解:設正比例函數(shù)的表達式為y1=k1x,一次函數(shù)的表達式為y2=k2x+b.∵點A(4,3)是它們的交點,∴代入上述表達式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數(shù)的表達式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點B在y軸的負半軸上,∴B點的坐標為(0,-52).又∵點B在一次函數(shù)y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數(shù)的表達式為y2=118x-52.方法總結(jié):根據(jù)圖象確定一次函數(shù)的表達式的方法:從圖象上選取兩個已知點的坐標,然后運用待定系數(shù)法將兩點的橫、縱坐標代入所設表達式中求出待定系數(shù),從而求出函數(shù)的表達式.【類型三】 根據(jù)實際問題確定一次函數(shù)的表達式某商店售貨時,在進價的基礎上加一定利潤,其數(shù)量x與售價y的關(guān)系如下表所示,請你根據(jù)表中所提供的信息,列出售價y(元)與數(shù)量x(千克)的函數(shù)關(guān)系式,并求出當數(shù)量是2.5千克時的售價.
尊敬的老師們、親愛的同學們:大家早上好!前些天,諾貝爾獎得主陸陸續(xù)續(xù)揭曉,這些與我們朝夕相處的學科,在十月份聚焦了人們的目光,也讓人看到了這些基礎學科的力量。說這些,肯定會有人對此不屑,我們每天打交道的語文,不過是背一些東西,寫一些廢話,學幾篇課文,我們每天打交道的理化生,不過就是做一些題,背一些結(jié)論,考幾次試。這就是我們對真正的學習所持有的態(tài)度和方式嗎?我們與這些基礎學科相伴了多少年,認識僅停留于表象嗎?這里可以與大家分享幾個例子。1957年諾貝爾獎得主楊振寧曾說,他在西南聯(lián)大時老師辛勤講授的基礎知識給了他扎實的功底,這些在后來依然有用。留學時導師要來時不時地提出一些新觀點也給他留下了深刻的印象。
尊敬的各位評委老師: 你們好!我說課的內(nèi)容是義務教育教科書人教版小學數(shù)學四年級下冊第一單元第5-6頁的內(nèi)容《乘除法的意義和各部分間的關(guān)系》。下面我談談本節(jié)課的教學設想,不妥之處,懇請各位教師指正。一.我對教材的理解(教材分析)——參考教學參考書《乘除法的意義和各部分間的關(guān)系》是人教版小學四年級下冊第一單元四則運算中第2課時的教學內(nèi)容。本課是在學生對整數(shù)乘除法有了較多的接觸,積累了豐富的感性認識并掌握了相應的基礎知識和技能的基礎上進行抽象、概括,上升到理性的認識。為后面學習的四則運算打基礎,也為以后學習小數(shù)、分數(shù)的意義和關(guān)系做鋪墊。二.學情分析(根據(jù)考評要求,可不說)因為年齡特征決定了四年級學生活潑好奇好動,雖具一定的抽象思維能力,但仍然以形象思維為主;就知識層面上,已經(jīng)學習了簡單整數(shù)乘除法,對整數(shù)乘除法及各部分名稱有初步的感性認知,初步具備了理性認知學習的基礎;同時又存在個體差異,多數(shù)學生思維活躍,數(shù)學興趣濃厚,表現(xiàn)欲望強烈,少數(shù)學生缺乏積極性,學習被動。
《0的認識和有關(guān)0的加減法》是《數(shù)學(人教版義務教育課程標準實驗教科書)》一年級上冊第29頁的教學內(nèi)容。數(shù)字0在生活中應用廣泛,不同的應用體現(xiàn)出0的不同含義,有關(guān)0的加減法也具有其獨特的規(guī)律和特點。本節(jié)課教學目標有下:1.通過游戲、活動,使學生理解0的含義,會讀、會寫數(shù)字0,了解數(shù)的順序。2.使學生在情境體驗中理解有關(guān)0的加、減法的含義,并能熟練計算。3.通過在數(shù)學活動中的觀察、思考、討論、探索,提高學生自主學習的意識和發(fā)現(xiàn)簡單規(guī)律的能力。4.培養(yǎng)學生的想像力、語言表達能力和初步的推理應用能力。教學實錄與評析:一、活動中認識0──關(guān)于0的含義和書寫1.排排隊──復習數(shù)的順序。師:這節(jié)課,數(shù)字王國有幾位小客人要到咱們教室找朋友。他們來了。(敲門聲)
方法總結(jié):對等式進行變形,必須在等式的兩邊同時進行,即同加或同減,同乘或同除,不能漏掉一邊,且同加或同減,同乘或同除的數(shù)必須相同.探究點二:利用等式的基本性質(zhì)解方程用等式的性質(zhì)解下列方程:(1)4x+7=3; (2)12x-13x=4.解析:(1)在等式的兩邊都減7,再在等式的兩邊都除以4,可得答案;(2)在等式的兩邊都乘以6,再合并同類項,可得答案.解:(1)方程兩邊都減7,得4x=-4.方程兩邊都除以4,得x=-1;(2)方程兩邊都乘以6,得3x-2x=24,x=24.方法總結(jié):解方程時,一般先將方程變形為ax=b的形式,然后再變形為x=c的形式.三、板書設計教學過程中,強調(diào)學生自主探索和合作交流,通過觀察、操作、歸納等數(shù)學活動,感受數(shù)學思想的條理性和數(shù)學結(jié)論的嚴密性.
活動準備:十二生肖的圖片一、你知道十二生肖嗎1、教師出示“兔子”圖,——介紹:每個人都有自己的屬相,你屬什么?你的爸爸媽媽是屬什么的?2、你知道人的屬相一共有幾種動物?有哪些動物?3、出示眾多圖,請幼兒找找哪些是十二生肖的動物?——揭示正確答案小結(jié):十二生肖的說法是我們中國人很早就有的,每年就以一種動物做標志,一共有十二個動物,十二生肖。幾年后又是這個小動物的生肖?(十二年)4、今年、去年、后年分別是什么年?
∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對角線上分析特殊四邊形之間的關(guān)系應充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
當Δ=l2-4mn<0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的一個點P;當Δ=l2-4mn=0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的兩個點P;當Δ=l2-4mn>0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的三個點P.方法總結(jié):由于相似情況不明確,因此要分兩種情況討論,注意要找準對應邊.三、板書設計相似三角形判定定理的證明判定定理1判定定理2判定定理3本課主要是證明相似三角形判定定理,以學生的自主探究為主,鼓勵學生獨立思考,多角度分析解決問題,總結(jié)常見的輔助線添加方法,使學生的推理能力和幾何思維都獲得提高,培養(yǎng)學生的探索精神和合作意識.
(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分線定義).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代換).又∵∠1=∠2(已知),∴∠1=∠3(等量代換),∴DF∥BE(內(nèi)錯角相等,兩直線平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分線定義),∠ADE=∠1(等量代換).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形內(nèi)角和為180°及等量代換),即∠A+∠ABC=180°,∴AD∥BC(同旁內(nèi)角互補,兩直線平行).方法總結(jié):解此類題應首先結(jié)合圖形猜測結(jié)論,然后證明.證明兩條直線平行,一般先找它們的截線,再求同位角相等(或內(nèi)錯角相等,同旁內(nèi)角互補)來說明兩直線平行.若沒有公共截線,則需作出兩直線的截線輔助證明.三、板書設計平行線,的判定)判定公理:同位角相等,兩直線平行判定定理內(nèi)錯角相等,兩直線平行同旁內(nèi)角互補,兩直線平行本節(jié)課通過經(jīng)歷探索平行線的判定方法的過程,發(fā)展學生的邏輯推理能力,逐步掌握規(guī)范的推理論證格式.
探究點二:三角形內(nèi)角和定理的推論2如圖,P是△ABC內(nèi)的一點,求證:∠BPC>∠A.解析:由題意無法直接得出∠BPC>∠A,延長BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得證.證明:延長BP交AC于D,∵∠BPC是△ABC的外角(外角定義),∴∠BPC>∠PDC(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角).同理可證:∠PDC>∠A,∴∠BPC>∠A.方法總結(jié):利用推論2證明角的大小時,兩個角應是同一個三角形的內(nèi)角和外角.若不是,就需借助中間量轉(zhuǎn)化求證.三、板書設計三角形的外角外角:三角形的一邊與另一邊的延長線所組成的 角,叫做三角形的外角推論1:三角形的一個外角等于和它不相鄰的兩 個內(nèi)角的和推論2:三角形的一個外角大于任何一個和它不 相鄰的內(nèi)角利用已經(jīng)學過的知識來推導出新的定理以及運用新的定理解決相關(guān)問題,進一步熟悉和掌握證明的步驟、格式、方法、技巧.進一步培養(yǎng)學生的邏輯思維能力和推理能力,特別是培養(yǎng)有條理的想象和探索能力,從而做到強化基礎,激發(fā)學習興趣.
故最少由9個小立方體搭成,最多由11個小立方體搭成;(3)左視圖如右圖所示.方法點撥:這類問題一般是給出一個由相同的小正方體搭成的立體圖形的兩種視圖,要求想象出這個幾何體可能的形狀.解答時可以先由三種視圖描述出對應的該物體,再由此得出組成該物體的部分個體的個數(shù).三、板書設計視圖概念:用正投影的方法繪制的物體在投影 面上的圖形三視圖的組成主視圖:從正面得到的視圖左視圖:從左面得到的視圖俯視圖:從上面得到的視圖三視圖的畫法:長對正,高平齊,寬相等由三視圖推斷原幾何體的形狀通過觀察、操作、猜想、討論、合作等活動,使學生體會到三視圖中位置及各部分之間大小的對應關(guān)系.通過具體活動,積累學生的觀察、想象物體投影的經(jīng)驗,發(fā)展學生的動手實踐能力、數(shù)學思考能力和空間觀念.
∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對角線上分析特殊四邊形之間的關(guān)系應充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
解析:熟記常見幾何體的三種視圖后首先可排除選項A,因為長方體的三視圖都是矩形;因為所給的主視圖中間是兩條虛線,故可排除選項B;選項D的幾何體中的俯視圖應為一個梯形,與所給俯視圖形狀不符.只有C選項的幾何體與已知的三視圖相符.故選C.方法總結(jié):由幾何體的三種視圖想象其立體形狀可以從如下途徑進行分析:(1)根據(jù)主視圖想象物體的正面形狀及上下、左右位置,根據(jù)俯視圖想象物體的上面形狀及左右、前后位置,再結(jié)合左視圖驗證該物體的左側(cè)面形狀,并驗證上下和前后位置;(2)從實線和虛線想象幾何體看得見部分和看不見部分的輪廓線.在得出原立體圖形的形狀后,也可以反過來想象一下這個立體圖形的三種視圖,看與已知的三種視圖是否一致.探究點四:三視圖中的計算如圖所示是一個工件的三種視圖,圖中標有尺寸,則這個工件的體積是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三種視圖可以看出,該工件是上下兩個圓柱的組合,其中下面的圓柱高為4cm,底面直徑為4cm;上面的圓柱高為1cm,底面直徑為2cm,則V=4×π×22+1×π×12=17π(cm3).故選B.
一、說課標《數(shù)學課程標準》明確指出:數(shù)學教學要緊密聯(lián)系學生的生活實際,從學生的生活經(jīng)驗和已有知識出發(fā),創(chuàng)設生動有趣的情境,引導學生開展觀察、操作??交流等活動,使學生通過數(shù)學活動,掌握基本的數(shù)學知識和技能。所以我把“加強生活體驗,注重學生發(fā)展”確定為本節(jié)課的教學理念。二、說教材:1、教學內(nèi)容在知識體系中的地位 時間的計算這一內(nèi)容是在學生認識了時、分、秒的基礎上教學的。學生學習一些有關(guān)時間的簡單計算,可以加深對時間單位實際大小的認識,培養(yǎng)時間觀念。2、本課時的教學目標 通過教學使學生能掌握時間換算的方法,正確地進行時間單位之間的換算;通過教學使學生學會計算兩個時刻之間經(jīng)過的時間;養(yǎng)成遵守時間,愛惜時間的意識和習慣。3、本課教學的重點:計算間隔不超過1小時的兩個時刻之間經(jīng)過的時間。 難點:開始和結(jié)束的時刻及經(jīng)過的時間三者之間的關(guān)系。知識生長點:讓學生在認識了時、分、秒及時間單位的進率的基礎上進一步學習時間單位的簡單換算,和經(jīng)過時間的計算。
1、現(xiàn)在每天生產(chǎn)的比原來多百分之幾?2、原來每天生產(chǎn)的比現(xiàn)在少百分之幾?3、現(xiàn)在每天生產(chǎn)的是原來的百分之幾?第三層次請你為你的同桌出一道求“一個數(shù)比另一個數(shù)多(或少)百分之幾”的應用題。第一組是基本練習,通過練習及兩個答案的對比,讓學生對單位“1”不同導致結(jié)果的不同印象深刻。第二組習題的情境設計為災區(qū)人民急需的藥品,在問題的設計上難度加大了,需要學生仔細思考,真正理解問題的含義后才能做對,鍛煉了學生的思維能力。第三組請學生互相出題的目的是要檢驗學生對本課例題的理解程度,不僅深化了對知識的理解,而且還通過判斷別人出題是否正確的同時鍛煉了辨析的能力??傊?,作為數(shù)學教師,本節(jié)課我力求數(shù)字簡單化,讓學生在情境中學習,在探究中提高,在合作中發(fā)展,體現(xiàn)數(shù)學活動是師生交往、共同發(fā)展的過程。
1.說教材《比例的意義和基本性質(zhì)》是人教版小學數(shù)學六年級下冊第四單元的內(nèi)容,這部分內(nèi)容是在學習了比的有關(guān)知識并掌握了一些常見的數(shù)量關(guān)系的基礎上進行教學的,是前面“比的知識”的深化,也是后面學習解比例知識的基礎,并為學習比例的應用,特別是為正、反比例及其應用打好基礎。比例的知識在生活和生產(chǎn)中有著廣泛的應用,所以本節(jié)課的知識就顯得尤為重要。2.教學目標我以《新課程標準》為依據(jù),結(jié)合小學數(shù)學教材編排的意圖和學生的實際情況,擬定以下教學目標:(1)知識與技能目標:使學生理解并掌握比例的意義和基本性質(zhì),認識比例各部分名稱,知道比和比例的區(qū)別。(2)能力目標:培養(yǎng)學生自主參與的意識和主動探究的精神,培養(yǎng)學生初步的觀察、分析、比較、判斷、概括的能力,發(fā)展學生的思維。 (3)情感與態(tài)度目標:在教學中滲透愛國主義教育,培養(yǎng)學生善于觀察、勤于思考、樂于探究的學習習慣。3.教學重點、難點教學重點:理解比例的意義與探究基本性質(zhì)。教學難點:運用比例的意義或性質(zhì)判斷兩個比能否組成比例,并能正確地組成比例。
一、說教材1、教材所處的地位和作用:《比的基本性質(zhì)》是小學數(shù)學人教版六年級上冊第三單元第三小節(jié)比和比的應用的第二課時。它是在學生學習商不變性質(zhì)、分數(shù)的基本性質(zhì)、比的意義、比和除法的關(guān)系、比和分數(shù)的關(guān)系的基礎上組織教學的。比的基本性質(zhì)是一節(jié)概念課的教學,它跟分數(shù)的基本性質(zhì)、商不變性質(zhì)實際上是同一道理的。所以本節(jié)課主要是處理新舊知識間的聯(lián)系,在鞏固舊知識的基礎上進入到學習新知識。教材內(nèi)容滲透著事物之間是普遍聯(lián)系和互相轉(zhuǎn)化的辯證唯物主義觀點。學生理解并掌握比的基本性質(zhì),不但能加深對商不變性質(zhì)、分數(shù)的基本性質(zhì)、比的意義、比和分數(shù)、比和除法等知識的理解與掌握,而且也為以后學習比的應用,比例知識,正、反比例打好基礎。
(二)注重學法。堅持“發(fā)展為本”,促進學生個性發(fā)展,并在時間和空間諸方面為學生提供發(fā)展的充分條件,以培養(yǎng)學生的實踐能力、探索能力和創(chuàng)新精神為目標。在教學過程中,注意引導學生怎樣有序觀察、怎樣概括結(jié)論,通過一系列活動,培養(yǎng)學生動手、動口、動腦的能力,使學生的觀察能力、抽象概括能力逐步提高,教會學生學習。使學生通過自己的努力有所感受,有所感悟,有所發(fā)現(xiàn),有所創(chuàng)新。小學生學習的數(shù)學應該是生活中的數(shù)學,是學生“自己的數(shù)學”。讓學生在生活情境中“尋”數(shù)學,在實踐操作中“做”數(shù)學,在現(xiàn)實生活中“用”數(shù)學?!皩W以致用”是學習的出發(fā)點和歸宿點,也是學習數(shù)學的終結(jié)所在。讓學生感到數(shù)學的有趣和可學,我們還應注重將數(shù)學知識提升應用到生活中,提高學生處理問題的實際能力,讓學生真正做到會學習、會創(chuàng)造、會生活的一代新人,讓數(shù)學課堂真正成為學生活動的、創(chuàng)造的課堂。三、優(yōu)化程序,突出主體。
尊敬的老師、領導,親愛的同學們:大家早上好!今天我發(fā)言的題目是“珍惜糧食,做勤勉節(jié)儉的xx學子”。關(guān)于這個題目,我的發(fā)言有三點。第一,珍惜糧食,從我做起。“誰知盤中餐,粒粒皆辛苦”告訴了我們糧食來之不易的道理。學校領導很早就倡導全校師生開展“光盤行動”:盤里不剩菜,碗里不剩米。無論對于老師還是學生,這個標準都不能打任何折扣??墒乾F(xiàn)在,我們?nèi)匀豢梢钥吹接型瑢W浪費食物的現(xiàn)象,吃不完的米飯隨意倒掉,而且很“大方”、不猶豫。試想,我們學校近300名師生就餐,每人每頓少浪費一粒米,這數(shù)額積累下來,至少可以讓一個飽受饑餓之苦的人解決溫飽問題,這樣下來,又可以節(jié)約資源求得學校更好的發(fā)展,何樂而不為呢?都說溫飽不忘饑寒,增產(chǎn)不忘節(jié)約。我們處在衣食無憂的好時代,學校也處在穩(wěn)步發(fā)展的關(guān)鍵時期,我們要從自身做起,珍惜糧食,杜絕浪費。
問題6:觀察剛才所畫的圖象我們發(fā)現(xiàn)反比例函數(shù)的圖象有兩個分支,那么它的分布情況又是怎么樣的呢?在這一環(huán)節(jié)中的設計:(1) 引導學生對比正比例函數(shù)圖象的分布,啟發(fā)他們主動探索反比例函數(shù)的分布情況,給學生充分考慮的時間;(2) 充分運用多媒體的優(yōu)勢進行教學,使用函數(shù)圖象的課件試著任意輸入幾個k的值,觀察函數(shù)圖象的不同分布,觀察函數(shù)圖象的動態(tài)演變過程。把不同的函數(shù)圖象集中到一個屏幕中,便于學生對比和探究。學生通過觀察及對比,對反比例函數(shù)圖象的分布與k的關(guān)系有一個直觀的了解;(3) 組織小組討論來歸納出反比例函數(shù)的一條性質(zhì):當k>0時,函數(shù)圖象的兩支分別在第一、三象限內(nèi);當k<0時,函數(shù)圖象的兩支分別在第二、四象限內(nèi)。