一、教材分析:本節(jié)課選自北京師范大學教育出版社七年級上冊第五章第三節(jié),是學生學習一元一次方程的含義,并掌握了解法后,通過分析圖形問題中的數(shù)量關系,建立一元一次方程并用之解決實際問題,是學生運用數(shù)學知識解決生活中實際問題中的典型素材,可提高學生解決問題的能力,提高學習數(shù)學的興趣,形成學以致用的思想,認識方程運用模型的重要環(huán)節(jié)。二、學情分析:通過前幾節(jié)解方程的學習,學生已經(jīng)掌握了解、列方程的基本方法,在此過程中也初步掌握了運用方程解決實際問題的一般過程,基本會通過分析簡單問題中已知量與未知量的關系列出方程解應用題,但學生在列方程解應用題時常常會遇到從題設條件中找不到所依據(jù)的等量關系,或雖能找到等量關系,但不能列出方程這樣的問題,因此,在教師的引導下,通過學生親自動手制作模型,自主探索在模型變化過程中的等量關系,建立方程,從而將圖形問題代數(shù)化。
一個不透明的袋子中裝有5個黑球和3個白球,這些球的大小、質地完全相同,隨機從袋子中摸出4個球,則下列事件是必然事件的是( )A.摸出的4個球中至少有一個是白球B.摸出的4個球中至少有一個是黑球C.摸出的4個球中至少有兩個是黑球D.摸出的4個球中至少有兩個是白球解析:∵袋子中只有3個白球,而有5個黑球,∴摸出的4個球可能都是黑球,因此選項A是不確定事件;摸出的4個球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪種情況,至少有一個球是黑球,∴選項B是必然事件;摸出的4個球可能為1黑3白,∴選項C是不確定事件;摸出的4個球可能都是黑球或1白3黑,∴選項D是不確定事件.故選B.方法總結:事件類型的判斷首先要判斷該事件發(fā)生與否是不是確定的.若是確定的,再判斷其是必然發(fā)生的(必然事件),還是必然不發(fā)生的(不可能事件).若是不確定的,則該事件是不確定事件.
解析:①以O為圓心,任意長為半徑作弧交OA于D,交OB于C;②以O′為圓心,以同樣長(OC長)為半徑作弧,交O′B′于C′;③以C′為圓心,CD長為半徑作弧交前弧于D′;④過D′作射線O′A′,∠A′O′B′為所求.解:如下圖所示.【類型三】 利用尺規(guī)作角的和或差已知∠AOB,用尺規(guī)作圖法作∠A′O′B′,使∠A′O′B′=2∠AOB.解析:先作一個角等于∠AOB,再以這個角的一邊為邊在其外部作一個角等于∠AOB,那么圖中最大的角就是所求的角.解:作法:①作∠DO′B′=∠AOB;②在∠DO′B′的外部作∠A′O′D=∠AOB,∠A′O′B′就是所求的角(如下圖).三、板書設計1.尺規(guī)作圖2.用尺規(guī)作角本節(jié)課學習了有關尺規(guī)作圖的相關知識,課堂教學內容以學生動手操作為主,在學生動手操作的過程中要鼓勵學生大膽動手,培養(yǎng)學生的動手能力和書面語言表達能力
方法總結:判斷軸對稱的條數(shù),仍然是根據(jù)定義進行判斷,判斷軸對稱圖形的關鍵是尋找對稱軸,注意不要遺漏.探究點二:兩個圖形成軸對稱如圖所示,哪一組的右邊圖形與左邊圖形成軸對稱?解析:根據(jù)軸對稱的意義,經(jīng)過翻折,看兩個圖形能否完全重合,若能重合,則兩個圖形成軸對稱.解:(4)(5)(6).方法總結:動手操作或結合軸對稱的概念展開想象,在腦海中嘗試完成一個動態(tài)的折疊過程,從而得到結論.三、板書設計1.軸對稱圖形的定義2.對稱軸3.兩個圖形成軸對稱這節(jié)課充分利用多媒體教學,給學生以直觀指導,主動向學生質疑,促使學生思考與發(fā)現(xiàn),形成認識,獨立獲取知識和技能.另外,借助多媒體教學給學生創(chuàng)設寬松的學習氛圍,使學生在學習中始終保持興奮、愉悅、渴求思索的心理狀態(tài),有利于學生主體性的發(fā)揮和創(chuàng)新能力的培養(yǎng)
解:(1)設x分鐘后兩人第一次相遇,由題意,得360x-240x=400.解得x=103.(103×360+103×240)÷400=5(圈).答:兩人一共跑了5圈.(2)設x分鐘后兩人第一次相遇,由題意,得360x+240x=400.解得x=23(分鐘)=40(秒).答:40秒后兩人第一次相遇.方法總結:環(huán)形問題中的相等關系:兩個人同地背向而行:相遇問題(首次相遇),甲的行程+乙的行程=一圈周長;兩個人同地同向而行:追及問題(首次追上),甲的行程-乙的行程=一圈周長.三、板書設計追趕小明→行程問題→相遇問題追及問題環(huán)形問題教學過程中,通過對開放性問題的探討與交流,體驗生活中數(shù)學的應用與價值,感受數(shù)學與人類生活的密切聯(lián)系,激發(fā)學生學習數(shù)學的興趣,培養(yǎng)學生的創(chuàng)新意識、團隊精神和克服困難的勇氣.
2、某村有耕地346.2公頃,人口數(shù)量n逐年發(fā)生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數(shù)n的函數(shù)嗎?是反比例函數(shù)嗎?為什么?3、y是x的反比例函數(shù),下表給出了x與y的一些值: (1)寫出這個反比例函數(shù)的表達式;(2)根據(jù)表達式完成上表。教師巡視個別輔導,學生完畢教師給予評估肯定。II鞏固練習:限時完成課本“隨堂練習”1-2題。教師并給予指導。七、總結、提高。(結合板書小結)今天通過生活中的例子,探索學習了反比例函數(shù)的概念,我們要掌握反比例函數(shù)是針對兩種變化量,并且這兩個變化的量可以寫成 (k為常數(shù),k≠0)同時要注意幾點::①常數(shù)k≠0;②自變量x不能為零(因為分母為0時,該式?jīng)]意義);③當 可寫為 時注意x的指數(shù)為—1。④由定義不難看出,k可以從兩個變量相對應 的任意一對對應值的積來求得,只要k確定了,這個函數(shù)就確定了。
(2)相似多邊形的對應邊的比稱為相似比;(3)當相似比為1時,兩個多邊形全等.二、運用相似多邊形的性質.活動3 例:如圖27.1-6,四邊形ABCD和EFGH相似,求角 的大小和EH的長度 .27.1-6教師活動:教師出示例題,提出問題;學生活動:學生通過例題運用相似多邊形的性質,正確解答出角 的大小和EH的長度 .(2人板演)活動41.在比例尺為1﹕10 000 000的地圖上,量得甲、乙兩地的距離是30 cm,求兩地的實際距離.2.如圖所示的兩個直角三角形相似嗎?為什么?3.如圖所示的兩個五邊形相似,求未知邊 、 、 、 的長度.教師活動:在活動中,教師應重點關注:(1)學生參與活動的熱情及語言歸納數(shù)學結論的能力;(2)學生對于相似多邊形的性質的掌握情況.三、回顧與反思.(1)談談本節(jié)課你有哪些收獲.(2)布置課外作業(yè):教材P88頁習題4.4
2.如何找一條線段的黃金分割點,以及會畫黃金矩形.3.能根據(jù)定義判斷某一點是否為一條線段的黃金分割點.Ⅳ.課后作業(yè)習題4.8Ⅴ.活動與探究要配制一種新農藥,需要兌水稀釋,兌多少才好呢?太濃太稀都不行.什么比例最合適,要通過試驗來確定.如果知道稀釋的倍數(shù)在1000和2000之間,那么,可以把1000和2000看作線段的兩個端點,選擇AB的黃金分割點C作為第一個試驗點,C點的數(shù)值可以算是1000+(2000-1000)×0.618= 1618.試驗的結果,如果按1618倍,水兌得過多,稀釋效果不理想,可以進行第二次試 驗.這次的試驗點應該選AC的黃金分割點D,D的位置是1000+(1618-1000)×0.618,約等于1382,如果D點還不理想,可以按黃金分割的方法繼續(xù)試驗下去.如果太濃,可以選DC之間的黃金分割 點 ;如果太稀,可以選AD之間的黃金分割點,用這樣的方法,可以較快地找到合適的濃度數(shù)據(jù).這種方法叫做“黃金分割法”.用這樣的方法進行科學試驗,可以用最少的試驗次數(shù)找到最佳的數(shù)據(jù),既節(jié)省了時間,也節(jié)約了原材料.●板書設計
通常購買同一品種的西瓜時,西瓜的質量越大,花費的錢越多,因此人們希望西瓜瓤占整個西瓜的比例越大越好.假如我們把西瓜都看成球形,并把西瓜瓤的密度看成是均勻的,西瓜的皮厚都是d,已知球的體積公式為V=43πR3(其中R為球的半徑),求:(1)西瓜瓤與整個西瓜的體積各是多少?(2)西瓜瓤與整個西瓜的體積比是多少?(3)買大西瓜合算還是買小西瓜合算?解析:(1)根據(jù)體積公式求出即可;(2)根據(jù)(1)中的結果得出即可;(3)求出兩體積的比即可.解:(1)西瓜瓤的體積是43π(R-d)3,整個西瓜的體積是43πR3;(2)西瓜瓤與整個西瓜的體積比是43π(R-d)343πR3=(R-d)3R3;(3)由(2)知,西瓜瓤與整個西瓜的體積比是(R-d)3R3<1,故買大西瓜比買小西瓜合算.方法總結:本題能夠根據(jù)球的體積,得到兩個物體的體積比即為它們的半徑的立方比是解此題的關鍵.
【類型二】 根據(jù)數(shù)軸求不等式的解關于x的不等式x-3<3+a2的解集在數(shù)軸上表示如圖所示,則a的值是()A.-3 B.-12 C.3 D.12解析:化簡不等式,得x<9+a2.由數(shù)軸上不等式的解集,得9+a=12,解得a=3,故選C.方法總結:本題考查了在數(shù)軸上表示不等式的解集,利用不等式的解集得關于a的方程是解題關鍵.三、板書設計1.不等式的解和解集2.用數(shù)軸表示不等式的解集本節(jié)課學習不等式的解和解集,利用數(shù)軸表示不等式的解,讓學生體會到數(shù)形結合的思想的應用,能夠直觀的理解不等式的解和解集的概念,為接下來的學習打下基礎.在課堂教學中,要始終以學生為主體,以引導的方式鼓勵學生自己探究未知,提高學生的自我學習能力.
方法總結:作平移圖形時,找關鍵點的對應點是關鍵的一步.平移作圖的一般步驟為:①確定平移的方向和距離,先確定一組對應點;②確定圖形中的關鍵點;③利用第一組對應點和平移的性質確定圖中所有關鍵點的對應點;④按原圖形順序依次連接對應點,所得到的圖形即為平移后的圖形.三、板書設計1.平移的定義在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移.2.平移的性質一個圖形和它經(jīng)過平移所得的圖形中,對應點所連的線段平行(或在一條直線上)且相等,對應線段平行(或在一條直線上)且相等,對應角相等.3.簡單的平移作圖教學過程中,強調學生自主探索和合作交流,學生經(jīng)歷將實際問題抽象成圖形問題,培養(yǎng)學生的邏輯思維能力和空間想象能力,使得學生能將所學知識靈活運用到生活中.
2. 在彈性限度內,彈簧的長度y(厘米)是所掛物體質量x(千克)的一次函數(shù).當所掛物體的質量為1千克時彈簧長15厘米;當所掛物體的質量為3千克時,彈簧長16厘米.寫出y與x之間的函數(shù)關系式,并求當所掛物體的質量為4千克時彈簧的長度.答案: 當x=4是,y= 3. 教材例2的再探索:我邊防局接到情報,近海處有一可疑船只A正向公海方向行駛.邊防局迅速派出快艇B追趕,如圖所示, , 分別表示兩船相對于海岸的距離s(海里)與追趕時間t(分)之間的關系.當時間t等于多少分鐘時,我邊防快艇B能夠追趕上A。答案:直線 的解析式: ,直線 的解析式: 15分鐘第五環(huán)節(jié)課堂小結(2分鐘,教師引導學生總結)內容:一、函數(shù)與方程之間的關系.二、在解決實際問題時從不同角度思考問題,就會得到不一樣的方法,從而拓展自己的思維.三、掌握利用二元一次方程組求一次函數(shù)表達式的一般步驟:1.用含字母的系數(shù)設出一次函數(shù)的表達式: ;2.將已知條件代入上述表達式中得k,b的二元一次方程組;3.解這個二元一次方程組得k,b,進而得到一次函數(shù)的表達式.
意圖:課后作業(yè)設計包括了三個層面:作業(yè)1是為了鞏固基礎知識而設計;作業(yè)2是為了擴展學生的知識面;作業(yè)3是為了拓廣知識,進行課后探究而設計,通過此題可讓學生進一步認識勾股定理的前提條件.效果:學生進一步加強對本課知識的理解和掌握.教學設計反思(一)設計理念依據(jù)“學生是學習的主體”這一理念,在探索勾股定理的整個過程中,本節(jié)課始終采用學生自主探索和與同伴合作交流相結合的方式進行主動學習.教師只在學生遇到困難時,進行引導或組織學生通過討論來突破難點.(二)突出重點、突破難點的策略為了讓學生在學習過程中自我發(fā)現(xiàn)勾股定理,本節(jié)課首先情景創(chuàng)設激發(fā)興趣,再通過幾個探究活動引導學生從探究等腰直角三角形這一特殊情形入手,自然過渡到探究一般直角三角形,學生通過觀察圖形,計算面積,分析數(shù)據(jù),發(fā)現(xiàn)直角三角形三邊的關系,進而得到勾股定理.
目的:課后作業(yè)設計包括了兩個層面:作業(yè)1是為了鞏固基礎知識而設計;作業(yè)2是為了擴展學生的知識面;拓廣知識,增加學生對數(shù)學問題本質的思考而設計,通過此題可讓學生進一步運用三元一次方程組解決問題.教學設計反思1.本節(jié)課的內容屬于選修學習的內容,主要突出對數(shù)學興趣濃厚、學有余力的同學進一步探究和拓展使用,在數(shù)學方法和思想方面需重點引導,通過引導,使學生明白解多元方程組的一般方法和思想,理解鞏固環(huán)節(jié)需多注意多種解題方法的引導,并且比較各種解題方法之間的優(yōu)劣,總結出解多元方程的基本方法.2.作為選修課,在內容上要讓學生理解三元一次方程組概念的同時,要讓學生理解為什么要用三元一次方程組甚至多元方程組去求解實際問題的必要性,從而掌握本堂課的基礎知識.在教學的過程中,要讓學生充分理解對復雜的實際問題方程中元越多,等量關系的建立就越直接;充分理解代入消元法和加減法解方程的優(yōu)點和缺點,有關這一方面的題目要讓學生充分討論、交流、合作,其理解才會深刻.
3.想一想在例1中,(1)點B與點C的縱坐標相同,線段BC的位置有什么特點?(2)線段CE位置有什么特點?(3)坐標軸上點的坐標有什么特點?由B(0,-3),C(3,-3)可以看出它們的縱坐標相同,即B,C兩點到X軸的距離相等,所以線段BC平行于橫軸(x軸),垂直于縱軸(y軸)。第三環(huán)節(jié)學有所用.補充:1.在下圖中,確定A,B,C,D,E,F(xiàn),G的坐標。(第1題) (第2題)2.如右圖,求出A,B,C,D,E,F(xiàn)的坐標。第四環(huán)節(jié)感悟與收獲1.認識并能畫出平面直角坐標系。2.在給定的直角坐標系中,由點的位置寫出它的坐標。3.能適當建立直角坐標系,寫出直角坐標系中有關點的坐標。4.橫(縱)坐標相同的點的直線平行于y軸,垂直于x軸;連接縱坐標相同的點的直線平行于x軸,垂直于y軸。5.坐標軸上點的縱坐標為0;縱坐標軸上點的坐標為0。6.各個象限內的點的坐標特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。
第一環(huán)節(jié):情境引入內容:(一) 情境1實物投影,并呈現(xiàn)問題:在一望無際的呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說:“累死我了”,小馬說:“你還累,這么大的個,才比我多馱2個.”老牛氣不過地說:“哼,我從你背上拿來一個,我的包裹就是你的2倍!”,小馬天真而不信地說:“真的?!”同學們,你們能否用數(shù)學知識幫助小馬解決問題呢?請每個學習小組討論(討論2分鐘,然后發(fā)言).教師注意引導學生設兩個未知數(shù),從而得出二元一次方程.這個問題由于涉及到老牛和小馬的馱包裹的兩個未知數(shù),我們設老牛馱x個包裹,小馬馱y個包裹,老牛的包裹數(shù)比小馬多2個,由此得方程 ,若老牛從小馬背上拿來1個包裹,這時老牛的包裹是小馬的2倍, 得方程: .
意圖:(1)介紹與勾股定理有關的歷史,激發(fā)學生的愛國熱情;(2)學生加強了對數(shù)學史的了解,培養(yǎng)學習數(shù)學的興趣;(3)通過讓部分學生搜集材料,展示材料,既讓學生得到充分的鍛煉,同時也活躍了課堂氣氛.效果:學生熱情高漲,對勾股定理的歷史充滿了濃厚的興趣,同時也為中國古代數(shù)學的成就感到自豪.也有同學提出:當代中國數(shù)學成就不夠強,還應發(fā)奮努力.有同學能意識這一點,這讓我喜出望外.第六環(huán)節(jié): 回顧反思 提煉升華內容:教師提問:通過這節(jié)課的學習,你有什么樣的收獲?師生共同暢談收獲.目的:(1)歸納出本節(jié)課的知識要點,數(shù)形結合的思想方法;(2)教師了解學生對本節(jié)課的感受并進行總結;(3)培養(yǎng)學生的歸納概括能力.效果:由于這節(jié)課自始至終都注意了調動學生學習的積極性,所以學生談的收獲很多,包括利用拼圖驗證勾股定理中蘊含的數(shù)形結合思想,學生對勾股定理的歷史的感悟及對勾股定理應用的認識等等.
8.一束光線從點A(3,3)出發(fā),經(jīng)過y軸上點C反射后經(jīng)過點B(1,0)則光線從A點到B點經(jīng)過的路線長是( )A.4 B.5 C.6 D.7第四環(huán)節(jié)課堂小結1、關于y軸對稱的兩個圖形上點的坐標特征:(x , y)——(- x , y)2、關于x軸對稱的兩個圖形上點的坐標特征:(x , y)——(x , - y)3、關于原點對稱的兩個圖形上點的坐標特征:(x , y)——(- x , -y)第五環(huán)節(jié)布置作業(yè)習題3.5 1,2,3四、 教學反思通過“坐標與軸對稱”,經(jīng)歷圖形坐標變化與圖形的軸對稱之間的關系的探索過程, 掌握空間與圖形的基礎知識和基本技能,豐富對現(xiàn)實空間及圖形的認識,建立初步的空間觀念,發(fā)展形象思維,激發(fā)學生對數(shù)學學習的好奇心與求知欲,學生能積極參與數(shù)學學習活動;積極交流合作,體驗數(shù)學活動充滿著探索與創(chuàng)造。教學中務必給學生創(chuàng)造自主學習與合作交流的機會,留給學生充足的動手機會和思考空間,教師不要急于下結論。事先一定要準備好坐標紙等,提高課堂效率。
屬于此類問題一般有以下三種情況①具體數(shù)字,此時化簡的條件已暗中給定,②恒為非負值或根據(jù)題中的隱含條件,如(1)小題。③給出明確的條件,如(2)小題。第二類,需討論后再化簡。當題目中給定的條件不能判定絕對值符號內代數(shù)式值的符號時,則需討論后化簡,如(4)小題。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同號,又∵a+b=-6<0,∴a<0,b<0∴ .說明:此題中的隱含條件a<0,b<0不能忽視。否則會出現(xiàn)錯誤。例4.化簡: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.這樣x=6, ,x=-5,把數(shù)軸分成四段(四個區(qū)間)在這五段里分別討論如下:當x≥6時,原式=(x-6)-(1+2x)+(x+5)=-2.當 時,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.當 時,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.當x<-5時,原式=-(x-6)+(1+2x)-(x+5)=2.說明:利用公式 ,如果絕對值符號里面的代數(shù)式的值的符號無法決定,則需要討論。方法是:令每一個絕對值內的代數(shù)式為零,求出對應的“零點”,再用這些“零點”把數(shù)軸分成若干個區(qū)間,再在每個區(qū)間內進行化簡。
第三環(huán)節(jié):課堂小結活動內容:1. 通過前面幾個題,你對列方程組解決實際問題的方法和步驟掌握的怎樣?2. 這里面應該注意的是什么?關鍵是什么?3. 通過今天的學習,你能不能解決求兩個量的問題?(可以用二元一次方程組解決的。4. 列二元一次方程組解決實際問題的主要步驟是什么?說明:通過以上四個問題,學生基本上掌握了列二元一次方程組解決實際問題的方法和步驟,可啟發(fā)學生說出自己的心得體會及疑問.活動意圖:引導學生自己小結本節(jié)課的知識要點及數(shù)學方法,使知識系統(tǒng)化.說明:還可以建議有條件的學生去讀一讀《孫子算經(jīng)》,可以在網(wǎng)上查,找出自己喜歡的問題,互相出題;同位的同學還可互相編題考察對方;還可以設置"我為老師出難題"活動,每人編一道題,給老師,老師再提出:"誰來幫我解難題",以此激發(fā)學生的學習興趣和信心。