第一環(huán)節(jié):回顧引入活動內(nèi)容:①什么叫做定義?舉例說明.②什么叫命題?舉例說明. 活動目的:回顧上節(jié)知識,為本節(jié)課的展開打好基礎(chǔ).教學(xué)效果:學(xué)生舉手發(fā)言,提問個別學(xué)生.第二環(huán)節(jié):探索命題的結(jié)構(gòu)活動內(nèi)容:① 探討命題的結(jié)構(gòu)特征觀察下列命題,發(fā)現(xiàn)它們的結(jié)構(gòu)有什么共同特征?(1)如果兩個三角形的三條邊對應(yīng)相等,那么這兩個三角形全等.(2)如果一個三角形是等腰三角形,那么這個三角形的兩個底角相等.(3)如果一個四邊形的一組對邊平行且相等,那么這個四邊形是平行四邊形.(4)如果一個四邊的對角線相等,那么這個四邊形是矩形.(5)如果一個四邊形的兩條對角線互相垂直,那么這個四邊形是菱形.② 總結(jié)命題的結(jié)構(gòu)特征(1)上述命題都是“如果……,那么……”的形式.(2)“如果……”是已知的事項,“那么……”是由已知事項推斷出的結(jié)論.
一、情境導(dǎo)入神舟十號是中國神舟號系列飛船之一,主要由推進艙(服務(wù)艙)、返回艙、軌道艙組成.神舟十號在酒泉衛(wèi)星發(fā)射中心“921工位”,于2013年6月11日17時38分02.666秒發(fā)射,由長征二號F改進型運載火箭(遙十)“神箭”成功發(fā)射.在軌飛行十五天左右,加上發(fā)射與返回,其中停留天宮一號十二天,共搭載三位航天員——聶海勝、張曉光、王亞平.6月13日與天宮一號進行對接.6月26日回歸地球.要讀懂這段報導(dǎo),你認為要知道哪些名稱和術(shù)語的含義?二、合作探究探究點一:定義 下列語句屬于定義的是()A.明天是晴天B.長方形的四個角都是直角C.等角的補角相等D.平行四邊形是兩組對邊分別平行的四邊形解析:作出正確選擇的關(guān)鍵是理解定義的含義.A是對天氣的預(yù)測,B是描述長方形的性質(zhì),C是描述補角的性質(zhì).只有D符合定義的概念.故選D.方法總結(jié):定義指的是對術(shù)語和名稱的含義的描述,是對一個事物區(qū)分于其他事物的本質(zhì)特征的描述,而不是對其性質(zhì)的判斷.
本節(jié)課開始時,首先由一個要在一塊長方形木板上截出兩塊面積不等的正方形,引導(dǎo)學(xué)生得出兩個二次根式求和的運算。從而提出問題:如何進行二次根式的加減運算?這樣通過問題指向本課研究的重點,激發(fā)學(xué)生的學(xué)習(xí)興趣和強烈的求知欲望。本節(jié)課是二次根式加減法,目的是探索二次根式加減法運算法則,在設(shè)計本課時教案時,著重從以下幾點考慮:1.先通過對實際問題的解決來引入二次根式的加減運算,再由學(xué)生自主討論并總結(jié)二次根式的加減運算法則。2.四人小組探索、發(fā)現(xiàn)、解決問題,培養(yǎng)學(xué)生用數(shù)學(xué)方法解決實際問題的能力。3.對法則的教學(xué)與整式的加減比較學(xué)習(xí)。在理解、掌握和運用二次根式的加減法運算法則的學(xué)習(xí)過程中,滲透了分析、概括、類比等數(shù)學(xué)思想方法,提高學(xué)生的思維品質(zhì)和興趣。
1.會用二次根式的四則運算法則進行簡單地運算;(重點)2.靈活運用二次根式的乘法公式.(難點)一、情境導(dǎo)入下面正方形的邊長分別是多少?這兩個數(shù)之間有什么關(guān)系,你能借助什么運算法則或運算律解釋它?二、合作探究探究點一:二次根式的乘除運算【類型一】 二次根式的乘法計算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法總結(jié):幾個二次根式相乘,把它們的被開方數(shù)相乘,根指數(shù)不變,如果積含有能開得盡方的因數(shù)或因式,一定要化簡.【類型二】 二次根式的除法計算a2-2a÷a的結(jié)果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故選C.
1.關(guān)于二次根式的概念,要注意以下幾點:(1)從形式上看,二次根式是以根號“ ”表示的代數(shù)式,這里的開方運算是最后一步運算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運算;(2)當一個二次根式前面乘有一個有理數(shù)或有理式(整式或分式)時,雖然最后運算不是開方而是乘法,但為了方便起見,我們把它看作一個整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開方數(shù),可以是某個確定的非負實數(shù),也可以是某個代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負實數(shù);(4)像“ , ”等雖然可以進行開方運算,但它們?nèi)詫儆诙胃健?.二次根式的主要性質(zhì)(1) ; (2) ; (3) ;(4)積的算術(shù)平方根的性質(zhì): ;(5)商的算術(shù)平方根的性質(zhì): ;
已知一水壩的橫斷面是梯形ABCD,下底BC長14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長為46m,求它的上底的長(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過點A作AE⊥BC于E,過點D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過點A作AE⊥BC,過點D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長約為3.1m.方法總結(jié):考查對坡度的理解及梯形的性質(zhì)的掌握情況.解決問題的關(guān)鍵是添加輔助線構(gòu)造直角三角形.
教學(xué)目標:1、理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。2、了解計算一個銳角的正切值的方法。教學(xué)重點:理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。教學(xué)難點:計算一個銳角的正切值的方法。教學(xué)過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設(shè)計了多種形式的臺階。下列圖中的兩個臺階哪個更陡?你是怎么判斷的?圖(1) 圖(2)[點撥]可將這兩個臺階抽象地看成兩個三角形答:圖 的臺階更陡,理由 二、探索活動1、思考與探索一:除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?① 可通過測量BC與AC的長度,② 再算出它們的比,來說明臺階的傾斜程度。(思考:BC與AC長度的比與臺階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:
解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當角度在0°cosA>0.當角度在45°<∠A<90°間變化時,tanA>1.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達標訓(xùn)練”第10題【類型四】 與三角函數(shù)有關(guān)的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點外)上的一點,設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因為在△ABD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進行比較是解題的關(guān)鍵.
[教學(xué)目標]1、 理解并掌握正弦、余弦的含義,會在直角三角形中求出某個銳角的正弦和余弦值。2、能用函數(shù)的觀點理解正弦、余弦和正切。[教學(xué)重點與難點] 在直角三角形中求出某個銳角的正弦和余弦值。[教學(xué)過程] 一、情景創(chuàng)設(shè)1、問題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對位置升高了多少?行走了a m呢?2、問題2:在上述問題中,他在水平方向又分別前進了多遠?二、探索活動1、思考:從上面的兩個問題可以看出:當直角三角形的一個銳角的大小已確定時,它的對邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達式嗎?)試試看.___________.
(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應(yīng)是60°,然后結(jié)合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問題的結(jié)論有兩種可能,所以具有開放的特征,在假設(shè)存在性以后進行的推理或計算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.
解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結(jié):注意運用平面內(nèi)兩點之間的距離公式,設(shè)平面內(nèi)任意兩點的坐標分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關(guān)系的實際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.
新建成的紅星中學(xué),首次招收七年級新生12個班共500人,學(xué)校準備修建一個自行車車棚.請問需要修建多大面積的自行車車棚?請你設(shè)計一個調(diào)查方案解決這個問題.解析:決定自行車車棚面積的因素有兩個,即自行車的數(shù)量與每輛自行車的占地面積.因此收集數(shù)據(jù)的重點應(yīng)圍繞這兩個因素進行.解:調(diào)查方案如下:(1)對全體新生的到校方式進行問卷調(diào)查.調(diào)查問卷如下:你到校的方式是騎自行車嗎?A.經(jīng)常是 B.不經(jīng)常是C.很少是 D.從不是(2)根據(jù)調(diào)查問卷結(jié)果分類統(tǒng)計騎自行車的人數(shù);(3)實際測量或估計存放1輛自行車的大約占地面積;(4)根據(jù)學(xué)校的建設(shè)規(guī)劃、財力等因素確定自行車車棚的面積.方法總結(jié):確定調(diào)查方案時必須明確兩個問題:(1)需要收集哪些數(shù)據(jù)?(2)采用什么方式進行調(diào)查可以獲得這些數(shù)據(jù)?探究點三:從圖表中獲取信息小冰就公眾對在餐廳吸煙的態(tài)度進行了調(diào)查,并將調(diào)查結(jié)果制作成如圖所示的統(tǒng)計圖,請根據(jù)圖中的信息回答下列問題:
1. 小明的腳長23.6厘米,鞋號應(yīng)是 號。2.小亮的腳長25.1厘米,鞋號應(yīng)是 號。3.小王選了25號鞋,那么他的腳長約是大于等于 厘米且小于 厘米。小結(jié):剛才同學(xué)們都體會到了分組編碼使原來繁多,無敘的數(shù)據(jù)簡化、有序。因此分組、編碼是整理數(shù)據(jù)的一種重要的方法,在工商業(yè)、科研等活動中有廣泛的應(yīng)用(四)反饋練習(xí)課內(nèi)練習(xí)以下是某校七年級南,女生各10名右眼裸視的檢測結(jié)果:0.2,0.5,0.7(女),1.0,0.3(女),1.2(女),1.5,1.2,1.5(女),0.4(女),1.5,1.1,1.2(女),0.8(女),1.5(女),0.6(女),1.0(女),0.8,1.5,1.2(1)這組數(shù)據(jù)是用什么方法獲得的?(2)學(xué)生右眼視力跟性別有關(guān)嗎?為了回答這個問題,你將怎樣處理這組數(shù)據(jù)?你的結(jié)論是什么?(五). 歸納小結(jié),體味數(shù)學(xué)快樂通過本節(jié)課的學(xué)習(xí),你有那些收獲?(課堂小結(jié)交給學(xué)生)數(shù)據(jù)收集的方法:直接觀察、測量、調(diào)查、實驗、查閱文獻資料、使用互連網(wǎng)等。整理數(shù)據(jù)的方法:分類、排序、分組編碼等。(學(xué)生可能還會指出鞋碼和腳長之間的關(guān)系等)
1.會用度量法和疊合法比較兩個角的大小.2.理解角的平分線的定義,并能借助角的平分線的定義解決問題.3.理解兩個角的和、差、倍、分的意義,會進行角的運算.一、情境導(dǎo)入同學(xué)們,如圖是我們生活中常用的剪刀模型,現(xiàn)在考考大家,剪刀張開的兩個角哪個大呢?二、合作探究探究點一:角的比較在某工廠生產(chǎn)流水線上生產(chǎn)如圖所示的工件,其中∠α稱為工件的中心角,生產(chǎn)要求∠α的標準角度為30°±1°,一名質(zhì)檢員在檢驗時,手拿一量角器逐一測量∠α的度數(shù).請你運用所學(xué)的知識分析一下,該名質(zhì)檢員采用的是哪種比較方法?你還能給該質(zhì)檢員設(shè)計更好的質(zhì)檢方法嗎?請說說你的方法.解析:角的比較方法有測量法和疊合法,其中測量法更具體,疊合更直觀.在質(zhì)檢中,采用疊合法比較快捷.
1.進一步理解字母表示數(shù)的意義,能結(jié)合具體情景給字母賦于實際意義;理解代數(shù)式和代數(shù)式的值的意義,能解釋一些簡單代數(shù)式的實際背景或幾何意義,在具體情景中能求出代數(shù)式的值. (重難點)2.通過創(chuàng)設(shè)實際背景和引用符號,經(jīng)歷觀察、體驗、驗算、猜想、歸納等數(shù)學(xué)過程,體會數(shù)學(xué)與現(xiàn)實世界的聯(lián)系,增強符號感,發(fā)展運用符號解決問題和數(shù)學(xué)探究意識. 教法學(xué)法:教學(xué)方法:引導(dǎo)—探究—發(fā)現(xiàn)法.學(xué)習(xí)方法:自主探究與合作交流相結(jié)合.課前準備:多媒體課件、投影儀、電腦教學(xué)過程:一、創(chuàng)設(shè)情境,引入新課.欣賞視頻,導(dǎo)入新課師:國慶六十周年大閱兵,同學(xué)們看了嗎?首先請同學(xué)們來欣賞一段視頻.(26秒.定格在胡錦濤主席乘坐紅旗轎車閱兵的一個瞬間.)師:這是新中國成立以來,規(guī)模最大、裝備最新、機械化程度最高的一次大閱兵.
方法總結(jié):描述一個代數(shù)式的意義,可以從字母本身出發(fā)來描述字母之間的數(shù)量關(guān)系,也可以聯(lián)系生活實際或幾何背景賦予其中字母一定的實際意義加以描述.探究點四:根據(jù)實際問題列代數(shù)式用代數(shù)式表示下列各式:(1)王明同學(xué)買2本練習(xí)冊花了n元,那么買m本練習(xí)冊要花多少元?(2)正方體的棱長為a,那么它的表面積是多少?體積呢?解析:(1)根據(jù)買2本練習(xí)冊花了n元,得出買1本練習(xí)冊花n2元,再根據(jù)買了m本練習(xí)冊,即可列出算式.(2)根據(jù)正方體的棱長為a和表面積公式、體積公式列出式子.解:(1)∵買2本練習(xí)冊花了n元,∴買1本練習(xí)冊花n2元,∴買m本練習(xí)冊要花12mn元;(2)∵正方體的棱長為a,∴它的表面積是6a2;它的體積是a3.方法總結(jié):此題考查了列代數(shù)式,用到的知識點包括正方體的表面積公式和體積公式,根據(jù)題意列出式子是解本題的關(guān)鍵.
解析:水是生命之源,節(jié)約水資源是我們每個居民都應(yīng)有的意識.題中給出假如每人浪費一點水,當人數(shù)增多時,將是一個非常驚人的數(shù)字,100萬人每天浪費的水資源為1000000×0.32=320000(升).所以320000=3.2×105.故選B.方法總結(jié):從實際問題入手讓學(xué)生體會科學(xué)記數(shù)法的實際應(yīng)用.題中沒有直接給出數(shù)據(jù),應(yīng)先計算,再表示.探究點二:將用科學(xué)記數(shù)法表示的數(shù)轉(zhuǎn)換為原數(shù)已知下列用科學(xué)記數(shù)法表示的數(shù),寫出原來的數(shù):(1)2.01×104;(2)6.070×105.解析:(1)將2.01的小數(shù)點向右移動4位即可;(2)將6.070的小數(shù)點向右移動5位即可.解:(1)2.01×104=20100;(2)6.070×105=607000.方法總結(jié):將科學(xué)記數(shù)法a×10n表示的數(shù),“還原”成通常表示的數(shù),就是把a的小數(shù)點向右移動n位所得到的數(shù).三、板書設(shè)計借助身邊熟悉的事物進一步體會大數(shù),積累數(shù)學(xué)活動經(jīng)驗,發(fā)展數(shù)感、空間感,培養(yǎng)學(xué)生自主學(xué)習(xí)的能力.
光年是表示較大距離的一個單位, 而納米(nanometer)則是表示微小距離的單位。1納米= 米,即1米= 納米。我們通常使用的尺上的一小格是一毫米(mm),1毫米= 米??梢?,1毫米= 納米,容易算出,1納米相當于1毫米的一百萬分之一??上攵?,1納米是多么的小。超微粒子的大小一般在1~100 納米范圍內(nèi),故又稱納米粒子。納米粒子的尺寸小,表面積大,具有高度的活性。因此,利用納米粒子可制備活性極高的催化劑,在火箭固體燃料中摻入鋁的納米微粒,可提高燃燒效率若干倍。利用鐵磁納米材料具有很高矯頑力的特點,可制成磁性信用卡、磁性鑰匙,以及高性能錄像帶等 。利用納米材料等離子共振頻率的可調(diào)性可制成隱形飛機的涂料。納米材料的表面積大,對外界環(huán)境(物理的和化學(xué)的)十分敏感,在制造傳感器方面是有前途的材料,目前已開發(fā)出測量溫度、熱輻射和檢測各種特定氣體的傳感器。在生物和醫(yī)學(xué)中也有重要應(yīng)用。納米材料科學(xué)是20世紀80年代末誕生并正在崛起的科技新領(lǐng)域,它將成為跨世紀的科技熱點之一。
本環(huán)節(jié)運用了一個階梯式的問答方法,幫助突破本節(jié)課的難點。同時,從具體的實際問題入手,由特殊問題到一般規(guī)律的揭示,不僅解決了難點問題,而且從另外一個角度講也滲透給了學(xué)生的數(shù)形結(jié)合思想,還有利于學(xué)生主動探索意識的培養(yǎng)。4、自主評價本環(huán)節(jié)主要是應(yīng)用本節(jié)課所學(xué)的知識以及所積累形成的學(xué)習(xí)經(jīng)驗和體驗解決問題的過程,即課堂鞏固訓(xùn)練。在練習(xí)題的選擇上,由簡單到復(fù)雜。先是結(jié)合圖象獲取信息進行簡單的填空和選擇,此題屬于A組題型,檢驗學(xué)生的掌握情況;然后進行了一道B組題,關(guān)于“一次函數(shù)與一元一次方程的關(guān)系”知識點的靈活運用,進一步通過練習(xí)體會它們的關(guān)系。5、自主發(fā)展:最后一道則是特殊的區(qū)別于之前所學(xué)習(xí)的分段函數(shù)練習(xí),發(fā)散學(xué)生思維問題的訓(xùn)練。讓學(xué)生體會分段函數(shù)的特點,并掌握求分段函數(shù)解析式的方法。
解析:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點C與點D關(guān)于x=-3對稱,根據(jù)點C在對稱軸左側(cè),且CD=8,求出點C的橫坐標和縱坐標,再根據(jù)點B的坐標為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點C與點D關(guān)于x=-3對稱.∵點C在對稱軸左側(cè),且CD=8,∴點C的橫坐標為-7,∴點C的縱坐標為(-7)2+6×(-7)+5=12.∵點B的坐標為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.