一、研讀課文,1. 體會作者一家對三只貓的不同感情以及貓亡失后作者的感情,找出文中具體表達的句子。第一只貓:“三妹常常取了一條紅帶,或一根繩子,在它面前來回地托搖著,它便撲過來搶,又撲過去搶。我坐在藤椅上看著他們,可以微笑著消耗過一兩個小時的光陰,那時太陽光暖暖的照著,心上感著生命的新鮮與快樂。”“我心里感著一縷的酸辛,可憐這兩月來相伴的小侶!”第二只貓:“我們都很為它提心吊膽,一天都要‘小貓呢?小貓呢?’查問個好幾次。”“三妹常指它笑著罵道:你這小貓呀,要被乞丐捉去后才不會亂跑呢!”“飯后的娛樂,是看它在爬樹?!薄拔乙矏澣坏模瑧嵑薜?,在詛罵著那個不知名的奪去我們所愛的東西的人?!薄白源耍壹液镁貌火B(yǎng)貓。”第三只貓:“但大家都不大喜歡它,它不活潑,也不像別的小貓喜歡頑游,好像是具有天生的憂郁性似的,連三妹那樣愛貓的,對于它也不加注意?!薄斑^了幾個月,它在我家仍是一只若有若無的動物。”“三妹有時也逗著它玩,但沒有對于前幾只小貓那樣感興趣?!薄按蠹叶既フ疫@可厭的貓,想給它一頓懲戒?!薄白源?,我家永不養(yǎng)貓。”第一只貓“很活潑”,“我看著三妹逗貓玩的融副泄泄的生活情景,感著生命的新鮮與快樂”,當貓無故病死后“可憐這兩月來相伴的小侶”并為之“酸辛”;當?shù)诙弧案腥?,更活潑”的貓在周圍鄰居冷漠的觀望中被那些“過路人”捉走后就“悵然”、“憤恨”、“詛罵”,在這段生活經(jīng)歷中展示的“我的人性”充滿愛心,表現(xiàn)得十分寬容、溫馨、善良和光明。然而在“芙蓉鳥事件”發(fā)生后的“我”,不僅只憑主觀猜測“妄下斷語”,面對貓這個弱小、可憐的動物怒氣沖天“拿木棒追打”、“心里還憤的,以為懲戒的還沒有快意”,人在動物面前恃強凌弱,則充分暴露了人性中兇惡、冷酷、殘暴和陰暗的一面。不過,當“我”明白這只丑貓并非是罪魁禍首后,良心受到了譴責。2. 說說為何“我”對第三只貓的死比前兩只貓的亡失“更難過得多”?第二只貓丟失后,作者寫道:“自此,我家好久不養(yǎng)貓?!钡谌回埶篮螅髡哂謱懙溃骸白源?,我家永不養(yǎng)貓?!痹囍?lián)系課文中的描寫,體會這兩句話中包含的思想感情有什么不同?因為第三只貓的死責任在“我”。我們的主觀臆斷,斷定鳥是它咬死的,暴怒之下“我”用木棒打它,它受到冤苦無處辯訴,最后死在鄰家屋檐上?!拔摇闭J為是“我”把它害死的,而且這個過失是無法補救的。這句話在內容上是對全文的總結。“我”目睹了前兩只貓的不幸后,又親自制造了第三只貓的悲劇,深感負疚,為了不再看到這樣的悲劇重演下去,“自此,我家永不養(yǎng)貓”這句話與文章的開頭遙相呼應,在結構上形成了首尾呼應的特點。
一個不透明的袋子中裝有5個黑球和3個白球,這些球的大小、質地完全相同,隨機從袋子中摸出4個球,則下列事件是必然事件的是( )A.摸出的4個球中至少有一個是白球B.摸出的4個球中至少有一個是黑球C.摸出的4個球中至少有兩個是黑球D.摸出的4個球中至少有兩個是白球解析:∵袋子中只有3個白球,而有5個黑球,∴摸出的4個球可能都是黑球,因此選項A是不確定事件;摸出的4個球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪種情況,至少有一個球是黑球,∴選項B是必然事件;摸出的4個球可能為1黑3白,∴選項C是不確定事件;摸出的4個球可能都是黑球或1白3黑,∴選項D是不確定事件.故選B.方法總結:事件類型的判斷首先要判斷該事件發(fā)生與否是不是確定的.若是確定的,再判斷其是必然發(fā)生的(必然事件),還是必然不發(fā)生的(不可能事件).若是不確定的,則該事件是不確定事件.
解析:(1)根據(jù)表中信息,用優(yōu)等品頻數(shù)m除以抽取的籃球數(shù)n即可;(2)根據(jù)表中數(shù)據(jù),優(yōu)等品頻率為0.94,0.95,0.93,0.94,0.94,穩(wěn)定在0.94左右,即可估計這批籃球優(yōu)等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)這批籃球優(yōu)等品的概率估計值是0.94.三、板書設計1.頻率及其穩(wěn)定性:在大量重復試驗的情況下,事件的頻率會呈現(xiàn)穩(wěn)定性,即頻率會在一個常數(shù)附近擺動.隨著試驗次數(shù)的增加,擺動的幅度有越來越小的趨勢.2.用頻率估計概率:一般地,在大量重復實驗下,隨機事件A發(fā)生的頻率會穩(wěn)定到某一個常數(shù)p,于是,我們用p這個常數(shù)表示隨機事件A發(fā)生的概率,即P(A)=p.教學過程中,學生通過對比頻率與概率的區(qū)別,體會到兩者間的聯(lián)系,從而運用其解決實際生活中遇到的問題,使學生感受到數(shù)學與生活的緊密聯(lián)系
解析:平行線中的拐點問題,通常需過拐點作平行線.解:(1)∠AED=∠BAE+∠CDE.理由如下:過點E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法總結:無論平行線中的何種問題,都可轉化到基本模型中去解決,把復雜的問題分解到簡單模型中,問題便迎刃而解.三、板書設計平行線的性質:性質1:兩條平行線被第三條直線所截,同位角相等;性質2:兩條平行線被第三條直線所截,內錯角相等;性質3:兩條平行線被第三條直線所截,同旁內角互補.平行線的性質是幾何證明的基礎,教學中注意基本的推理格式的書寫,培養(yǎng)學生的邏輯思維能力,鼓勵學生勇于嘗試.在課堂上,力求體現(xiàn)學生的主體地位,把課堂交給學生,讓學生在動口、動手、動腦中學數(shù)學
解析:橫軸表示時間,縱軸表示溫度.溫度最高應找到圖象的最高點所對應的x值,即15時,A對;溫度最低應找到圖象的最低點所對應的x值,即3時,B對;這天最高溫度與最低溫度的差應讓前面的兩個y值相減,即38-22=16(℃),C錯;從圖象看出,這天0~3時,15~24時溫度在下降,D對.故選C.方法總結:認真觀察圖象,弄清楚時間是自變量,溫度是因變量,然后由圖象上的點確定自變量及因變量的對應值.三、板書設計1.用曲線型圖象表示變量間關系2.從曲線型圖象中獲取變量信息圖象法能直觀形象地表示因變量隨自變量變化的變化趨勢,可通過圖象來研究變量的某些性質,這也是數(shù)形結合的優(yōu)點,但是它也存在感性觀察不夠準確,畫面局限性大的缺點.教學中讓學生自己歸納總結,回顧反思,將知識點串連起來,完成對該部分內容的完整認識和意義建構.這對學生在實際情境中根據(jù)不同需要選擇恰當?shù)姆椒ū硎咀兞块g的關系,發(fā)展與深化思維能力是大有裨益的
解析:(1)根據(jù)圖象的縱坐標,可得比賽的路程.根據(jù)圖象的橫坐標,可得比賽的結果;(2)根據(jù)乙加速后行駛的路程除以加速后的時間,可得答案.解:(1)由縱坐標看出,這次龍舟賽的全程是1000米;由橫坐標看出,乙隊先到達終點;(2)由圖象看出,相遇是在乙加速后,加速后的路程是1000-400=600(米),加速后用的時間是3.8-2.2=1.6(分鐘),乙與甲相遇時乙的速度600÷1.6=375(米/分鐘).方法總結:解決雙圖象問題時,正確識別圖象,弄清楚兩圖象所代表的意義,從中挖掘有用的信息,明確實際意義.三、板書設計1.用折線型圖象表示變量間關系2.根據(jù)折線型圖象獲取信息解決問題經(jīng)歷一般規(guī)律的探索過程,培養(yǎng)學生的抽象思維能力,經(jīng)歷從實際問題中得到關系式這一過程,提升學生的數(shù)學應用能力,使學生在探索過程中體驗成功的喜悅,樹立學習的自信心.體驗生活中數(shù)學的應用價值,感受數(shù)學與人類生活的密切聯(lián)系,激發(fā)學生學數(shù)學、用數(shù)學的興趣
方法總結:作平移圖形時,找關鍵點的對應點是關鍵的一步.平移作圖的一般步驟為:①確定平移的方向和距離,先確定一組對應點;②確定圖形中的關鍵點;③利用第一組對應點和平移的性質確定圖中所有關鍵點的對應點;④按原圖形順序依次連接對應點,所得到的圖形即為平移后的圖形.三、板書設計1.平移的定義在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移.2.平移的性質一個圖形和它經(jīng)過平移所得的圖形中,對應點所連的線段平行(或在一條直線上)且相等,對應線段平行(或在一條直線上)且相等,對應角相等.3.簡單的平移作圖教學過程中,強調學生自主探索和合作交流,學生經(jīng)歷將實際問題抽象成圖形問題,培養(yǎng)學生的邏輯思維能力和空間想象能力,使得學生能將所學知識靈活運用到生活中.
解析:整個陰影部分比較復雜和分散,像此類問題通常使用割補法來計算.連接BD、AC,由正方形的對稱性可知,AC與BD必交于點O,正好把左下角的陰影部分分成(Ⅰ)與(Ⅱ)兩部分(如圖②),把陰影部分(Ⅰ)繞點O逆時針旋轉90°至陰影部分①處,把陰影部分(Ⅱ)繞點O順時針旋轉90°至陰影部分②處,使整個陰影部分割補成半個正方形.解:如圖②,把陰影部分(Ⅰ)繞點O逆時針旋轉90°至陰影部分①處,把陰影部分(Ⅱ)繞點O順時針旋轉90°至陰影部分②處,使原陰影部分變?yōu)槿鐖D②的陰影部分,即正方形的一半,故陰影部分面積為12×10×10=50(cm2).方法總結:本題是利用旋轉的特征:旋轉前、后圖形的形狀和大小不變,把圖形利用割補法補全為一個面積可以計算的規(guī)則圖形.三、板書設計1.簡單的旋轉作圖2.旋轉圖形的應用教學過程中,強調學生自主探索和合作交流,經(jīng)歷觀察、歸納和動手操作,利用旋轉的性質作圖.
(3)若要滿足結論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應是60°,然后結合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設存在點P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結:由于存在性問題的結論有兩種可能,所以具有開放的特征,在假設存在性以后進行的推理或計算.一般思路是:假設存在——推理論證——得出結論.若能導出合理的結果,就做出“存在”的判斷,若導出矛盾,就做出“不存在”的判斷.
解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結:注意運用平面內兩點之間的距離公式,設平面內任意兩點的坐標分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關系的實際應用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.
我們知道圓是一個旋轉對稱圖形,無論繞圓心旋轉多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點O逆時針旋轉某個角度,畫出旋轉之后的圖形,比較前后兩個圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點:圓心角、弧、弦之間的關系【類型一】 利用圓心角、弧、弦之間的關系證明線段相等如圖,M為⊙O上一點,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質,得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結:圓心角、弧、弦之間相等關系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質.
解析:根據(jù)“全等三角形的對應角相等”,可知∠EAD=∠CAB,故∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,即∠CAB=55°.然后在△ACB中利用三角形內角和定理來求∠ACB的度數(shù).解:∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°.方法總結:本題將三角形內角和與全等三角形的性質綜合考查,解答問題時要將所求的角與已知角通過全等及三角形內角之間的關系聯(lián)系起來.三、板書設計1.全等形與全等三角形的概念:能夠完全重合的圖形叫做全等形;能夠完全重合的三角形叫做全等三角形.2.全等三角形的性質:全等三角形的對應角、對應線段相等.首先展示全等形的圖片,激發(fā)學生興趣,從圖中總結全等形和全等三角形的概念.最后總結全等三角形的性質,通過練習來理解全等三角形的性質并滲透符號語言推理.通過實例熟悉運用全等三角形的性質解決一些簡單的實際問題
方法總結:判斷軸對稱的條數(shù),仍然是根據(jù)定義進行判斷,判斷軸對稱圖形的關鍵是尋找對稱軸,注意不要遺漏.探究點二:兩個圖形成軸對稱如圖所示,哪一組的右邊圖形與左邊圖形成軸對稱?解析:根據(jù)軸對稱的意義,經(jīng)過翻折,看兩個圖形能否完全重合,若能重合,則兩個圖形成軸對稱.解:(4)(5)(6).方法總結:動手操作或結合軸對稱的概念展開想象,在腦海中嘗試完成一個動態(tài)的折疊過程,從而得到結論.三、板書設計1.軸對稱圖形的定義2.對稱軸3.兩個圖形成軸對稱這節(jié)課充分利用多媒體教學,給學生以直觀指導,主動向學生質疑,促使學生思考與發(fā)現(xiàn),形成認識,獨立獲取知識和技能.另外,借助多媒體教學給學生創(chuàng)設寬松的學習氛圍,使學生在學習中始終保持興奮、愉悅、渴求思索的心理狀態(tài),有利于學生主體性的發(fā)揮和創(chuàng)新能力的培養(yǎng)
A.20x-55≥350 B.20x+55≥350C.20x-55≤350 D.20x+55≤350解析:此題中的不等關系:現(xiàn)在已存有55元,計劃從現(xiàn)在起以后每個月節(jié)省20元.若此學生平板電腦至少需要350元.列出不等式20x+55≥350.故選B.方法總結:用不等式表示數(shù)量關系時,要找準題中表示不等關系的兩個量,并用代數(shù)式表示;正確理解題中的關鍵詞,如負數(shù)、非負數(shù)、正數(shù)、大于、不大于、小于、不小于、不足、不超過、至少、至多等的含義.三、板書設計1.不等式的概念2.列不等式(1)找準題目中不等關系的兩個量,并且用代數(shù)式表示;(2)正確理解題目中的關鍵詞語的確切含義;(3)用與題意符合的不等號將表示不等關系的兩個量的代數(shù)式連接起來;(4)要正確理解常見不等式基本語言的含義.本節(jié)課通過實際問題引入不等式,并用不等式表示數(shù)量關系.要注意常用的關鍵詞的含義:負數(shù)、非負數(shù)、正數(shù)、大于、不大于、小于、不小于、不足、不超過,這些關鍵詞中如果含有“不”“非”等文字,一般應包括“=”,這也是學生容易出錯的地方.
解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;(2)OE=OF,理由如下:在△AOC和△AOD中,∵AC=AD,OC=OD,AO=AO,∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.方法總結:本題是線段垂直平分線的性質和角平分線的性質的綜合,掌握它們的適用條件和表示方法是解題的關鍵.三、板書設計1.角平分線的性質定理角平分線上的點到這個角的兩邊的距離相等.2.角平分線的判定定理在一個角的內部,到角的兩邊距離相等的點在這個角的平分線上.本節(jié)課由于采用了動手操作以及討論交流等教學方法,從而有效地增強了學生對角以及角平分線的性質的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生在性質的運用上還存在問題,需要在今后的教學與作業(yè)中進一步的加強鞏固和訓練.
探究點三:作中心對稱圖形如圖,網(wǎng)格中有一個四邊形和兩個三角形.(1)請你畫出三個圖形關于點O的中心對稱圖形;(2)將(1)中畫出的圖形與原圖形看成一個整體圖形,請寫出這個整體圖形對稱軸的條數(shù);這個整體圖形至少旋轉多少度能與自身重合?解:(1)如圖所示;(2)這個整體圖形的對稱軸有4條;此圖形最少旋轉90°能與自身重合.三、板書設計1.中心對稱如果把一個圖形繞著某一點旋轉180°,它能夠與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱.2.中心對稱圖形把一個圖形繞著某一點旋轉180°,如果旋轉后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形.教學過程中,強調學生自主探索和合作交流,結合圖形,多觀察,多歸納,體會識別中心對稱圖形的方法,理解中心對稱圖形的特征.
我們在湖邊走著,在不高的山上走著。四周的風物秀雋異常。滿盈盈的湖水一直溢拍到腳邊,卻又溫柔地退回去了,像慈母撫拍著將睡未睡的嬰兒似的,它輕輕地撫拍著石岸。水里的碎瓷片清晰可見。小小的魚兒,還有頑健的小蝦兒,都在眼前游來蹦去。登上了山巔,可望見更遠的太湖?!嵳耔I《石湖》(生根據(jù)師展示的原文,參考、揣摩名家筆下抒情方式的運用,體會抒情描寫中以情動人的魅力)2.寫一段話,抒發(fā)某種情感,如幸福、喜悅、痛苦、憂傷、渴望等。200字左右。提示:(1)可以描寫場面、事物,也可以敘述故事;(2)情感的抒發(fā)要有內容,有憑借;(3)根據(jù)內容特點和表達需要,選擇合適的抒情方式。(生自由習作后,小組內互評、修改)師小結:情貴在真,要注意抒發(fā)自己的真情實感。朱光潛曾說過:“作者自己如果沒有感動,就絕對不能使讀者感動?!痹趯懽髦校楦械氖惆l(fā)要自然,要水到渠成。
4.組織材料師:一篇游記作品,既要有“靈魂”“血肉”,還得有“筋骨”——材料安排。請大家運用我們上節(jié)課學習的方法來組織材料。方法:(1)按照自己的游蹤或獨特體驗,安排寫作順序。(2)能突出參觀場所特征的要詳寫,其余的略寫或不寫。(3)豐富文章內容:適當加入敘事,引入一些典故、傳說、史料、評價或詩文名句。示例:(1)寫作順序:以作者的參觀路線為線索。(2)詳略安排:詳寫魯迅先生北京故居的工作室兼臥室,以突出魯迅簡樸、惜時的品質和忘我工作的精神品質;詳寫陳列大廳是為了贊揚先生的民族精神。其余的略寫。(3)引入內容:引用古詩句“望崦嵫而勿迫,恐鵜之先鳴”,表現(xiàn)先生惜時的品質。(生交流,師點評)預設 (1)寫作順序:一樓的青銅器—二樓的陶器—三樓的古代畫作。
師小結:《投訴母親》中,“我”想讓母親辭職享清福,盡人子之孝心。沒料到通往目標的路上障礙重重,解決一個障礙,又有一個新的障礙橫在眼前,就這樣一個個障礙將故事的矛盾沖突推向高潮。從讓母親辭職到放棄計劃,順從母親,讓故事有了戲劇性的收尾。這是運用了巧設障礙法讓情節(jié)跌宕起伏?!跺e誤的手套》中,母親說“給孩子買副手套”,本意是讓父親給小外孫買手套,父親卻給女兒買了副手套,作者巧用語言的模糊性,使故事一波三折、情真意切。這是運用了巧設誤會法讓情節(jié)跌宕起伏。技法3:用巧設障礙法、巧設誤會法寫“情節(jié)曲折的故事”。4.歸納整合,明確技法師:共賞“好故事”,我們發(fā)現(xiàn)了三個技法。技法1:用“以小見大”的手法寫“主題深刻的故事”。技法2:用對比手法寫“人物鮮明的故事”。(1)通過人物在不同情境中的對比來突出人物性格特點。(2)通過人物之間的差異對比來突出人物特征。技法3:用巧設障礙法、巧設誤會法寫“情節(jié)曲折的故事”。
3.教師小結(1)仿寫點分析。要認真分析、研究片段中的精彩之處,力求準確把握仿文的“外形”和“神韻”。 (2)仿寫內容選擇。選擇自己熟悉的、有情感體驗的內容,切不可為了“仿”而機械模仿甚至抄襲。(3)變通與創(chuàng)新。 分析名家名作的語言特點、寫法規(guī)律,以“仿寫”為階梯、橋梁,達到寫作的新高度、新領域?!驹O計意圖】學生在閱讀教學和句式仿寫訓練中對修辭手法、描寫手法和表達方式等知識接觸較多,如《社戲》教學中對心理描寫手法的分析,《安塞腰鼓》課后布置的修辭手法的仿寫訓練,學生對此已有親和感。本環(huán)節(jié)的主要目的在于讓學生在實踐中對仿寫點的分析、仿寫內容的選擇、仿寫的變通與創(chuàng)新產(chǎn)生切身的體悟。三、總結存儲1.課堂小結學會根據(jù)需要恰當選擇具體的、合理的仿寫點,達到以“他山之石”來“攻玉”,“假名家之手”寫“我心”的目的,是仿寫的真正要義。2.實踐演練完成課本P24“寫作實踐”第三題。