樣求一個數的相反數?(4) 如何利用數軸比較有理數的大???5、隨堂練習:(1)下列說法正確的是( ) A、 數軸上的點只能表示有理數B、 一個數只能用數軸上的一個點表示C、 在1和3之間只有2D、 在數軸上離原點2個單位長度的點表示的數是2 (2)語句:①-5是相反數?②-5與+3互為相反數③-5是5的相反數④-5和5互為相反數⑤0的相反數是0⑥-0=0。上述說法中正確的是( )
將有理數-2,+1,0,-212,314在數軸上表示出來,并用“<”號連接各數.解析:利用數軸上的點來表示相應的數,再利用它們對應點的位置來判斷各數的大?。猓喝鐖D:由數軸可知-212<-2<0<+1<314.方法總結:一般地,數軸上多個數的大小比較,可利用“數軸上兩個點表示的數,右邊的總比左邊的大”這一性質進行比較.探究點四:點在數軸上的移動問題點A為數軸上表示-2的動點,當點A沿數軸移動4個單位長度到點B時,點B所表示的有理數為()A.2 B.-6C.2或-6 D.以上答案都不對解析:∵點A為數軸上表示-2的動點,①當點A沿數軸向左移動4個單位長度時,點B所表示的有理數為-6;②當點A沿數軸向右移動4個單位長度時,點B所表示的有理數為2.故選C.方法總結:點A在數軸上移動要注意分兩種情況:一個向左,一個向右,不要漏掉其中的一種情況.
在探究估算方法的時候,教師要注重適時的引導,以免讓學生無從下手.在教學過程中一定要讓學生體會估算的實用價值,了解到“數學既來源與生活,又回歸到生活為生活服務”.(二)課堂評價的一些思考在教學中要多鼓勵學生用自己的語言表達他們的想法,在估算的過程中多給予適當的引導和評價,讓學生逐步把握估算的方法,找到解決問題的信心.比如對“畫能掛上去嗎”這個問題情境,學生可能提出不同的看法,有些學生可能認為可以掛上去,因為人還有身高,完全可以彌補梯子穩(wěn)定擺放的高度和掛畫位置的高度之間的差距,有些學生可能認為,人不可能爬到梯子的頂部,加上人如果本來比較矮,畫就不能掛上去等等想法,教師都應該給予肯定,這樣才能激發(fā)學生思考問題的熱情,調動學生探究問題的積極性.作為教師,一定要尊重學生的個體差異,滿足多樣化的學習需要,鼓勵探究方式、表達方式和解題方法的多樣化.
② 命題的含義:判斷一件事情的句子,叫做命題,如果一個句子沒有對某一件事情作出任何判斷,那么它就不是命題.活動目的:通過課后的總結,使學生對定義、命題等概念有更清楚的認識,讓學生在頭腦中對本節(jié)課進行系統(tǒng)的歸納與整理.教學效果:學生在有了前面對定義、特別是命題概念的學習后,能了解命題的結構,以及哪些是命題,使學生對命題的學習有了清楚的認識。第五環(huán)節(jié) 課后練習學習小組搜集八年級數學課本中的新學的部分定義、命題,看誰找得多.四、教學反思本節(jié)課的設計具有如下特點:(1)采用了“小品表演”的形式引入新課,意在激起學生對數學的興趣,讓學生知道,數學不是枯燥無味的。并能從表演中不同的人對“黑客”這個名詞的不同理解更好地悟出“定義”的含義。
第一環(huán)節(jié):回顧引入活動內容:①什么叫做定義?舉例說明.②什么叫命題?舉例說明. 活動目的:回顧上節(jié)知識,為本節(jié)課的展開打好基礎.教學效果:學生舉手發(fā)言,提問個別學生.第二環(huán)節(jié):探索命題的結構活動內容:① 探討命題的結構特征觀察下列命題,發(fā)現(xiàn)它們的結構有什么共同特征?(1)如果兩個三角形的三條邊對應相等,那么這兩個三角形全等.(2)如果一個三角形是等腰三角形,那么這個三角形的兩個底角相等.(3)如果一個四邊形的一組對邊平行且相等,那么這個四邊形是平行四邊形.(4)如果一個四邊的對角線相等,那么這個四邊形是矩形.(5)如果一個四邊形的兩條對角線互相垂直,那么這個四邊形是菱形.② 總結命題的結構特征(1)上述命題都是“如果……,那么……”的形式.(2)“如果……”是已知的事項,“那么……”是由已知事項推斷出的結論.
一、情境導入神舟十號是中國神舟號系列飛船之一,主要由推進艙(服務艙)、返回艙、軌道艙組成.神舟十號在酒泉衛(wèi)星發(fā)射中心“921工位”,于2013年6月11日17時38分02.666秒發(fā)射,由長征二號F改進型運載火箭(遙十)“神箭”成功發(fā)射.在軌飛行十五天左右,加上發(fā)射與返回,其中停留天宮一號十二天,共搭載三位航天員——聶海勝、張曉光、王亞平.6月13日與天宮一號進行對接.6月26日回歸地球.要讀懂這段報導,你認為要知道哪些名稱和術語的含義?二、合作探究探究點一:定義 下列語句屬于定義的是()A.明天是晴天B.長方形的四個角都是直角C.等角的補角相等D.平行四邊形是兩組對邊分別平行的四邊形解析:作出正確選擇的關鍵是理解定義的含義.A是對天氣的預測,B是描述長方形的性質,C是描述補角的性質.只有D符合定義的概念.故選D.方法總結:定義指的是對術語和名稱的含義的描述,是對一個事物區(qū)分于其他事物的本質特征的描述,而不是對其性質的判斷.
一、情境導入上一節(jié)課我們做過:由兩個邊長為1的小正方形,通過剪一剪,拼一拼,得到一個邊長為a的大正方形,那么有a2=2,a=________,2是有理數,而a是無理數.在前面我們學過若x2=a,則a叫做x的平方,反過來x叫做a的什么呢?二、合作探究探究點一:算術平方根的概念【類型一】 求一個數的算術平方根求下列各數的算術平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根據算術平方根的定義求非負數的算術平方根,只要找到一個非負數的平方等于這個非負數即可.解:(1)∵82=64,∴64的算術平方根是8;(2)∵(32)2=94=214,∴214的算術平方根是32;(3)∵0.62=0.36,∴0.36的算術平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算術平方根是3.方法總結:(1)求一個數的算術平方根時,首先要弄清是求哪個數的算術平方根,分清求81與81的算術平方根的不同意義,不要被表面現(xiàn)象迷惑.(2)求一個非負數的算術平方根常借助平方運算,因此熟記常用平方數對求一個數的算術平方根十分有用.
求證:直角三角形的兩個銳角互余.解析:分析這個命題的條件和結論,根據已知條件和結論畫出圖形,寫出已知、求證,并寫出證明過程.已知:如圖所示,在△ABC中,∠C=90°.求證:∠A與∠B互余.證明:∵∠A+∠B+∠C=180°(三角形內角和等于180°),又∠C=90°,∴∠A+∠B=180°-∠C=90°.∴∠A與∠B互余.方法總結:解此類題首先根據題意將文字語言變成符號語言,畫出圖形,最后再經過分析論證,并寫出證明的過程.三、板書設計命題分類公理:公認的真命題定理:經過證明的真命題證明:推理的過程經歷實際情境,初步體會公理化思想和方法,了解本教材所采用的公理,讓學生對真假命題有一個清楚的認識,從而進一步了解定理、公理的概念.培養(yǎng)學生的語言表達能力.
解析:本題是要求兩個未知數,即3和4的權.所以應把平均數與方程組綜合起來,利用平均數的定義來列方程,組成方程組求解.解:設投進3個球的有x人,投進4個球的有y人,由題意,得3x+4y+5×2=3.5×(x+y+2),0×1+1×2+2×7+3x+4y=2.5×(1+2+7+x+y).整理,得x-y=6,x+3y=18.解得x=9,y=3.答:投進3個球的有9人,投進4個球的有3人.方法總結:利用平均數的公式解題時,要弄清數據及相應的權,避免出錯.三、板書設計平均數算術平均數:x=1n(x1+x2+…+xn)加權平均數:x=(x1f1+x2f2+…+xnfn)f1+f2+…fn通過探索算術平均數和加權平均數的聯(lián)系與區(qū)別,培養(yǎng)學生的思維能力;通過有關平均數問題的解決,提升學生的數學應用能力.通過解決實際問題,體會數學與社會生活的密切聯(lián)系,了解數學的價值,增進學生對數學的理解和增加學好數學的信心.
探究點三:函數的圖象洗衣機在洗滌衣服時,每漿洗一遍都經歷了注水、清洗、排水三個連續(xù)過程(工作前洗衣機內無水).在這三個過程中,洗衣機內的水量y(升)與漿洗一遍的時間x(分)之間函數關系的圖象大致為()解析:∵洗衣機工作前洗衣機內無水,∴A,B兩選項不正確,淘汰;又∵洗衣機最后排完水,∴D選項不正確,淘汰,所以選項C正確,故選C.方法總結:本題考查了對函數圖象的理解能力,看函數圖象要理解兩個變量的變化情況.三、板書設計函數定義:自變量、因變量、常量函數的關系式三種表示方法函數值函數的圖象在教學過程中,注意通過對以前學過的“變量之間的關系”的回顧與思考,力求提供生動有趣的問題情境,激發(fā)學生的學習興趣,并通過層層深入的問題設計,引導學生進行觀察、操作、交流、歸納等數學活動.在活動中歸納、概括出函數的概念,并通過師生交流、生生交流、辨析識別等加深學生對函數概念的理解.
1.細講概念、強化訓練要想讓學生正確、牢固地樹立起算術平方根的概念,需要由淺入深、不斷深化的過程.概念是由具體到抽象、由特殊到一般,經過分析、綜合去掉非本質特征,保持本質屬性而形成的.概念的形成過程也是思維過程,加強概念形成過程的教學,對提高學生的思維水平是很有必要的.概念教學過程中要做到:講清概念,加強訓練,逐步深化.“講清概念”就是通過具體實例揭露算術平方根的本質特征.算術平方根的本質特征就是定義中指出的:“如果一個正數 的平方等于 ,即 ,那么這個正數 就叫做 的算術平方根,”的“正數 ”,即被開方數是正的,由平方的意義, 也是正數,因此算術平方根也必須是正的.當然零的算術平方根是零.
解析:要在地球儀上確定南昌市的位置,需要知道它的經緯度,故選D.方法總結:本題考查了坐標確定位置,熟記位置的確定需要橫向與縱向的兩個數據是解題的關鍵.【類型二】 用“區(qū)域定位法”確定位置如圖所示是某市區(qū)的部分簡圖,文化宮在D2區(qū),體育場在C4區(qū),據此說明醫(yī)院在________區(qū),陽光中學在________區(qū).解析:本題首先給出的是表示文化宮和體育場的位置,即D2區(qū)和C4區(qū),這就確定了本題中表示建筑物位置的方法,即字母表示列數,數字表示行數.故填A3,D5.方法總結:解此類題先要弄清區(qū)域定位法中字母及數字各自表示的含義,再用已知的表示方法來確定相關位置.三、板書設計確定位置有序實數對方位法經緯度區(qū)域定位法將現(xiàn)實生活中常用的定位方法呈現(xiàn)給學生,進一步豐富學生的數學活動經驗,培養(yǎng)學生觀察、分析、歸納、概括的能力.教學過程中創(chuàng)設生動活潑、直觀形象、且貼近他們生活的問題情境;另一方面,為學生創(chuàng)造自主學習、合作交流的機會,促使他們主動參與、積極探究.
第一環(huán)節(jié)感受生活中的情境,導入新課通過若干圖片,引導學生感受生活中常常需要確定位置.導入新課:怎樣確定位置呢?——§3.1確定位置。第二環(huán)節(jié)分類討論,探索新知1.溫故啟新(1)溫故:在數軸上,確定一個點的位置需要幾個數據呢? 答:一個,例如,若A點表示-2,B點表示3,則由-2和3就可以在數軸上找到A點和B點的位置??偨Y得出結論:在直線上, 確定一個點的位置一般需要一個數據.(2)啟新:在平面內,又如何確定一個點的位置呢?請同學們根據生活中確定位置的實例,請談談自己的看法.2.舉例探究Ⅰ. 探究1(1)在電影院內如何找到電影票上指定的位置?(2)在電影票上“6排3號”與“3排6號”中的“6”的含義有什么不同?(3)如果將“6排3號”簡記作(6,3),那么“3排6號”如何表示?(5,6)表示什么含義? (4) 在只有一層的電影院內,確定一個座位一般需要幾個數據?結論:生活中常常用“排數”和“號數”來確定位置. Ⅱ. 學有所用(1) 你能用兩個數據表示你現(xiàn)在所坐的位置嗎?
本節(jié)課中教師首先用拼圖游戲引發(fā)學生學習的欲望,把課程內容通過學生的生活經驗呈現(xiàn)出來,然后進行大膽置疑,生活中的數并不都是有理數,那它們究竟是什么數呢?從而引發(fā)了學生的好奇心,為獲取新知,創(chuàng)設了積極的氛圍.在教學中,不要盲目的搶時間,讓學生能夠充分的思考與操作.(二)化抽象為具體常言道:“數學是鍛煉思維的體操”,數學教師應通過一系列數學活動開啟學生的思維,因此對新數的學習不能僅僅停留于感性認識,還應要求學生充分理解,并能用恰當數學語言進行解釋.正是基于這個原因,在教學過程中,刻意安排了一些環(huán)節(jié),加深對新數的理解,充分感受新數的客觀存在,讓學生覺得新數并不抽象.(三)強化知識間聯(lián)系,注意糾錯既然稱之為“新數”,那它當然不是有理數,亦即不是整數,也不是分數,所以“新數”不可以用分數來表示,這為進一步學習“新數”,即第二課時教學埋下了伏筆,在教學中,要著重強調這一點:“新數”不能表示成分數,為無理數的教學奠好基.
解:有理數:3.14,-53,0.58··,-0.125,0.35,227;無理數:-5π,5.3131131113…(相鄰兩個3之間1的個數逐次加1).方法總結:有理數與無理數的主要區(qū)別.(1)無理數是無限不循環(huán)小數,而有理數可以用有限小數或無限循環(huán)小數表示.(2)任何一個有理數都可以化為分數形式,而無理數則不能.探究點二:借助計算器用“夾逼法”求無理數的近似值正數x滿足x2=17,則x精確到十分位的值是________.解析:已知x2=17,所以417,所以4.117,所以4.120)中的正數x各位上的數字的方法:(1)估計x的整數部分,看它在哪兩個連續(xù)整數之間,較小數即為整數部分;(2)確定x的十分位上的數,同樣尋找它在哪兩個連續(xù)整數之間;(3)按照上述方法可以依次確定x的百分位、千分位、…上的數,從而確定x的值.