答:所有陰影部分的面積和是5050cm2.方法總結(jié):首先應(yīng)找出圖形中哪些部分發(fā)生了變化,是按照什么規(guī)律變化的,通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解.探尋規(guī)律要認真觀察、仔細思考,善用聯(lián)想來解決這類問題.三、板書設(shè)計1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特點:能夠運用平方差公式分解因式的多項式必須是二項式,兩項都能寫成平方的形式,且符號相反.運用平方差公式因式分解,首先應(yīng)注意每個公式的特征.分析多項式的次數(shù)和項數(shù),然后再確定公式.如果多項式是二項式,通??紤]應(yīng)用平方差公式;如果多項式中有公因式可提,應(yīng)先提取公因式,而且還要“提”得徹底,最后應(yīng)注意兩點:一是每個因式要化簡,二是分解因式時,每個因式都要分解徹底.
解:設(shè)另一個因式為2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一個因式為2x2+x-3.方法總結(jié):因為整式的乘法和分解因式互為逆運算,所以分解因式后的兩個因式的乘積一定等于原來的多項式.三、板書設(shè)計1.因式分解的概念把一個多項式轉(zhuǎn)化成幾個整式的積的形式,這種變形叫做因式分解.2.因式分解與整式乘法的關(guān)系因式分解是整式乘法的逆運算.本課是通過對比整式乘法的學習,引導學生探究因式分解和整式乘法的聯(lián)系,通過對比學習加深對新知識的理解.教學時采用新課探究的形式,鼓勵學生參與到課堂教學中,以興趣帶動學習,提高課堂學習效率.
探究點三:作中心對稱圖形如圖,網(wǎng)格中有一個四邊形和兩個三角形.(1)請你畫出三個圖形關(guān)于點O的中心對稱圖形;(2)將(1)中畫出的圖形與原圖形看成一個整體圖形,請寫出這個整體圖形對稱軸的條數(shù);這個整體圖形至少旋轉(zhuǎn)多少度能與自身重合?解:(1)如圖所示;(2)這個整體圖形的對稱軸有4條;此圖形最少旋轉(zhuǎn)90°能與自身重合.三、板書設(shè)計1.中心對稱如果把一個圖形繞著某一點旋轉(zhuǎn)180°,它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱.2.中心對稱圖形把一個圖形繞著某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形.教學過程中,強調(diào)學生自主探索和合作交流,結(jié)合圖形,多觀察,多歸納,體會識別中心對稱圖形的方法,理解中心對稱圖形的特征.
方法總結(jié):作平移圖形時,找關(guān)鍵點的對應(yīng)點是關(guān)鍵的一步.平移作圖的一般步驟為:①確定平移的方向和距離,先確定一組對應(yīng)點;②確定圖形中的關(guān)鍵點;③利用第一組對應(yīng)點和平移的性質(zhì)確定圖中所有關(guān)鍵點的對應(yīng)點;④按原圖形順序依次連接對應(yīng)點,所得到的圖形即為平移后的圖形.三、板書設(shè)計1.平移的定義在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移.2.平移的性質(zhì)一個圖形和它經(jīng)過平移所得的圖形中,對應(yīng)點所連的線段平行(或在一條直線上)且相等,對應(yīng)線段平行(或在一條直線上)且相等,對應(yīng)角相等.3.簡單的平移作圖教學過程中,強調(diào)學生自主探索和合作交流,學生經(jīng)歷將實際問題抽象成圖形問題,培養(yǎng)學生的邏輯思維能力和空間想象能力,使得學生能將所學知識靈活運用到生活中.
解析:整個陰影部分比較復雜和分散,像此類問題通常使用割補法來計算.連接BD、AC,由正方形的對稱性可知,AC與BD必交于點O,正好把左下角的陰影部分分成(Ⅰ)與(Ⅱ)兩部分(如圖②),把陰影部分(Ⅰ)繞點O逆時針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點O順時針旋轉(zhuǎn)90°至陰影部分②處,使整個陰影部分割補成半個正方形.解:如圖②,把陰影部分(Ⅰ)繞點O逆時針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點O順時針旋轉(zhuǎn)90°至陰影部分②處,使原陰影部分變?yōu)槿鐖D②的陰影部分,即正方形的一半,故陰影部分面積為12×10×10=50(cm2).方法總結(jié):本題是利用旋轉(zhuǎn)的特征:旋轉(zhuǎn)前、后圖形的形狀和大小不變,把圖形利用割補法補全為一個面積可以計算的規(guī)則圖形.三、板書設(shè)計1.簡單的旋轉(zhuǎn)作圖2.旋轉(zhuǎn)圖形的應(yīng)用教學過程中,強調(diào)學生自主探索和合作交流,經(jīng)歷觀察、歸納和動手操作,利用旋轉(zhuǎn)的性質(zhì)作圖.
一、本章知識要點: 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關(guān)系,進而才能利用直角三角形的邊與角的相互關(guān)系去解直角三角形,因此三角形函數(shù)定義既是本章的重點又是理解本章知識的關(guān)鍵,而且也是本章知識的難點。如何解決這一關(guān)鍵問題,教材采取了以下的教學步驟:1. 從實際中提出問題,如修建揚水站的實例,這一實例可歸結(jié)為已知RtΔ的一個銳角和斜邊求已知角的對邊的問題。顯然用勾股定理和直角三角形兩個銳角互余中的邊與邊或角與角的關(guān)系無法解出了,因此需要進一步來研究直角三角形中邊與角的相互關(guān)系。2. 教材又采取了從特殊到一般的研究方法利用學生的舊知識,以含30°、45°的直角三角形為例:揭示了直角三角形中一個銳角確定為30°時,那么這角的對邊與斜邊之比就確定比值為1:2。
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導學生觀察函數(shù)關(guān)系式(1)和(2),提出問題讓學生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個? (各有1個)(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式?(分別是二次多項式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點? (都是用自變量的二次多項式來表示的)(4)本章導圖中的問題以及P1頁的問題2有什么共同特點?讓學生討論、歸結(jié)為:自變量x為何值時,函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.
解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結(jié):注意運用平面內(nèi)兩點之間的距離公式,設(shè)平面內(nèi)任意兩點的坐標分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關(guān)系的實際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.
教學目標:1、理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。2、了解計算一個銳角的正切值的方法。教學重點:理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。教學難點:計算一個銳角的正切值的方法。教學過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設(shè)計了多種形式的臺階。下列圖中的兩個臺階哪個更陡?你是怎么判斷的?圖(1) 圖(2)[點撥]可將這兩個臺階抽象地看成兩個三角形答:圖 的臺階更陡,理由 二、探索活動1、思考與探索一:除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?① 可通過測量BC與AC的長度,② 再算出它們的比,來說明臺階的傾斜程度。(思考:BC與AC長度的比與臺階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:
解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當角度在0°cosA>0.當角度在45°<∠A<90°間變化時,tanA>1.變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第10題【類型四】 與三角函數(shù)有關(guān)的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點外)上的一點,設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因為在△ABD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進行比較是解題的關(guān)鍵.
[教學目標]1、 理解并掌握正弦、余弦的含義,會在直角三角形中求出某個銳角的正弦和余弦值。2、能用函數(shù)的觀點理解正弦、余弦和正切。[教學重點與難點] 在直角三角形中求出某個銳角的正弦和余弦值。[教學過程] 一、情景創(chuàng)設(shè)1、問題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對位置升高了多少?行走了a m呢?2、問題2:在上述問題中,他在水平方向又分別前進了多遠?二、探索活動1、思考:從上面的兩個問題可以看出:當直角三角形的一個銳角的大小已確定時,它的對邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達式嗎?)試試看.___________.
【初讀課文,整體感知】1. 以《時間的腳印》為題目有什么好處?文章的題目《時間的腳印》,是從高士其《時間伯伯》一詩中引申借用來的。其擬人化手法的運用,形象地說明了那些形形色色、大大小小的巖石中都潛藏著時間的蹤影,以引起人們的探究欲望和閱讀興趣?!驹僮x課文,梳理結(jié)構(gòu)】1.第一部分(第1至第4自然段)說明巖石“是記錄時間的方式中最重要的一種”。2.第二部分(第5至第29自然段)分層次地詳細說明巖石是怎樣記錄時間的。這部分分三層。3.第三部分(第30自然段至全文完)總結(jié)全文,說明巖石記錄時間的意義,號召人們進一步去大自然找尋時間的蹤影,去一步步走向地下的寶庫?!靖形蚓示渥印?.“狂風來了,洪水來了,冰河爬來了”。
一、自覺依法納稅(二)我國稅收“取之于民,用之于民” 1、稅收的含義與基本特征 【學生活動】學生思考后回答。 【教師活動】稅收是國家為實現(xiàn)其職能,憑借其政治權(quán)力,依法無償?shù)厝〉秘斦杖氲幕拘问健?【教師活動】稅收具有強制性、無償性和固定性的基本特征。[1]強制性:不管你愿意還是不愿意,都必須交稅。[2]無償性:交了稅,沒有補償,更不會返還。[3]固定性:征稅是有標準的,不是無止境的,按標準收到一定數(shù)量即算完成納稅。 2、稅收的性質(zhì) 【教師活動】展示多媒體圖片,觀察稅收性質(zhì)是什么? 【學生活動】分析圖片,稅收的性質(zhì)。 【教師活動】每個人都與稅收緊密地聯(lián)系在一起,我們天天享受到的公共物品,無不有賴于稅收。接受教育要有學校,看病要有醫(yī)院,出行要有道路,保障國家安全要有國防,防洪、發(fā)電要有水利工程,這些都要依靠國家的稅收來為公眾提供公共服務(wù)。 【教師活動】播放國家免費為新冠肺炎患者治療的視頻。 【教師活動】勞動人民是稅收的最終受益者,我國的稅收是取之于民、用之于民的新型稅收。
1、復習萬以內(nèi)數(shù)的認識。 請同學們先來回憶一下,我們學了萬以內(nèi)數(shù)的哪些知識? 回憶學了萬以內(nèi)數(shù)的數(shù)數(shù)、讀數(shù)、寫數(shù)、數(shù)的組成、數(shù)位的含義、數(shù)的順序和大小比較、近似數(shù)以及整百、整千數(shù)的加減法……2、下面先請大家獨立做教材第3題,然后集體訂正。 指名讓學生說一說是怎么做的?3、寫一寫,再讀一讀。① 千位上是2個千、百位上是5個百、個位上是6個一。② 二千五百零六。4、 下面復習用計數(shù)單位表示數(shù),獨立完成書上第4題,想一想是怎樣做出來的。5、 復習近似數(shù)。請同學們看教材第5題,找出這段文字中哪些數(shù)是近似數(shù)?并畫出來。再請同學回答。
一、教材簡析 本單元教學內(nèi)容主要有:除法的初步認識、用2~6的 乘法口訣求商,解決實際問題。除法的初步認識分兩個層次:第一,以生活中常見的“每份同樣多”的實例合活動情境,讓學生建立“平均分”概念。第二,在“平均分”概念的基礎(chǔ)上引出除法運算,說明除法算式各部分的名稱。用口訣求商遵循由易到難的原則。解決問題是結(jié)合除法計算出現(xiàn)的。首先在除法的初步認識教學中 孕伏解決問題的內(nèi)容。然后在用2~6的乘法口訣求商之后編入了解決有關(guān)平均分的實際問題和需要用乘法和除法兩步計算解決簡單實際問題的內(nèi)容。
一、 作者介紹 張中行,原名張璇,學名張璿,河北省香河縣河北屯鄉(xiāng)石莊(今屬天津市武清區(qū)河北屯鎮(zhèn))人,著名學者、哲學家、散文家。主要從事語文、古典文學及思想史的研究。曾參加編寫《漢語課本》、《古代散文選》等。合作編著有《文言文選讀》、《文言讀本續(xù)編》;編著有《文言常識》、《文言津逮》、《佛教與中國文學》、《負暄瑣話》等。是二十世紀末未名湖畔三雅士之一,與季羨林、金克木合稱“燕園三老”。季羨林先生稱贊他為“高人、逸人、至人、超人”。 二、初讀課文 自由閱讀課文,理解重點詞句攙和:chān huo 摻雜混合 東四八條:北京東城區(qū)胡同名 冗長:rǒng cháng (文章、講話等)廢話多,拉得很長,含貶義 著作等身:形容著作極多,疊起來能跟作者的身高相等。 沾溉:浸潤澆灌 高文典冊:經(jīng)典性著作 躬行君子,則吾未之有得:做一個身體力行的君子,那我還沒有做到。
學習要求1、熟讀課文,掌握文中難解字詞。2、劃分文章層次結(jié)構(gòu),理清文章脈絡(luò)。3、揣摩文章流露的作者的思想感情,理解作品主旨。一、導入新課紫藤蘿亦稱紫藤,朱藤,藤蘿,豆科,羽狀復葉,春季開花,蝶形花冠,青紫色,總狀花序,產(chǎn)于我國中部,供觀賞,花種子供食用。紫藤蘿是瀑布嗎?不是的,因為,它是很多很多的紫藤蘿花組成的,因為像瀑布一樣從空中垂下來,不見其發(fā)端,也不見其終極,所以文章叫《紫藤蘿瀑布》。 二、作者簡介宗璞,原名馮宗璞,我國當代女作家,畢業(yè)于清華大學文學系。我們學過的文章有童話《花的話》。本文背景宗璞一家,在“文化大革命”中深受迫害,“焦慮和悲痛”“一直壓在”作者的心頭。這篇文章寫于1982年5月,當時作者的小弟身患絕癥,作者非常悲痛(1982年10月小弟病逝),徘徊于庭院中,見一樹盛開的紫藤蘿花,睹物釋懷,由花兒的自衰到盛,感悟到生的美好和生命的永恒,于是寫成此文。
4.《不求甚解》一文分析了陶淵明怎樣的讀書態(tài)度,請指出“不求甚解”的兩層含義。明確:態(tài)度:養(yǎng)成“好讀書”的習慣;讀書要訣在于“會意”。含義:第一,虛心,書不一定都能讀懂;第二,讀書方法:不固執(zhí)一點,而要了解大意。5.《不求甚解》一文是駁論文還是立論文?又是如何駁或者立的?談一談你的理解。明確:駁論文。駁的是“論點”,先全面闡述“不求甚解”的含義,進而提倡虛心的“不求甚解”的讀書態(tài)度,從而表明自己的觀點;又從“會意”角度,列舉古人讀書的例子,并闡明自己的正確論點:讀書在會意,不要死摳字眼,為一個局部而放棄整體;最后又強調(diào)了“書必須反復讀”的主張。這樣通過樹立自己正確的觀點從而駁倒敵論。
明確:(1)作者在前三段簡要交代了故事發(fā)生的背景環(huán)境——咸亨酒店。咸亨酒店是一個人群集中之地,反映著形形色色的人,但重要的是長衫和短衣的區(qū)別,昭示著這是一個階級分層的封建社會。而“掌柜是一副兇臉孔,主顧也沒有好聲氣”也凸顯出這個社會的薄涼。(2)“笑”是貫穿文中始末的一個關(guān)鍵詞,首先從“只有孔乙己到店,才可以笑幾聲”的基調(diào)開始,孔乙己便已然注定是眾人的笑料;果然,辯別盜竊,“引得眾人都哄笑起來”;質(zhì)疑他是讀書人,“眾人也都哄笑起來”;給孩子們吃茴香豆,“孩子都在笑聲里走散了”;他最后一次出現(xiàn),也是“在旁人的說笑聲中,坐著用這手慢慢走去了”。然而,這個“笑”字在文中只是“輕松活潑”的假象,它是森然的,沉重的?!靶Α崩锩姹憩F(xiàn)的是人與人之間的冷漠,是世態(tài)人情的薄涼。而也是從這“笑”中,我們感受到了作者寫在其中的怒,對社會于苦人的薄涼的控訴。
(5)這首詩表達了什么感情?請簡要分析。明確:這首詩飽含沉痛悲涼,既嘆國運又嘆自身,把家國之恨、艱危困厄渲染到極致。最后一句由悲而壯、由郁而揚,慷慨激昂、擲地有聲,以磅礴的氣勢、高亢的語調(diào)顯示了詩人的民族氣節(jié)和舍生取義的生死觀。目標導學三:《山坡羊·潼關(guān)懷古》1.了解作者和創(chuàng)作背景及詩歌體裁張養(yǎng)浩(1270—1329),字希孟,號云莊,山東濟南人,元代文學家。他詩、文兼擅,而以散曲著稱。張養(yǎng)浩為官清廉,愛民如子。天歷二年(1329年),因關(guān)中旱災(zāi),被任命為陜西行臺中丞以賑災(zāi)民。《山坡羊·潼關(guān)懷古》便寫于應(yīng)召往關(guān)中的途中。散曲:到了元代,出現(xiàn)新興的體裁——曲。曲大致分為兩種,一是劇曲,一是散曲。散曲沒有動作、說白,包括套數(shù)和小令兩種基本形式。套數(shù)由若干曲子組成,小令以一支曲子為獨立單位?!短靸羯场贰渡狡卵颉范际怯袠祟}的小令。本篇“山坡羊”是小令的曲牌名,“潼關(guān)懷古”是標題。