方法總結(jié):本題結(jié)合三角形內(nèi)角和定理考查反證法,解此題關(guān)鍵要懂得反證法的意義及步驟.反證法的步驟是:(1)假設(shè)結(jié)論不成立;(2)從假設(shè)出發(fā)推出矛盾;(3)假設(shè)不成立,則結(jié)論成立.在假設(shè)結(jié)論不成立時(shí)要注意考慮結(jié)論的反面所有可能的情況.如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.三、板書(shū)設(shè)計(jì)1.等腰三角形的判定定理:有兩個(gè)角相等的三角形是等腰三角形(等角對(duì)等邊).2.反證法(1)假設(shè)結(jié)論不成立;(2)從假設(shè)出發(fā)推出矛盾;(3)假設(shè)不成立,則結(jié)論成立.解決幾何證明題時(shí),應(yīng)結(jié)合圖形,聯(lián)想我們已學(xué)過(guò)的定義、公理、定理等知識(shí),尋找結(jié)論成立所需要的條件.要特別注意的是,不要遺漏題目中的已知條件.解題時(shí)學(xué)會(huì)分析,可以采用執(zhí)果索因(從結(jié)論出發(fā),探尋結(jié)論成立所需的條件)的方法.
【類型二】 根據(jù)不等式的變形確定字母的取值范圍如果不等式(a+1)x<a+1可變形為x>1,那么a必須滿足________.解析:根據(jù)不等式的基本性質(zhì)可判斷a+1為負(fù)數(shù),即a+1<0,可得a<-1.方法總結(jié):只有當(dāng)不等式的兩邊都乘(或除以)一個(gè)負(fù)數(shù)時(shí),不等號(hào)的方向才改變.三、板書(shū)設(shè)計(jì)1.不等式的基本性質(zhì)性質(zhì)1:不等式的兩邊都加上(或減去)同一個(gè)整式,不等號(hào)的方向不變;性質(zhì)2:不等式的兩邊都乘(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變;性質(zhì)3:不等式的兩邊都乘(或除以)同一個(gè)負(fù)數(shù),不等號(hào)方向改變.2.把不等式化成“x>a”或“x<a”的形式“移項(xiàng)”依據(jù):不等式的基本性質(zhì)1;“將未知數(shù)系數(shù)化為1”的依據(jù):不等式的基本性質(zhì)2、3.本節(jié)課學(xué)習(xí)不等式的基本性質(zhì),在學(xué)習(xí)過(guò)程中,可與等式的基本性質(zhì)進(jìn)行類比,在運(yùn)用性質(zhì)進(jìn)行變形時(shí),要注意不等號(hào)的方向是否發(fā)生改變;課堂教學(xué)時(shí),鼓勵(lì)學(xué)生大膽質(zhì)疑,通過(guò)練習(xí)中易出現(xiàn)的錯(cuò)誤,引導(dǎo)學(xué)生歸納總結(jié),提升學(xué)生的自主探究能力.
方法總結(jié):解題的關(guān)鍵是由題意列出不等式求出這個(gè)少算的內(nèi)角的取值范圍.探究點(diǎn)二:多邊形的外角和定理【類型一】 已知各相等外角的度數(shù),求多邊形的邊數(shù)正多邊形的一個(gè)外角等于36°,則該多邊形是正()A.八邊形 B.九邊形C.十邊形 D.十一邊形解析:正多邊形的邊數(shù)為360°÷36°=10,則這個(gè)多邊形是正十邊形.故選C.方法總結(jié):如果已知正多邊形的一個(gè)外角,求邊數(shù)可直接利用外角和除以這個(gè)角即可.【類型二】 多邊形內(nèi)角和與外角和的綜合運(yùn)用一個(gè)多邊形的內(nèi)角和與外角和的和為540°,則它是()A.五邊形 B.四邊形C.三角形 D.不能確定解析:設(shè)這個(gè)多邊形的邊數(shù)為n,則依題意可得(n-2)×180°+360°=540°,解得n=3,∴這個(gè)多邊形是三角形.故選C.方法總結(jié):熟練掌握多邊形的內(nèi)角和定理及外角和定理,解題的關(guān)鍵是由已知等量關(guān)系列出方程從而解決問(wèn)題.
【類型二】 分式的約分約分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根據(jù)分式的基本性質(zhì)把公因式約去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法總結(jié):約分的步驟;(1)找公因式.當(dāng)分子、分母是多項(xiàng)式時(shí)應(yīng)先分解因式;(2)約去分子、分母的公因式.三、板書(shū)設(shè)計(jì)1.分式的基本性質(zhì):分式的分子與分母都乘以(或除以)同一個(gè)不為零的整式,分式的值不變.2.符號(hào)法則:分式的分子、分母及分式本身,任意改變其中兩個(gè)符號(hào),分式的值不變;若只改變其中一個(gè)符號(hào)或三個(gè)全變號(hào),則分式的值變成原分式值的相反數(shù).本節(jié)課的流程比較順暢,先探究分式的基本性質(zhì),然后順勢(shì)探究分式變號(hào)法則.在每個(gè)活動(dòng)中,都設(shè)計(jì)了具有啟發(fā)性的問(wèn)題,對(duì)各個(gè)知識(shí)點(diǎn)進(jìn)行分析、歸納總結(jié)、例題示范、方法指導(dǎo)和變式練習(xí).一步一步的來(lái)完成既定目標(biāo).整個(gè)學(xué)習(xí)過(guò)程輕松、愉快、和諧、高效.
解析:由分式有意義的條件得3x-1≠0,解得x≠13.則分式無(wú)意義的條件是x=13,故選C.方法總結(jié):分式無(wú)意義的條件是分母等于0.【類型三】 分式值為0的條件若使分式x2-1x+1的值為零,則x的值為()A.-1 B.1或-1C.1 D.1和-1解析:由題意得x2-1=0且x+1≠0,解得x=1,故選C.方法總結(jié):分式的值為零的條件:(1)分子為0;(2)分母不為0.這兩個(gè)條件缺一不可.三、板書(shū)設(shè)計(jì)1.分式的概念:一般地,如果A、B表示兩個(gè)整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有無(wú)意義的條件:當(dāng)B≠0時(shí),分式有意義;當(dāng)B=0時(shí),分式無(wú)意義.3.分式AB值為0的條件:當(dāng)A=0,B≠0時(shí),分式的值為0.本節(jié)采取的教學(xué)方法是引導(dǎo)學(xué)生獨(dú)立思考、小組合作,完成對(duì)分式概念及意義的自主探索.提出問(wèn)題讓學(xué)生解決,問(wèn)題由易到難,層層深入,既復(fù)習(xí)了舊知識(shí)又在類比過(guò)程中獲得了解決新知識(shí)的途徑.在這一環(huán)節(jié)提問(wèn)應(yīng)注意循序性,先易后難、由簡(jiǎn)到繁、層層遞進(jìn),臺(tái)階式的提問(wèn)使問(wèn)題解決水到渠成.
探究點(diǎn)二:列分式方程某工廠生產(chǎn)一種零件,計(jì)劃在20天內(nèi)完成,若每天多生產(chǎn)4個(gè),則15天完成且還多生產(chǎn)10個(gè).設(shè)原計(jì)劃每天生產(chǎn)x個(gè),根據(jù)題意可列分式方程為()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:設(shè)原計(jì)劃每天生產(chǎn)x個(gè),則實(shí)際每天生產(chǎn)(x+4)個(gè),根據(jù)題意可得等量關(guān)系:(原計(jì)劃20天生產(chǎn)的零件個(gè)數(shù)+10個(gè))÷實(shí)際每天生產(chǎn)的零件個(gè)數(shù)=15天,根據(jù)等量關(guān)系列出方程即可.設(shè)原計(jì)劃每天生產(chǎn)x個(gè),則實(shí)際每天生產(chǎn)(x+4)個(gè),根據(jù)題意得20x+10x+4=15.故選A.方法總結(jié):此題主要考查了由實(shí)際問(wèn)題抽象出分式方程,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程.三、板書(shū)設(shè)計(jì)1.分式方程的概念2.列分式方程本課時(shí)的教學(xué)以學(xué)生自主探究為主,通過(guò)參與學(xué)習(xí)的過(guò)程,讓學(xué)生感受知識(shí)的形成與應(yīng)用的價(jià)值,增強(qiáng)學(xué)習(xí)的自覺(jué)性,體驗(yàn)類比學(xué)習(xí)思想的重要性,然后結(jié)合生活實(shí)際,發(fā)現(xiàn)數(shù)學(xué)知識(shí)在生活中的廣泛應(yīng)用,感受數(shù)學(xué)之美.
【類型三】 分式方程無(wú)解,求字母的值若關(guān)于x的分式方程2x-2+mxx2-4=3x+2無(wú)解,求m的值.解析:先把分式方程化為整式方程,再分兩種情況討論求解:一元一次方程無(wú)解與分式方程有增根.解:方程兩邊都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①當(dāng)m-1=0時(shí),此方程無(wú)解,此時(shí)m=1;②方程有增根,則x=2或x=-2,當(dāng)x=2時(shí),代入(m-1)x=-10得(m-1)×2=-10,m=-4;當(dāng)x=-2時(shí),代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法總結(jié):分式方程無(wú)解與分式方程有增根所表達(dá)的意義是不一樣的.分式方程有增根僅僅針對(duì)使最簡(jiǎn)公分母為0的數(shù),分式方程無(wú)解不但包括使最簡(jiǎn)公分母為0的數(shù),而且還包括分式方程化為整式方程后,使整式方程無(wú)解的數(shù).三、板書(shū)設(shè)計(jì)1.分式方程的解法方程兩邊同乘以最簡(jiǎn)公分母,化為整式方程求解,再檢驗(yàn).2.分式方程的增根(1)解分式方程為什么會(huì)產(chǎn)生增根;(2)分式方程檢驗(yàn)的方法.
把解集在數(shù)軸上表示出來(lái),并將解集中的整數(shù)解寫(xiě)出來(lái).解析:分別計(jì)算出兩個(gè)不等式的解集,再根據(jù)大小小大中間找確定不等式組的解集,再找出解集范圍內(nèi)的整數(shù)即可.解:x+23<1 ①,2(1-x)≤5?、冢散俚脁<1,由②得x≥-32,∴不等式組的解集為-32≤x<1.則不等式組的整數(shù)解為-1,0.方法總結(jié):此題主要考查了一元一次不等式組的解法,解決此類問(wèn)題的關(guān)鍵在于正確解得不等式組或不等式的解集,然后再根據(jù)題目中對(duì)于解集的限制得到下一步所需要的條件,再根據(jù)得到的條件進(jìn)而求得不等式組的整數(shù)解.三、板書(shū)設(shè)計(jì)一元一次不等式組概念解法不等式組的解集利用數(shù)軸確定解集利用口訣確定解集解一元一次不等式組是建立在解一元一次不等式的基礎(chǔ)之上.解不等式組時(shí),先解每一個(gè)不等式,再確定各個(gè)不等式組的解集的公共部分.
∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直線AD垂直平分線段EF.方法總結(jié):當(dāng)一條直線上有兩點(diǎn)都在同一線段的垂直平分線上時(shí),這條直線就是該線段的垂直平分線,解題時(shí)常需利用此性質(zhì)進(jìn)行線段相等關(guān)系的轉(zhuǎn)化.三、板書(shū)設(shè)計(jì)1.線段的垂直平分線的性質(zhì)定理線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等.2.線段的垂直平分線的判定定理到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因此本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對(duì)線段垂直平分線性質(zhì)定理的逆定理理解不透徹,還需在今后的教學(xué)和作業(yè)中進(jìn)一步進(jìn)行鞏固和提高.
(3)∵AD=4,DE=1,∴AE=42+12=17.∵對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等且F是E的對(duì)應(yīng)點(diǎn),∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉(zhuǎn)的性質(zhì)的運(yùn)用如圖,點(diǎn)E是正方形ABCD內(nèi)一點(diǎn),連接AE、BE、CE,將△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書(shū)設(shè)計(jì)1.旋轉(zhuǎn)的概念將一個(gè)圖形繞一個(gè)頂點(diǎn)按照某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個(gè)圖形和它經(jīng)過(guò)旋轉(zhuǎn)所得的圖形中,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,任意一組對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對(duì)應(yīng)線段相等,對(duì)應(yīng)角相等.
方法總結(jié):已知解集求字母系數(shù)的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解題過(guò)程體現(xiàn)了方程思想.三、板書(shū)設(shè)計(jì)1.一元一次不等式的概念2.解一元一次不等式的基本步驟:(1)去分母;(2)去括號(hào);(3)移項(xiàng);(4)合并同類項(xiàng);(5)兩邊都除以未知數(shù)的系數(shù).本節(jié)課通過(guò)類比一元一次方程的解法得到一元一次不等式的解法,讓學(xué)生感受到解一元一次不等式與解一元一次方程只是在兩邊都除以未知數(shù)的系數(shù)這一步時(shí)有所不同.如果這個(gè)系數(shù)是正數(shù),不等號(hào)的方向不變;如果這個(gè)系數(shù)是負(fù)數(shù),不等號(hào)的方向改變.這也是這節(jié)課學(xué)生容易出錯(cuò)的地方.教學(xué)時(shí)要大膽放手,不要怕學(xué)生出錯(cuò),通過(guò)學(xué)生犯的錯(cuò)誤引起學(xué)生注意,理解產(chǎn)生錯(cuò)誤的原因,以便在以后的學(xué)習(xí)中避免出錯(cuò).
安裝及運(yùn)輸費(fèi)用為600x+800(12-x),根據(jù)題意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整數(shù),所以x=2,3,4.答:有三種方案:①購(gòu)買甲種設(shè)備2臺(tái),乙種設(shè)備10臺(tái);②購(gòu)買甲種設(shè)備3臺(tái),乙種設(shè)備9臺(tái);③購(gòu)買甲種設(shè)備4臺(tái),乙種設(shè)備8臺(tái).方法總結(jié):列不等式組解應(yīng)用題時(shí),一般只設(shè)一個(gè)未知數(shù),找出兩個(gè)或兩個(gè)以上的不等關(guān)系,相應(yīng)地列出兩個(gè)或兩個(gè)以上的不等式組成不等式組求解.在實(shí)際問(wèn)題中,大部分情況下應(yīng)求整數(shù)解.三、板書(shū)設(shè)計(jì)1.一元一次不等式組的解法2.一元一次不等式組的實(shí)際應(yīng)用利用一元一次不等式組解應(yīng)用題關(guān)鍵是找出所有可能表達(dá)題意的不等關(guān)系,再根據(jù)各個(gè)不等關(guān)系列成相應(yīng)的不等式,組成不等式組.在教學(xué)時(shí)要讓學(xué)生養(yǎng)成檢驗(yàn)的習(xí)慣,感受運(yùn)用數(shù)學(xué)知識(shí)解決問(wèn)題的過(guò)程,提高實(shí)際操作能力.
光的速度約為3×108米/秒,一顆人造地球衛(wèi)星的速度是8×103米/秒,則光的速度是這顆人造地球衛(wèi)星速度的多少倍?解析:要求光速是人造地球衛(wèi)星的速度的倍數(shù),用光速除以人造地球衛(wèi)星的速度,可轉(zhuǎn)化為單項(xiàng)式相除問(wèn)題.解:(3×108)÷(8×103)=(3÷8)·(108÷103)=3.75×104.答:光速是這顆人造地球衛(wèi)星速度的3.75×104倍.方法總結(jié):解整式除法的實(shí)際應(yīng)用題時(shí),應(yīng)分清何為除式,何為被除式,然后應(yīng)當(dāng)單項(xiàng)式除以單項(xiàng)式法則計(jì)算.三、板書(shū)設(shè)計(jì)1.單項(xiàng)式除以單項(xiàng)式的運(yùn)算法則:?jiǎn)雾?xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式;對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式.2.單項(xiàng)式除以單項(xiàng)式的應(yīng)用在教學(xué)過(guò)程中,通過(guò)生活中的情景導(dǎo)入,引導(dǎo)學(xué)生根據(jù)單項(xiàng)式乘以單項(xiàng)式的乘法運(yùn)算推導(dǎo)出其逆運(yùn)算的規(guī)律,在探究的過(guò)程中經(jīng)歷數(shù)學(xué)概念的生成過(guò)程,從而加深印象
解析:先求出長(zhǎng)方形的面積,再求出綠化的面積,兩者相減即可求出剩下的面積.解:長(zhǎng)方形的面積是xym2,綠化的面積是35x×34y=920xy(m2),則剩下的面積是xy-920xy=1120xy(m2).方法總結(jié):掌握長(zhǎng)方形的面積公式和單項(xiàng)式乘單項(xiàng)式法則是解題的關(guān)鍵.三、板書(shū)設(shè)計(jì)1.單項(xiàng)式乘以單項(xiàng)式的運(yùn)算法則:?jiǎn)雾?xiàng)式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對(duì)于只在一個(gè)單項(xiàng)式里面含有的字母,則連同它的指數(shù)作為積的一個(gè)因式.2.單項(xiàng)式乘以單項(xiàng)式的應(yīng)用本課時(shí)的重點(diǎn)是讓學(xué)生理解單項(xiàng)式的乘法法則并能熟練應(yīng)用.要求學(xué)生在乘法的運(yùn)算律以及冪的運(yùn)算律的基礎(chǔ)上進(jìn)行探究.教師在課堂上應(yīng)該處于引導(dǎo)位置,鼓勵(lì)學(xué)生“試一試”,學(xué)生通過(guò)動(dòng)手操作,能夠更為直接的理解和應(yīng)用該知識(shí)點(diǎn)
方法總結(jié):在等腰三角形有關(guān)計(jì)算或證明中,會(huì)遇到一些添加輔助線的問(wèn)題,其頂角平分線、底邊上的高、底邊上的中線是常見(jiàn)的輔助線.三、板書(shū)設(shè)計(jì)1.等腰三角形的性質(zhì):等腰三角形是軸對(duì)稱圖形;等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),它們所在的直線都是等腰三角形的對(duì)稱軸;等腰三角形的兩個(gè)底角相等.2.運(yùn)用等腰三角性質(zhì)解題的一般思想方法:方程思想、整體思想和轉(zhuǎn)化思想.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對(duì)等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進(jìn)一步鞏固和提高
解析:由于多邊形(三邊以上的)不具有穩(wěn)定性,將其轉(zhuǎn)化為三角形后木架的形狀就不變了.根據(jù)具體多邊形轉(zhuǎn)化為三角形的經(jīng)驗(yàn)及題中所加木條可找到一般規(guī)律.解:過(guò)n邊形的一個(gè)頂點(diǎn)可以作(n-3)條對(duì)角線,把多邊形分成(n-2)個(gè)三角形,所以,要使一個(gè)n邊形木架不變形,至少需要(n-3)根木條固定.方法總結(jié):將多邊形轉(zhuǎn)化為三角形時(shí),所需要的木條根數(shù),可從具體到一般去發(fā)現(xiàn)規(guī)律,然后驗(yàn)證求解.三、板書(shū)設(shè)計(jì)1.邊邊邊:三邊對(duì)應(yīng)相等的兩個(gè)三角形全等,簡(jiǎn)寫(xiě)成“邊邊邊”或“SSS”.2.三角形的穩(wěn)定性本節(jié)課從操作探究活動(dòng)入手,有效地激發(fā)了學(xué)生的學(xué)習(xí)積極性和探究熱情,提高了課堂的教學(xué)效率,促進(jìn)了學(xué)生對(duì)新知識(shí)的理解和掌握.從課堂教學(xué)的情況來(lái)看,學(xué)生對(duì)“邊邊邊”掌握較好,達(dá)到了教學(xué)的預(yù)期目的.存在的問(wèn)題是少數(shù)學(xué)生在輔助線的構(gòu)造上感到困難,不知道如何添加合理的輔助線,還需要在今后的教學(xué)中進(jìn)一步加強(qiáng)鞏固和訓(xùn)練
AD=CD,∠ADE=∠CDG,DE=GD,∴△ADE≌△CDG(SAS),∴AE=CG;(2)設(shè)AE與DG相交于M,AE與CG相交于N.在△GMN和△DME中,由(1)得∠CGD=∠AED,又∵∠GMN=∠DME,∠DEM+∠DME=90°,∴∠CGD+∠GMN=90°,∴∠GNM=90°,∴AE⊥CG.三、板書(shū)設(shè)計(jì)1.邊角邊:兩邊及其夾角分別相等的兩個(gè)三角形全等,簡(jiǎn)寫(xiě)成“邊角邊”或“SAS”.兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形不一定全等.2.全等三角形判定與性質(zhì)的綜合運(yùn)用本節(jié)課從操作探究入手,具有較強(qiáng)的操作性和直觀性,有利于學(xué)生從直觀上積累感性認(rèn)識(shí),從而有效地激發(fā)了學(xué)生的學(xué)習(xí)積極性和探究熱情,提高了課堂的教學(xué)效率,促進(jìn)了學(xué)生對(duì)新知識(shí)的理解和掌握.從課堂教學(xué)的情況來(lái)看,學(xué)生對(duì)“邊角邊”掌握較好,但在探究三角形的大小、形狀時(shí)不會(huì)正確分類,需要在今后的教學(xué)和作業(yè)中進(jìn)一步加強(qiáng)分類思想的鞏固和訓(xùn)練
解:(1)電動(dòng)車的月產(chǎn)量y為隨著時(shí)間x的變化而變化,有一個(gè)時(shí)間x就有唯一一個(gè)y與之對(duì)應(yīng),月產(chǎn)量y是時(shí)間x的因變量;(2)6月份產(chǎn)量最高,1月份產(chǎn)量最低;(3)6月份和1月份相差最大,在1月份加緊生產(chǎn),實(shí)現(xiàn)產(chǎn)量的增值.方法總結(jié):觀察因變量隨自變量變化而變化的趨勢(shì),實(shí)質(zhì)是觀察自變量增大時(shí),因變量是隨之增大還是減?。?、板書(shū)設(shè)計(jì)1.常量與變量:在一個(gè)變化過(guò)程中,數(shù)值發(fā)生變化的量為變量,數(shù)值始終不變的量稱之為常量.2.用表格表示數(shù)量間的關(guān)系:借助表格表示因變量隨自變量的變化而變化的情況.自變量和因變量是用來(lái)描述我們所熟悉的變化的事物以及自然界中出現(xiàn)的一些變化現(xiàn)象的兩個(gè)重要的量,對(duì)于我們所熟悉的變化,在用了這兩個(gè)量的描述之后更加鮮明.本節(jié)是學(xué)好本章的基礎(chǔ),教學(xué)中立足于學(xué)生的認(rèn)知基礎(chǔ),激發(fā)學(xué)生的認(rèn)知沖突,提升學(xué)生的認(rèn)知水平,使學(xué)生在原有的知識(shí)基礎(chǔ)上迅速遷移到新知上來(lái)
解析:(1)根據(jù)AD∥BC可知∠ADC=∠ECF,再根據(jù)E是CD的中點(diǎn)可求出△ADE≌△FCE,根據(jù)全等三角形的性質(zhì)即可解答;(2)根據(jù)線段垂直平分線的性質(zhì)判斷出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中點(diǎn),∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是線段AF的垂直平分線,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法總結(jié):此題主要考查線段的垂直平分線的性質(zhì)等幾何知識(shí).線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等,利用它可以證明線段相等.探究點(diǎn)二:線段垂直平分線的作圖如圖,某地由于居民增多,要在公路l邊增加一個(gè)公共汽車站,A,B是路邊兩個(gè)新建小區(qū),這個(gè)公共汽車站C建在什么位置,能使兩個(gè)小區(qū)到車站的路程一樣長(zhǎng)(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)畫(huà)法)?
解:(1)設(shè)第一次購(gòu)買的單價(jià)為x元,則第二次的單價(jià)為1.1x元,根據(jù)題意得14521.1x-1200x=20,解得x=6.經(jīng)檢驗(yàn),x=6是原方程的解.(2)第一次購(gòu)買水果1200÷6=200(千克).第二次購(gòu)買水果200+20=220(千克).第一次賺錢為200×(8-6)=400(元),第二次賺錢為100×(9-6.6)+120×(9×0.5-6.6)=-12(元).所以兩次共賺錢400-12=388(元).答:第一次水果的進(jìn)價(jià)為每千克6元;該老板兩次賣水果總體上是賺錢了,共賺了388元.方法總結(jié):本題具有一定的綜合性,應(yīng)該把問(wèn)題分解成購(gòu)買水果和賣水果兩部分分別考慮,掌握這次活動(dòng)的流程.三、板書(shū)設(shè)計(jì)列分式方程解應(yīng)用題的一般步驟是:第一步,審清題意;第二步,根據(jù)題意設(shè)未知數(shù);第三步,根據(jù)題目中的數(shù)量關(guān)系列出式子,并找準(zhǔn)等量關(guān)系,列出方程;第四步,解方程,并驗(yàn)根,還要看方程的解是否符合題意;最后作答.