解析:①以O(shè)為圓心,任意長為半徑作弧交OA于D,交OB于C;②以O(shè)′為圓心,以同樣長(OC長)為半徑作弧,交O′B′于C′;③以C′為圓心,CD長為半徑作弧交前弧于D′;④過D′作射線O′A′,∠A′O′B′為所求.解:如下圖所示.【類型三】 利用尺規(guī)作角的和或差已知∠AOB,用尺規(guī)作圖法作∠A′O′B′,使∠A′O′B′=2∠AOB.解析:先作一個(gè)角等于∠AOB,再以這個(gè)角的一邊為邊在其外部作一個(gè)角等于∠AOB,那么圖中最大的角就是所求的角.解:作法:①作∠DO′B′=∠AOB;②在∠DO′B′的外部作∠A′O′D=∠AOB,∠A′O′B′就是所求的角(如下圖).三、板書設(shè)計(jì)1.尺規(guī)作圖2.用尺規(guī)作角本節(jié)課學(xué)習(xí)了有關(guān)尺規(guī)作圖的相關(guān)知識(shí),課堂教學(xué)內(nèi)容以學(xué)生動(dòng)手操作為主,在學(xué)生動(dòng)手操作的過程中要鼓勵(lì)學(xué)生大膽動(dòng)手,培養(yǎng)學(xué)生的動(dòng)手能力和書面語言表達(dá)能力
解析:(1)根據(jù)表中信息,用優(yōu)等品頻數(shù)m除以抽取的籃球數(shù)n即可;(2)根據(jù)表中數(shù)據(jù),優(yōu)等品頻率為0.94,0.95,0.93,0.94,0.94,穩(wěn)定在0.94左右,即可估計(jì)這批籃球優(yōu)等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)這批籃球優(yōu)等品的概率估計(jì)值是0.94.三、板書設(shè)計(jì)1.頻率及其穩(wěn)定性:在大量重復(fù)試驗(yàn)的情況下,事件的頻率會(huì)呈現(xiàn)穩(wěn)定性,即頻率會(huì)在一個(gè)常數(shù)附近擺動(dòng).隨著試驗(yàn)次數(shù)的增加,擺動(dòng)的幅度有越來越小的趨勢.2.用頻率估計(jì)概率:一般地,在大量重復(fù)實(shí)驗(yàn)下,隨機(jī)事件A發(fā)生的頻率會(huì)穩(wěn)定到某一個(gè)常數(shù)p,于是,我們用p這個(gè)常數(shù)表示隨機(jī)事件A發(fā)生的概率,即P(A)=p.教學(xué)過程中,學(xué)生通過對(duì)比頻率與概率的區(qū)別,體會(huì)到兩者間的聯(lián)系,從而運(yùn)用其解決實(shí)際生活中遇到的問題,使學(xué)生感受到數(shù)學(xué)與生活的緊密聯(lián)系
解析:根據(jù)“全等三角形的對(duì)應(yīng)角相等”,可知∠EAD=∠CAB,故∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,即∠CAB=55°.然后在△ACB中利用三角形內(nèi)角和定理來求∠ACB的度數(shù).解:∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°.方法總結(jié):本題將三角形內(nèi)角和與全等三角形的性質(zhì)綜合考查,解答問題時(shí)要將所求的角與已知角通過全等及三角形內(nèi)角之間的關(guān)系聯(lián)系起來.三、板書設(shè)計(jì)1.全等形與全等三角形的概念:能夠完全重合的圖形叫做全等形;能夠完全重合的三角形叫做全等三角形.2.全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)角、對(duì)應(yīng)線段相等.首先展示全等形的圖片,激發(fā)學(xué)生興趣,從圖中總結(jié)全等形和全等三角形的概念.最后總結(jié)全等三角形的性質(zhì),通過練習(xí)來理解全等三角形的性質(zhì)并滲透符號(hào)語言推理.通過實(shí)例熟悉運(yùn)用全等三角形的性質(zhì)解決一些簡單的實(shí)際問題
解析:(1)根據(jù)圖象的縱坐標(biāo),可得比賽的路程.根據(jù)圖象的橫坐標(biāo),可得比賽的結(jié)果;(2)根據(jù)乙加速后行駛的路程除以加速后的時(shí)間,可得答案.解:(1)由縱坐標(biāo)看出,這次龍舟賽的全程是1000米;由橫坐標(biāo)看出,乙隊(duì)先到達(dá)終點(diǎn);(2)由圖象看出,相遇是在乙加速后,加速后的路程是1000-400=600(米),加速后用的時(shí)間是3.8-2.2=1.6(分鐘),乙與甲相遇時(shí)乙的速度600÷1.6=375(米/分鐘).方法總結(jié):解決雙圖象問題時(shí),正確識(shí)別圖象,弄清楚兩圖象所代表的意義,從中挖掘有用的信息,明確實(shí)際意義.三、板書設(shè)計(jì)1.用折線型圖象表示變量間關(guān)系2.根據(jù)折線型圖象獲取信息解決問題經(jīng)歷一般規(guī)律的探索過程,培養(yǎng)學(xué)生的抽象思維能力,經(jīng)歷從實(shí)際問題中得到關(guān)系式這一過程,提升學(xué)生的數(shù)學(xué)應(yīng)用能力,使學(xué)生在探索過程中體驗(yàn)成功的喜悅,樹立學(xué)習(xí)的自信心.體驗(yàn)生活中數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣
方法總結(jié):判斷軸對(duì)稱的條數(shù),仍然是根據(jù)定義進(jìn)行判斷,判斷軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,注意不要遺漏.探究點(diǎn)二:兩個(gè)圖形成軸對(duì)稱如圖所示,哪一組的右邊圖形與左邊圖形成軸對(duì)稱?解析:根據(jù)軸對(duì)稱的意義,經(jīng)過翻折,看兩個(gè)圖形能否完全重合,若能重合,則兩個(gè)圖形成軸對(duì)稱.解:(4)(5)(6).方法總結(jié):動(dòng)手操作或結(jié)合軸對(duì)稱的概念展開想象,在腦海中嘗試完成一個(gè)動(dòng)態(tài)的折疊過程,從而得到結(jié)論.三、板書設(shè)計(jì)1.軸對(duì)稱圖形的定義2.對(duì)稱軸3.兩個(gè)圖形成軸對(duì)稱這節(jié)課充分利用多媒體教學(xué),給學(xué)生以直觀指導(dǎo),主動(dòng)向?qū)W生質(zhì)疑,促使學(xué)生思考與發(fā)現(xiàn),形成認(rèn)識(shí),獨(dú)立獲取知識(shí)和技能.另外,借助多媒體教學(xué)給學(xué)生創(chuàng)設(shè)寬松的學(xué)習(xí)氛圍,使學(xué)生在學(xué)習(xí)中始終保持興奮、愉悅、渴求思索的心理狀態(tài),有利于學(xué)生主體性的發(fā)揮和創(chuàng)新能力的培養(yǎng)
解:(1)設(shè)x分鐘后兩人第一次相遇,由題意,得360x-240x=400.解得x=103.(103×360+103×240)÷400=5(圈).答:兩人一共跑了5圈.(2)設(shè)x分鐘后兩人第一次相遇,由題意,得360x+240x=400.解得x=23(分鐘)=40(秒).答:40秒后兩人第一次相遇.方法總結(jié):環(huán)形問題中的相等關(guān)系:兩個(gè)人同地背向而行:相遇問題(首次相遇),甲的行程+乙的行程=一圈周長;兩個(gè)人同地同向而行:追及問題(首次追上),甲的行程-乙的行程=一圈周長.三、板書設(shè)計(jì)追趕小明→行程問題→相遇問題追及問題環(huán)形問題教學(xué)過程中,通過對(duì)開放性問題的探討與交流,體驗(yàn)生活中數(shù)學(xué)的應(yīng)用與價(jià)值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)、團(tuán)隊(duì)精神和克服困難的勇氣.
A、B兩碼頭相距140km,一艘輪船在其間航行,順?biāo)叫杏昧?h,逆水航行用了10h,求這艘輪船在靜水中的速度和水流速度.解析:設(shè)這艘輪船在靜水中的速度為xkm/h,水流速度為ykm/h,列表如下,路程 速度 時(shí)間順流 140km (x+y)km/h 7h逆流 140km (x-y)km/h 10h解:設(shè)這艘輪船在靜水中的速度為xkm/h,水流速度為ykm/h.由題意,得7(x+y)=140,10(x-y)=140.解得x=17,y=3.答:這艘輪船在靜水中的速度為17km/h,水流速度為3km/h.方法總結(jié):本題關(guān)鍵是找到各速度之間的關(guān)系,順?biāo)伲届o速+水速,逆速=靜速-水速;再結(jié)合公式“路程=速度×時(shí)間”列方程組.三、板書設(shè)計(jì)“里程碑上的數(shù)”問題數(shù)字問題行程問題數(shù)學(xué)思想方法是數(shù)學(xué)學(xué)習(xí)的靈魂.教學(xué)中注意關(guān)注蘊(yùn)含其中的數(shù)學(xué)思想方法(如化歸方法),介紹化歸思想及其運(yùn)用,既可提高學(xué)生的學(xué)習(xí)興趣,開闊視野,同時(shí)也提高學(xué)生對(duì)數(shù)學(xué)思想的認(rèn)識(shí),提升解題能力.
故直線l2對(duì)應(yīng)的函數(shù)關(guān)系式為y=52x.故(-2,-5)可看成是二元一次方程組5x-2y=0,2x-y=1的解.(3)在平面直角坐標(biāo)系內(nèi)畫出直線l1,l2的圖象如圖,可知點(diǎn)A(0,-1),故S△APO=12×1×2=1.方法總結(jié):此題在待定系數(shù)法的應(yīng)用上有所創(chuàng)新,并且把一次函數(shù)的圖象和三角形面積巧妙地結(jié)合起來,既考查了基本知識(shí),又不局限于基本知識(shí).三、板書設(shè)計(jì)利用二元一次方程組確定一次函數(shù)表達(dá)式的一般步驟:1.用含字母的系數(shù)設(shè)出一次函數(shù)的表達(dá)式:y=kx+b(k≠0);2.將已知條件代入上述表達(dá)式中得k,b的二元一次方程組;3.解這個(gè)二元一次方程組得k,b的值,進(jìn)而得到一次函數(shù)的表達(dá)式.通過教學(xué),進(jìn)一步理解方程與函數(shù)的聯(lián)系,體會(huì)知識(shí)之間的普遍聯(lián)系和知識(shí)之間的相互轉(zhuǎn)化.通過對(duì)本節(jié)課的探究,培養(yǎng)學(xué)生的觀察能力、識(shí)圖能力以及語言表達(dá)能力.
因?yàn)閤3表示手機(jī)部數(shù),只能為正整數(shù),所以這種情況不合題意,應(yīng)舍去.綜上所述,商場共有兩種進(jìn)貨方案.方案1:購甲型號(hào)手機(jī)30部,乙型號(hào)手機(jī)10部;方案2:購甲型號(hào)手機(jī)20部,丙型號(hào)手機(jī)20部.(2)方案1獲利:120×30+80×10=4400(元);方案2獲利:120×20+120×20=4800(元).所以,第二種進(jìn)貨方案獲利最多.方法總結(jié):仔細(xì)讀題,找出相等關(guān)系.當(dāng)用含未知數(shù)的式子表示相等關(guān)系的兩邊時(shí),要注意不同型號(hào)的手機(jī)數(shù)量和單價(jià)要對(duì)應(yīng).三、板書設(shè)計(jì)增收節(jié)支問題分析解決列二元一次方程,組解決實(shí)際問題)增長率問題利潤問題利用圖表分析等量關(guān)系方案選擇通過問題的解決使學(xué)生進(jìn)一步認(rèn)識(shí)數(shù)學(xué)與現(xiàn)實(shí)世界的密切聯(lián)系,樂于接觸生活環(huán)境中的數(shù)學(xué)信息,愿意參與數(shù)學(xué)話題的研討,從中懂得數(shù)學(xué)的價(jià)值,逐步形成運(yùn)用數(shù)學(xué)的意識(shí);并且通過對(duì)問題的解決,培養(yǎng)學(xué)生合理優(yōu)化的經(jīng)濟(jì)意識(shí),增強(qiáng)他們的節(jié)約和有效合理利用資源的意識(shí).
探究點(diǎn)二:列分式方程某工廠生產(chǎn)一種零件,計(jì)劃在20天內(nèi)完成,若每天多生產(chǎn)4個(gè),則15天完成且還多生產(chǎn)10個(gè).設(shè)原計(jì)劃每天生產(chǎn)x個(gè),根據(jù)題意可列分式方程為()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:設(shè)原計(jì)劃每天生產(chǎn)x個(gè),則實(shí)際每天生產(chǎn)(x+4)個(gè),根據(jù)題意可得等量關(guān)系:(原計(jì)劃20天生產(chǎn)的零件個(gè)數(shù)+10個(gè))÷實(shí)際每天生產(chǎn)的零件個(gè)數(shù)=15天,根據(jù)等量關(guān)系列出方程即可.設(shè)原計(jì)劃每天生產(chǎn)x個(gè),則實(shí)際每天生產(chǎn)(x+4)個(gè),根據(jù)題意得20x+10x+4=15.故選A.方法總結(jié):此題主要考查了由實(shí)際問題抽象出分式方程,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程.三、板書設(shè)計(jì)1.分式方程的概念2.列分式方程本課時(shí)的教學(xué)以學(xué)生自主探究為主,通過參與學(xué)習(xí)的過程,讓學(xué)生感受知識(shí)的形成與應(yīng)用的價(jià)值,增強(qiáng)學(xué)習(xí)的自覺性,體驗(yàn)類比學(xué)習(xí)思想的重要性,然后結(jié)合生活實(shí)際,發(fā)現(xiàn)數(shù)學(xué)知識(shí)在生活中的廣泛應(yīng)用,感受數(shù)學(xué)之美.
∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直線AD垂直平分線段EF.方法總結(jié):當(dāng)一條直線上有兩點(diǎn)都在同一線段的垂直平分線上時(shí),這條直線就是該線段的垂直平分線,解題時(shí)常需利用此性質(zhì)進(jìn)行線段相等關(guān)系的轉(zhuǎn)化.三、板書設(shè)計(jì)1.線段的垂直平分線的性質(zhì)定理線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等.2.線段的垂直平分線的判定定理到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因此本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對(duì)線段垂直平分線性質(zhì)定理的逆定理理解不透徹,還需在今后的教學(xué)和作業(yè)中進(jìn)一步進(jìn)行鞏固和提高.
解:(1)設(shè)第一次購買的單價(jià)為x元,則第二次的單價(jià)為1.1x元,根據(jù)題意得14521.1x-1200x=20,解得x=6.經(jīng)檢驗(yàn),x=6是原方程的解.(2)第一次購買水果1200÷6=200(千克).第二次購買水果200+20=220(千克).第一次賺錢為200×(8-6)=400(元),第二次賺錢為100×(9-6.6)+120×(9×0.5-6.6)=-12(元).所以兩次共賺錢400-12=388(元).答:第一次水果的進(jìn)價(jià)為每千克6元;該老板兩次賣水果總體上是賺錢了,共賺了388元.方法總結(jié):本題具有一定的綜合性,應(yīng)該把問題分解成購買水果和賣水果兩部分分別考慮,掌握這次活動(dòng)的流程.三、板書設(shè)計(jì)列分式方程解應(yīng)用題的一般步驟是:第一步,審清題意;第二步,根據(jù)題意設(shè)未知數(shù);第三步,根據(jù)題目中的數(shù)量關(guān)系列出式子,并找準(zhǔn)等量關(guān)系,列出方程;第四步,解方程,并驗(yàn)根,還要看方程的解是否符合題意;最后作答.
【類型三】 分式方程無解,求字母的值若關(guān)于x的分式方程2x-2+mxx2-4=3x+2無解,求m的值.解析:先把分式方程化為整式方程,再分兩種情況討論求解:一元一次方程無解與分式方程有增根.解:方程兩邊都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①當(dāng)m-1=0時(shí),此方程無解,此時(shí)m=1;②方程有增根,則x=2或x=-2,當(dāng)x=2時(shí),代入(m-1)x=-10得(m-1)×2=-10,m=-4;當(dāng)x=-2時(shí),代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法總結(jié):分式方程無解與分式方程有增根所表達(dá)的意義是不一樣的.分式方程有增根僅僅針對(duì)使最簡公分母為0的數(shù),分式方程無解不但包括使最簡公分母為0的數(shù),而且還包括分式方程化為整式方程后,使整式方程無解的數(shù).三、板書設(shè)計(jì)1.分式方程的解法方程兩邊同乘以最簡公分母,化為整式方程求解,再檢驗(yàn).2.分式方程的增根(1)解分式方程為什么會(huì)產(chǎn)生增根;(2)分式方程檢驗(yàn)的方法.
證明:如圖,過點(diǎn)C作CF∥PD交AB于點(diǎn)F,則BPCP=BDDF,ADDF=AECE.∵AD=AE,∴DF=CE,∴BPCP=BDCE.方法總結(jié):證明四條線段成比例時(shí),如果圖形中有平行線,則可以直接應(yīng)用平行線分線段成比例的基本事實(shí)以及推論得到相關(guān)比例式.如果圖中沒有平行線,則需構(gòu)造輔助線創(chuàng)造平行條件,再應(yīng)用平行線分線段成比例的基本事實(shí)及其推論得到相關(guān)比例式.三、板書設(shè)計(jì)平行線分線段成比例基本事實(shí):兩條直線被一組平行線所截, 所得的對(duì)應(yīng)線段成比例推論:平行于三角形一邊的直線與其他 兩邊相交,截得的對(duì)應(yīng)線段成比例通過教學(xué),培養(yǎng)學(xué)生的觀察、分析、概括能力,了解特殊與一般的辯證關(guān)系.再次鍛煉類比的數(shù)學(xué)思想,能把一個(gè)復(fù)雜的圖形分成幾個(gè)基本圖形,通過應(yīng)用鍛煉識(shí)圖能力和推理論證能力.在探索過程中,積累數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),體驗(yàn)探索結(jié)論的方法和過程,發(fā)展學(xué)生的合情推理能力和有條理的說理表達(dá)能力.
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對(duì)角線分成4個(gè)等腰直角三角形,因此在正方形中解決問題時(shí)常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對(duì)角線BD上一點(diǎn)P,作PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時(shí)只需說明AP=CP,由正方形對(duì)角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對(duì)角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對(duì)角線,這樣可以使分散的條件集中.
∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線________________的四邊形是矩形;(2)對(duì)角線____________的平行四邊形是矩形;(3)對(duì)角線__________的平行四邊形是正方形;(4)對(duì)角線________________的矩形是正方形;(5)對(duì)角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線________________的四邊形是矩形;(2)對(duì)角線____________的平行四邊形是矩形;(3)對(duì)角線__________的平行四邊形是正方形;(4)對(duì)角線________________的矩形是正方形;(5)對(duì)角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
易錯(cuò)提醒:利用b2-4ac判斷一元二次方程根的情況時(shí),容易忽略二次項(xiàng)系數(shù)不能等于0這一條件,本題中容易誤選A.【類型三】 根的判別式與三角形的綜合應(yīng)用已知a,b,c分別是△ABC的三邊長,當(dāng)m>0時(shí),關(guān)于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有兩個(gè)相等的實(shí)數(shù)根,請(qǐng)判斷△ABC的形狀.解析:先將方程轉(zhuǎn)化為一般形式,再根據(jù)根的判別式確定a,b,c之間的關(guān)系,即可判定△ABC的形狀.解:將原方程轉(zhuǎn)化為一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有兩個(gè)相等的實(shí)數(shù)根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.
∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.三、板書設(shè)計(jì)用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步驟①化為一般形式②確定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判別式經(jīng)歷從用配方法解數(shù)字系數(shù)的一元二次方程到解字母系數(shù)的一元二次方程,探索求根公式,發(fā)展學(xué)生合情合理的推理能力,并認(rèn)識(shí)到配方法是理解求根公式的基礎(chǔ).通過對(duì)求根公式的推導(dǎo),認(rèn)識(shí)到一元二次方程的求根公式適用于所有的一元二次方程,操作簡單.體會(huì)數(shù)式通性,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性.提高學(xué)生的運(yùn)算能力,并養(yǎng)成良好的運(yùn)算習(xí)慣.
解:設(shè)需要剪去的小正方形邊長為xcm,則紙盒底面的長方形的長為(19-2x)cm,寬為(15-2x)cm.根據(jù)題意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<152).方法總結(jié):列方程最重要的是審題,只有理解題意,才能恰當(dāng)?shù)卦O(shè)出未知數(shù),準(zhǔn)確地找出已知量和未知量之間的等量關(guān)系,正確地列出方程.在列出方程后,還應(yīng)根據(jù)實(shí)際需求,注明自變量的取值范圍.三、板書設(shè)計(jì)一元二次方程概念:只含有一個(gè)未知數(shù)x的整式方 程,并且都可以化成ax2+bx+c =0(a,b,c為常數(shù),a≠0)的形式一般形式:ax2+bx+c=0(a,b,c為?! ?數(shù),a≠0),其中ax2,bx,c 分別稱為二次項(xiàng)、一次項(xiàng)和 常數(shù)項(xiàng),a,b分別稱為二次 項(xiàng)系數(shù)和一次項(xiàng)系數(shù)本課通過豐富的實(shí)例,讓學(xué)生觀察、歸納出一元二次方程的有關(guān)概念,并從中體會(huì)方程的模型思想.通過本節(jié)課的學(xué)習(xí),應(yīng)該讓學(xué)生進(jìn)一步體會(huì)一元二次方程也是刻畫現(xiàn)實(shí)世界的一個(gè)有效數(shù)學(xué)模型,初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辯證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。