課題十: 解決問題(一)教學內(nèi)容:解決問題教學目標:1、會解決有關(guān)小數(shù)除法的簡單實際問題。2、能探索出解決問題的有效方法,并試圖尋找其他方法,能表達解決問題的過程。教學過程:一、引入新課:前面我們學習了小數(shù)除法的計算,那么你會解決下面的問題嗎?(板書課題)二、自主探索(出示例11)1、先獨立思考解答。2、小組內(nèi)交流,可以先算什么?3、小組匯報,全班交流,說說不同的思路。再指名說說。三、鞏固練習1、“做一做”獨立完成,全班交流。再指名說說不同的解題思路。2、完成P34 3師:你從此題中收集到了哪些信息?要解決什么問題?如何思考?生先獨立思考,再小組交流,匯報分析過程。師小結(jié),解答問題時要找準有直接關(guān)系的條件或信息。
教學內(nèi)容:整數(shù)乘法運算定律推廣到小數(shù)乘法 (P.12頁例8和“做一做”,練習二第2題。)教學要求: 使學生理解整數(shù)乘法的運算定律對于小數(shù)同樣適用,并會運用乘法的運算定律進行一些小數(shù)的簡便計算。教學重點: 乘法運算定律中數(shù)(包括整數(shù)和小數(shù))的適用范圍。教學難點: 運用乘法的運算定律進行小數(shù)乘法的的簡便運算。教學用具:投影片若干張。教學過程:一、激發(fā):1、計算:25×95×4 25×32 4×48+6×48 102×562、在整數(shù)乘法中我們已學過哪些運算定律?請用字母表示出來。根據(jù)學生的回答,板書:乘法交換律 ab=ba乘法結(jié)合律 a(bc)=(ab)c乘法分配律 a(b+c)=ab+ac2、讓學生舉例說明怎樣應用這些定律使計算簡便。(注意學生舉例時所用的數(shù)。)3、出示教材P.9頁的3組算式:下面每組算式左右兩邊的結(jié)果相等嗎?
教學目標:1、學生經(jīng)歷體驗由具體數(shù)到用字母表示數(shù)的抽象過程;2、學生能用含有字母的式子表示計算公式;教學重、難點:目標1教學過程:一、引入。1、師:同學們,我們開始上課,先做一個游戲:首先,我說a表示舉左手一次,我說b表示舉右手一次,我說c表示拍手一次。聽好了沒有,現(xiàn)在老師說,你們做,好不好?師:abc,acb,bac,bca,cab,cba。師:剛才我們用字母表示一個信息,其實,在日常生活中,字母可以表示很多東西,今天,我們就一起來研究“用字母表示數(shù)”。(板書課題)2、復習數(shù)量關(guān)系式:(學生讀一次)每份數(shù)×份數(shù)=總數(shù) 單價×數(shù)量=總價 速度×時間=路程總數(shù)÷份數(shù)=每份數(shù) 總價÷數(shù)量=單價 路程÷速度=時間總數(shù)÷每份數(shù)=份數(shù) 總價÷單價=數(shù)量 路程÷時間=速度評析:以學生感興趣的游戲入手,激發(fā)學生的學習興趣,同時復習數(shù)量關(guān)系式,為學習新知識奠定基礎(chǔ)。
師:同學們,在四年級的時候,我們已經(jīng)了解了圖形的密鋪,請你說一說,什么是圖形的密鋪?(沒有重疊、沒有空隙地鋪在平面上,就是密鋪。)師:圖形的密鋪又可以叫做鑲嵌,以上四個圖片,都是由哪些基本圖形密鋪(鑲嵌)而成的呢?(請學生邊指邊說。)師:還有哪些圖形也可以鑲嵌?(學生可能回答:三角形,平行四邊形,梯形,菱形,正六邊形,……)師:今天就請你發(fā)揮一下想象力,設(shè)計一些與眾不同的鑲嵌圖形。[設(shè)計意圖說明:學生在四年級已經(jīng)初步了解了圖形的密鋪(鑲嵌)現(xiàn)象,四幅圖片是四年級下冊教材《三角形》單元中《密鋪》內(nèi)容中的原圖。本單元在此基礎(chǔ)上,通過數(shù)學游戲拓展鑲嵌圖形的范圍,讓學生用圖形變換設(shè)計鑲嵌圖案,進一步感受圖形變換帶來的美感以及在生活中的應用。]二、新授探究一:利用平移變換設(shè)計鑲嵌圖形
教學目標:1.知道二次函數(shù)與一元二次方程的聯(lián)系,提高綜合解決問題的能力.2.會求拋物線與坐標軸交點坐標,會結(jié)合函數(shù)圖象求方程的根.教學重點:二次函數(shù)與一元二次方程的聯(lián)系.預設(shè)難點:用二次函數(shù)與一元二次方程的關(guān)系綜合解題.☆ 預習導航 ☆一、鏈接:1.畫一次函數(shù)y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點坐標; (2)解方程2x-3=0(3)說出直線y=2x-3與x軸交點的橫坐標和方程根的關(guān)系2.不解方程3x2-2x+4=0,此方程有 個根。二、導讀畫二次函數(shù)y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點坐標是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點的橫坐標與一元二次方程x2-5x+4=0的解有什么關(guān)系?(3)一元二次方程ax2+bx+c=0是二次函數(shù)y=ax2+bx+c當函數(shù)值y=0時的特殊情況.二次函數(shù)y=ax2+bx+c的圖象與x軸交點的橫坐標與一元二次方程ax2+bx+c=0的根有什么關(guān)系?
由②得y=23x+23.在同一直角坐標系中分別作出一次函數(shù)y=3x-4和y=23x+23的圖象.如右圖,由圖可知,它們的圖象的交點坐標為(2,2).所以方程組3x-y=4,2x-3y=-2的解是x=2,y=2.方法總結(jié):用畫圖象的方法可以直觀地獲得問題的結(jié)果,但不是很準確.三、板書設(shè)計1.二元一次方程組的解是對應的兩條直線的交點坐標;2.用圖象法解二元一次方程組的步驟:(1)變形:把兩個方程化為一次函數(shù)的形式;(2)作圖:在同一坐標系中作出兩個函數(shù)的圖象;(3)觀察圖象,找出交點的坐標;(4)寫出方程組的解.通過引導學生自主學習探索,進一步揭示了二元一次方程和函數(shù)圖象之間的對應關(guān)系,很自然的得到二元一次方程組的解與兩條直線的交點之間的對應關(guān)系.進一步培養(yǎng)了學生數(shù)形結(jié)合的意識,充分提高學生數(shù)形結(jié)合的能力,使學生在自主探索中學會不同數(shù)學知識間可以互相轉(zhuǎn)化的數(shù)學思想和方法.
2. 在彈性限度內(nèi),彈簧的長度y(厘米)是所掛物體質(zhì)量x(千克)的一次函數(shù).當所掛物體的質(zhì)量為1千克時彈簧長15厘米;當所掛物體的質(zhì)量為3千克時,彈簧長16厘米.寫出y與x之間的函數(shù)關(guān)系式,并求當所掛物體的質(zhì)量為4千克時彈簧的長度.答案: 當x=4是,y= 3. 教材例2的再探索:我邊防局接到情報,近海處有一可疑船只A正向公海方向行駛.邊防局迅速派出快艇B追趕,如圖所示, , 分別表示兩船相對于海岸的距離s(海里)與追趕時間t(分)之間的關(guān)系.當時間t等于多少分鐘時,我邊防快艇B能夠追趕上A。答案:直線 的解析式: ,直線 的解析式: 15分鐘第五環(huán)節(jié)課堂小結(jié)(2分鐘,教師引導學生總結(jié))內(nèi)容:一、函數(shù)與方程之間的關(guān)系.二、在解決實際問題時從不同角度思考問題,就會得到不一樣的方法,從而拓展自己的思維.三、掌握利用二元一次方程組求一次函數(shù)表達式的一般步驟:1.用含字母的系數(shù)設(shè)出一次函數(shù)的表達式: ;2.將已知條件代入上述表達式中得k,b的二元一次方程組;3.解這個二元一次方程組得k,b,進而得到一次函數(shù)的表達式.
解:(1)設(shè)第一次落地時,拋物線的表達式為y=a(x-6)2+4,由已知:當x=0時,y=1,即1=36a+4,所以a=-112.所以函數(shù)表達式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結(jié):解決此類問題的關(guān)鍵是先進行數(shù)學建模,將實際問題中的條件轉(zhuǎn)化為數(shù)學問題中的條件.常有兩個步驟:(1)根據(jù)題意得出二次函數(shù)的關(guān)系式,將實際問題轉(zhuǎn)化為純數(shù)學問題;(2)應用有關(guān)函數(shù)的性質(zhì)作答.
問題2、如何用測角儀測量一個低處物體的俯角呢?和測量仰角的步驟是一樣的,只不過測量俯角時,轉(zhuǎn)動度盤,使度盤的直徑對準低處的目標,記下此時鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動三:測量底部可以到達的物體的高度.“底部可以到達”,就是在地面上可以無障礙地直接測得測點與被測物體底部之間的距離.要測旗桿MN的高度,可按下列步驟進行:(如下圖)1.在測點A處安置測傾器(即測角儀),測得M的仰角∠MCE=α.2.量出測點A到物體底部N的水平距離AN=l.3.量出測傾器(即測角儀)的高度AC=a(即頂線PQ成水平位置時,它與地面的距離).根據(jù)測量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因為NE=AC=a,所以MN=ME+EN=l·tanα+a.
(2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進行討論,利用利潤=每件的利潤×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)分別求得最值,然后兩種情況下取最大的即可.解:(1)當1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000;當50≤x≤90時,y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當1≤x<50時,y=-2x2+180x+2000,二次函數(shù)開口向下,對稱軸為x=45,當x=45時,y最大=-2×452+180×45+2000=6050;當50≤x≤90時,y=-120x+12000,y隨x的增大而減小,當x=50時,y最大=6000.綜上所述,銷售該商品第45天時,當天銷售利潤最大,最大利潤是6050元.方法總結(jié):本題考查了二次函數(shù)的應用,讀懂表格信息、理解利潤的計算方法,即利潤=每件的利潤×銷售的件數(shù),是解決問題的關(guān)鍵.
(8)物價部門規(guī)定,此新型通訊產(chǎn)品售價不得高于每件80元。在此情況下,售價定為多少元時,該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計劃年初投入進貨成本m不超過200萬元,請你分析一下,售價定為多少元,公司獲利最大?售價定為多少元,公司獲利最少?三、小練兵:某商場經(jīng)營某種品牌的童裝,購進時的單價是60元.根據(jù)市場調(diào)查,銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務(wù),那么商場銷售該品牌童裝獲得的最大利潤是多少元?
1.讓學生拿出長方體摸一摸,問:你有什么感覺?摸的的面是什么形狀?師:誰來摸一摸,老師手上長方體的長方形在哪?(學生找出長方形)2.讓學生在自己的學具(長方體、正方體、圓柱體)上找圖形,并和小組里的同學說一說。3、指名說,教師把學生找到的圖形從立體圖形上分離出來,貼于黑板上,師:這些圖形是物體上的一個面,這就是我們今天要認識的圖形。(板書課題——認識平面圖形)4.讓學生說說:從什么物體上找到了什么圖形?5.師:你能想辦法把這些形狀畫到一張紙上嗎?請學生演示各自不同的方法,然后教師在黑板上沿長方體的一個面畫出長方形。師:你會畫嗎?請小朋友們用自己喜歡的辦法畫出并剪出長方形、正方形、圓和三角形各2個。
3、同學們,你們看今天老師帶來了什么?(出示一個學生喜歡的玩具)這是昨天老師去商店時買的,猜猜看,這個需要多少錢?(學生猜,教師可提示,最后得出正確標價)今天我們也來開個小小商店玩一玩買賣商品的游戲,想玩嗎?4、選營業(yè)員及經(jīng)理。我覺得當營業(yè)員最重要的是精通業(yè)務(wù),計算能力強。誰想來當?(等學生舉手后,教師選出4人。)考慮到我們呆會兒買的人會比較多,每個柜臺一個營業(yè)員忙不過來,我還準備再選4名商店經(jīng)理,做好以下幾項工作:1)做好接待服務(wù)工作,顧客有困難能主動幫助。2)做好買賣過程中的組織工作,讓大家有秩序地買商品。3)當營業(yè)員計算碰到困難時,兩人能商量著解決。覺得自己能做到以上三點的同學可舉手參加競選。(學生舉手后,選出4名經(jīng)理)
(6)交流。6的乘法口訣一共有幾句?口訣中的第一個數(shù)與算式中的第二個因數(shù)相同,表示什么?口訣中的第二個數(shù)與算式的第一個因數(shù)相同,表示什么?相鄰兩句口訣的積相差幾?哪幾句難記一些?你用什么方法記呢?怎樣記住"三六十八"、"四六二十四"兩句口訣?教師在學生發(fā)言的基礎(chǔ)上鼓勵學生大膽說、想出不同記口訣的方法。(7)應用"做一做"第1題(學生半獨立完成):①用6根小棒擺1個六邊形;②擺2個六邊形要用多少根小棒?你是怎樣想的?(想口訣"二六十二"。)③運用所學的口訣口答擺4個、6個、3個、5個六邊形所需要向小棒數(shù)。"做一做"第2題(獨立完成):①將第2題改為填空題,在圓圈內(nèi)填寫正確的積;②口答得數(shù),并說一說所用口訣。
l尺子上每相鄰的兩條長刻度線之間的一大格的長度都是1厘米。師:我們大家現(xiàn)在一起用手比劃一下,1厘米多長?;ハ嗫匆幌?,計住了嗎?閉上眼睛想一想,1厘米有多長。3、認識幾厘米師:我們現(xiàn)在知道1厘米有多長了,那3厘米又有多長呢?師:同學們還能在尺子上找到其他3厘米的長度嗎?4、用厘米量師:剛才上課時,老師展示的2根線繩,到底哪一根長一點呢?現(xiàn)在,同學們先估計一下這兩根線繩各自多長,然后在測量比較一下,好嗎?師:結(jié)果是哪根線繩長一點呢?能說說你是怎么量的嗎?三、知識拓展1、師:老師這里有一把尺子,可是它斷了一節(jié),沒有刻度“0”,只剩下刻度3到刻度10,那么這把尺子能不能用來量物體的長度???同學們能不能幫老師想一想辦法,好嗎?2、其他測量長度的工具(課件展示)
教后反思本節(jié)課給學生創(chuàng)設(shè)了良好的活動空間,把學生實際生活中聽說過的見到的平均分現(xiàn)象展示給學生看,把生活和數(shù)學聯(lián)系起來,在學生感受“同樣多”的基礎(chǔ)上概括出什么叫平均分。揭示平均分這一數(shù)學知識在生活中的應用,之后突出了學生三次實際操作。第一次,小組同學互相分水果,重視學生分的結(jié)果。體會感受“平均分”的含義。第二次,重視分法:15個橘子平均分成5份。體現(xiàn)了學生對物品的不同分法,建立了平均分的概念。第三次,分礦泉水,通過份數(shù)變化,觀察分的就結(jié)果,深刻體會“平均分”,為認識除法積累豐富的知識。為學生營造探索的空間。第二課時:平均分的認識(二)教學內(nèi)容鞏固“平均分”。課本第15頁的例題3。教學目標1.鞏固“平均分”的概念,知道平均分就是每一份分得結(jié)果同樣多。
三維目標1.知識與技能(1)讓學生經(jīng)歷用7、8、9的乘法口訣求商的過程,掌握用乘法口訣求商的一般方法。(2)使學生會綜合應用乘、除法運算解決簡單的或稍復雜的實際問題。2.過程與方法在解決問題的過程中,讓學生初步嘗試運用分析、推理和轉(zhuǎn)化的學習方法。3.情感、態(tài)度與價值觀讓學生在學習中體驗到成功的喜悅,增強學生學好數(shù)學的信心。重、難點與關(guān)鍵1.重點:使學生熟練應用乘法口訣求商,經(jīng)歷從實際問題中抽象出一個數(shù)是另一個數(shù)的幾倍的數(shù)量關(guān)系的過程,會用乘法口訣求商的技能解決實際問題。2.難點:應用分析推理將一個數(shù)是另一個數(shù)的幾倍是多少的數(shù)量關(guān)系轉(zhuǎn)化為一個數(shù)里面有幾個另一個數(shù)的除法含義。3.關(guān)鍵:以解決問題為載體,培養(yǎng)學生的數(shù)感。
D、師:通過剛才摸球,你認為我們能摸到黃球嗎?(能)一定能摸到黃球嗎?(不一定)也就是說我們摸到的可能是黃球,也可能是白球。(板書:可能)3、超級競猜:出示掛圖,學生搶答。(課本105頁例1)三、拓展應用1、師:在我們生活中同樣有很多事情都可以用這些表示可能性的詞語來表述。2、完成例2。(1)出示掛圖,小組討論。(2)組織學生匯報交流、評價,你想說哪一幅圖的內(nèi)容就說哪一幅。3、你還能用這些詞來說說生活里的事嗎?先和同桌交流,然后組織匯報、評價。4、游戲:在三疊卡片中各選一張,按排列順序組成一句話,說一說這件事發(fā)生的可能性。5、作業(yè):在書上完成108頁第1、2題。四、總結(jié)全課1、師:今天,我們主要學習了什么內(nèi)容?2、小結(jié):生活里可能性的事情還有很多很多,有些事情一定會發(fā)生,有些事情可能會發(fā)生,有些事情不可能會發(fā)生。希望同學們做生活中的有心人,找一找生活中的可能性。
教學目的:1、通過貼近學生生活實際的素材,在豐富多彩的實踐活動中充分體會時、分、秒的實際意義。2、通過練習,學生比較熟練地進行一些簡單的時間計算教學重、難點:時間單位的簡單轉(zhuǎn)換和求經(jīng)過時間的方法。教學過程:第2題,先讓學生獨立完成,再讓學生說一說每一題是怎么比較的,允許學生用不同的方法進行比較,只要說得有道理就行。第3題,讀讀書上的三個例子,并要求學生收集類似的信息。第4、5題,學生計算經(jīng)過的時間。如果部分學生有困難,讓他們借助鐘面模型加以演示、理解,教師給予適當?shù)膸椭?。?題,要求學生先估計,再實際進行驗證,驗證的數(shù)據(jù)可以由學生和家長一起完成。第7題,事先讓學生找?guī)讉€自己感興趣的節(jié)目,想辦法把它們開始和結(jié)束的時刻都記錄下來。
(3)按每千克涂料粉刷3.5 m2計算,可求出共需要涂料:1600÷3.5≈460(千克);(4)根據(jù)涂料的型號及費用,選擇合適的涂料。師:選擇涂料時,要考慮很多因素,如價格、耐用期、消費心理、環(huán)保等,要怎么選擇呢?學生可以把幾種涂料進行對比,一起討論決定,同時學會在交流中理解接納別人較好的建議:如:A型,優(yōu)點:價格便宜,需要19桶,總共才5700元;缺點:耐用期太短,兩年后又要重新粉刷;B-1型和B-2型,雖然桶裝量不同,但價格和耐用期都處在中游水平;C型和D型,優(yōu)點:耐用期長,最劃算;缺點:價格太高,不符合人們的消費心理,也不可能持續(xù)那么長時間,至少5年就要更換一下樣子。綜合以上價格、耐用期、消費心理,選擇B-1或B-2型比較劃算。而這兩種比較來看,B-2型更便宜一些,所以,最后確立用B-2型涂料。