提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

人教版新課標(biāo)小學(xué)數(shù)學(xué)二年級下冊兩位數(shù)減兩位數(shù)(口算)說課稿

  • 北師大初中九年級數(shù)學(xué)下冊二次函數(shù)與一元二次方程2教案

    北師大初中九年級數(shù)學(xué)下冊二次函數(shù)與一元二次方程2教案

    教學(xué)目標(biāo):1.知道二次函數(shù)與一元二次方程的聯(lián)系,提高綜合解決問題的能力.2.會求拋物線與坐標(biāo)軸交點坐標(biāo),會結(jié)合函數(shù)圖象求方程的根.教學(xué)重點:二次函數(shù)與一元二次方程的聯(lián)系.預(yù)設(shè)難點:用二次函數(shù)與一元二次方程的關(guān)系綜合解題.☆ 預(yù)習(xí)導(dǎo)航 ☆一、鏈接:1.畫一次函數(shù)y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點坐標(biāo); (2)解方程2x-3=0(3)說出直線y=2x-3與x軸交點的橫坐標(biāo)和方程根的關(guān)系2.不解方程3x2-2x+4=0,此方程有 個根。二、導(dǎo)讀畫二次函數(shù)y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點坐標(biāo)是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點的橫坐標(biāo)與一元二次方程x2-5x+4=0的解有什么關(guān)系?(3)一元二次方程ax2+bx+c=0是二次函數(shù)y=ax2+bx+c當(dāng)函數(shù)值y=0時的特殊情況.二次函數(shù)y=ax2+bx+c的圖象與x軸交點的橫坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?

  • 北師大初中九年級數(shù)學(xué)下冊二次函數(shù)與一元二次方程1教案

    北師大初中九年級數(shù)學(xué)下冊二次函數(shù)與一元二次方程1教案

    解:(1)設(shè)第一次落地時,拋物線的表達式為y=a(x-6)2+4,由已知:當(dāng)x=0時,y=1,即1=36a+4,所以a=-112.所以函數(shù)表達式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當(dāng)于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結(jié):解決此類問題的關(guān)鍵是先進行數(shù)學(xué)建模,將實際問題中的條件轉(zhuǎn)化為數(shù)學(xué)問題中的條件.常有兩個步驟:(1)根據(jù)題意得出二次函數(shù)的關(guān)系式,將實際問題轉(zhuǎn)化為純數(shù)學(xué)問題;(2)應(yīng)用有關(guān)函數(shù)的性質(zhì)作答.

  • 北師大初中八年級數(shù)學(xué)下冊一元一次不等式與一次函數(shù)的關(guān)系教案

    北師大初中八年級數(shù)學(xué)下冊一元一次不等式與一次函數(shù)的關(guān)系教案

    解析:先利用正比例函數(shù)解析式確定A點坐標(biāo),然后觀察函數(shù)圖象得到,當(dāng)1<x<2時,直線y=2x都在直線y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,則A點坐標(biāo)為(1,2),∴當(dāng)x>1時,2x>kx+b.∵函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點B(2,0),即不等式0<kx+b<2x的解集為1<x<2.故選C.方法總結(jié):本題考查了一次函數(shù)與一元一次不等式的關(guān)系:從函數(shù)的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b在y軸上(或下)方部分所有的點的橫坐標(biāo)所構(gòu)成的集合.三、板書設(shè)計1.通過函數(shù)圖象確定一元一次不等式的解集2.一元一次不等式與一次函數(shù)的關(guān)系本課時主要是掌握運用一次函數(shù)的圖象解一元一次不等式,在教學(xué)過程中采用講練結(jié)合的方法,讓學(xué)生充分參與到教學(xué)活動中,主動、自主的學(xué)習(xí).

  • 北師大初中八年級數(shù)學(xué)下冊一元一次不等式與一次函數(shù)的綜合應(yīng)用教案

    北師大初中八年級數(shù)學(xué)下冊一元一次不等式與一次函數(shù)的綜合應(yīng)用教案

    解析:(1)根據(jù)題設(shè)條件,求出等量關(guān)系,列一元一次方程即可求解;(2)根據(jù)題設(shè)中的不等關(guān)系列出相應(yīng)的不等式,通過求解不等式確定最值,求最值時要注意自變量的取值范圍.解:設(shè)購進A種樹苗x棵,則購進B種樹苗(17-x)棵,(1)根據(jù)題意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:購進A種樹苗10棵,B種樹苗7棵;(2)由題意得17-x172,所需費用為80x+60(17-x)=20x+1020(元),費用最省需x取最小整數(shù)9,此時17-x=17-9=8,此時所需費用為20×9+1020=1200(元).答:購買9棵A種樹苗,8棵B種樹苗的費用最省,此方案所需費用1200元.三、板書設(shè)計一元一次不等式與一次函數(shù)關(guān)系的實際應(yīng)用分類討論思想、數(shù)形結(jié)合思想本課時結(jié)合生活中的實例組織學(xué)生進行探索,在探索的過程中滲透分類討論的思想方法,培養(yǎng)學(xué)生分析、解決問題的能力,從新課到練習(xí)都充分調(diào)動了學(xué)生的思考能力,為后面的學(xué)習(xí)打下基礎(chǔ).

  • 北師大初中八年級數(shù)學(xué)下冊利用四邊形邊的關(guān)系判定平行四邊形教案

    北師大初中八年級數(shù)學(xué)下冊利用四邊形邊的關(guān)系判定平行四邊形教案

    解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結(jié):此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質(zhì),解題的關(guān)鍵是根據(jù)條件證出△AFD≌△CEB.三、板書設(shè)計1.平行四邊形的判定定理(1)兩組對邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對邊平行且相等的四邊形是平行四邊形.在整個教學(xué)過程中,以學(xué)生看、想、議、練為主體,教師在學(xué)生仔細(xì)觀察、類比、想象的基礎(chǔ)上加以引導(dǎo)點撥.判定方法是學(xué)生自己探討發(fā)現(xiàn)的,因此,應(yīng)用也就成了學(xué)生自發(fā)的需要,用起來更加得心應(yīng)手.在證明命題的過程中,學(xué)生自然將判定方法進行對比和篩選,或?qū)σ活}進行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.

  • 小學(xué)數(shù)學(xué)蘇教版六年級下冊《第六單元第三課反比例關(guān)系、反比例量》教學(xué)設(shè)計說課稿

    小學(xué)數(shù)學(xué)蘇教版六年級下冊《第六單元第三課反比例關(guān)系、反比例量》教學(xué)設(shè)計說課稿

    提問:1.怎樣判斷兩種相關(guān)聯(lián)的量是否成正比例?用字母怎樣表示正比例關(guān)系? 2.判斷下面兩種量是否成正比例?為什么? (1)時間一定,行駛的路程和速度 (2)除數(shù)一定,被除數(shù)和商 3.單價、數(shù)量和總價之間有怎樣的關(guān)系?在什么條件下,兩種量成正比例? 4.導(dǎo)入新課: 如果總價一定,單價和數(shù)量的變化有什么規(guī)律?這兩種量存在什么關(guān)系?今天,我們就來研究這種變化規(guī)律。

  • 小學(xué)數(shù)學(xué)蘇教版六年級下冊《第六單元第四課大樹有多高》課后練習(xí)說課稿

    小學(xué)數(shù)學(xué)蘇教版六年級下冊《第六單元第四課大樹有多高》課后練習(xí)說課稿

    2.比較物體的高度和影長時,要在同一( )、同一( )進行。3.在同一時間、同一地點,物體的高度和影長成( )比例。4.同樣高度的物體在不同時間、不同地點測出的影長是會( )的。 5、李明在操場上插上幾根長短不同的的竹竿,在同一時間里測量這幾根竹竿的長和相應(yīng)的影長情況如下表: 竹竿長/米11.21.8245影長/米0.50.60.9122.5比值 (1)算出竹竿和影長的比值,并填在表格中。 (2)通過測量和計算,你發(fā)現(xiàn)了什么? (3)這時李明測出旗桿的影長是5米,你能求出旗桿的實際高度是多少米? (4)這時王剛測出一棵松樹的影長是2.4米,你能算出這棵松樹的實際高度嗎? 6、為了測量出學(xué)校旗桿的高度,同學(xué)們找來了一根長8分米的木棍立在旗桿旁,發(fā)現(xiàn)木棍的影長是6分米,同時又發(fā)現(xiàn)旗桿的影長是7.5米,你能求出旗桿的高度嗎? 7.在同一時刻,小璐測得她的影長為1米,距她不遠(yuǎn)處的一棵槐樹的影長為5米。已知小璐的身高為1.3米,這棵槐樹的有多高。

  • 人教部編版道德與法制五年級下冊新版讓我們的家更美好說課稿

    人教部編版道德與法制五年級下冊新版讓我們的家更美好說課稿

    小結(jié):生活中家庭可能會發(fā)生許多意外變化,需要全家人齊心協(xié)力,共渡難關(guān)。3.揭示課題:《2讓我們的生活更美好》活動一:表達愛1.學(xué)生演繹教材活動園內(nèi)容2.師生討論:你可以做些什么?3.小結(jié):我們要體諒家庭中的每個成員的辛勞,學(xué)會關(guān)心他們,支持他們,表達我們對家人的關(guān)愛。活動二:爭當(dāng)“智多星”1.生閱讀教材閱讀角內(nèi)容2.交流討論:媽媽為什么愁眉苦臉?她遇到了什么煩心事?我是如何幫助媽媽的?3.小結(jié):生活中,家庭成員有困難,我們要留心觀察、主動詢問,盡力關(guān)心和幫助家人。有困難同商議,共承擔(dān)。活動三:做好“潤滑劑”過渡:日常生活中,家庭成員間很可能會產(chǎn)生紛爭。當(dāng)家人意見不統(tǒng)一時,我們該怎么辦呢?1.教材第13頁情景(1)看一看:家人之間發(fā)生了什么紛爭?(2)議一議:你會如何來處理?2.說說生活中你的家庭中有什么困擾爭論?

  • 部編版小學(xué)語文二年級下冊第9課《楓樹上的喜鵲》優(yōu)秀教案范文

    部編版小學(xué)語文二年級下冊第9課《楓樹上的喜鵲》優(yōu)秀教案范文

    教材分析:《楓樹上的喜鵲》是一篇童話故事,這篇課文敘述的線條簡潔、明快,情節(jié)簡單、干凈,語調(diào)較為活潑,符合兒童的心理特點和閱讀接受能力。但是這篇童話又與眾不同的地方在于,一般的童話大都采用第三人稱敘述,講述者是置身事外的。而這篇童話采用的是第三人稱和第一人稱穿插敘述的方式,把一個帶著童真、童趣的眼睛去看待周圍事物的孩童展現(xiàn)在我們的面前。這個童話故事告訴我們:童話就在我們身邊,人人都可以創(chuàng)造童話?! W(xué)情分析:二年級的學(xué)生,已經(jīng)對童話故事有濃厚的興趣,好奇心強,但缺乏一定的鑒別能力。大多數(shù)學(xué)生活潑、好動、大膽且獨立,他們已經(jīng)掌握了識字的方法,喜歡讀書,但語言的表達能力、邏輯思維能力欠佳,有意注意的時間還比較短。

  • 部編版小學(xué)語文二年級下冊第8課《彩色的夢》優(yōu)秀教案范文

    部編版小學(xué)語文二年級下冊第8課《彩色的夢》優(yōu)秀教案范文

    創(chuàng)設(shè)情境,引入夢境。師:想到能給你們上課,我昨晚興奮的睡不著覺,迷迷糊糊的我好像進入到了一個奇妙的世界:我腳踏星星來到學(xué)校,我們的課堂飛到了天空,云朵變成了小朋友的課桌,而老師的講臺竟是一道七色的彩虹。太陽和月亮為我們照明,小動物們爭著來聽課,小朋友們揮舞著畫筆把天空變成了美麗的花園。你們覺得老師的夢怎么樣?生:神奇、甜美。師:夢可以帶給我們許多新奇的體驗。引出課題《多彩的夢》師:那誰來說說你印象深刻的夢?

  • 部編版小學(xué)語文二年級下冊第10課《沙灘上的童話》優(yōu)秀教案范文

    部編版小學(xué)語文二年級下冊第10課《沙灘上的童話》優(yōu)秀教案范文

    (1)指名讀。評議。用自己體會的感情比賽朗讀。(抓住“趴”、“四面八方”、“挖呀、挖呀”、“歡呼”;“終于”、“一……就”等詞語來朗讀體會小朋友心地純善?!拔覀儦g呼著勝利,歡呼著炸死了魔王,歡呼著救出了公主?!迸疟染鋵懗隽撕⒆觽儜?zhàn)勝邪惡、贏得勝利的無比興奮的心情。指導(dǎo)讀好。)(2)孩子們的故事是真的嗎?媽媽為什么會被我們當(dāng)作是公主?聽老師老師朗讀4、5自然段,學(xué)生思考。(我們太高興了,我們被當(dāng)時的情景感染了。)媽媽怎么會出現(xiàn)在身后?(結(jié)合第一自然段的“偷偷”來理解:“偷偷”說明我們怕大人知道批評我們貪玩,制止我們?nèi)ネ?。于是只好不告訴大人,私自去玩,還自以為大人不知道??墒聦嵣希瑡寢尰蛟S見我們玩得很高興有意思,并沒有責(zé)怪我們。只是見我們沒按時回家有點擔(dān)心我們,便找來了。引導(dǎo)學(xué)生充分說,來體會父母對孩子的愛。)

  • 二年級語文下冊教案課程全冊

    二年級語文下冊教案課程全冊

    本文是一篇語言優(yōu)美,充滿兒童情趣和文學(xué)色彩的文章,仿佛呼喚著我們?nèi)ふ掖禾?。我們到校園里找一找,也許能在操場邊發(fā)現(xiàn)剛探出頭的小草;我們到野外去找一找,也許能在天空中發(fā)現(xiàn)飄飄搖搖的風(fēng)箏;打開課本,我們還會在課本插圖中發(fā)現(xiàn)春天的影子;讀著課文,我們會感覺自己就是那幾個脫掉棉襖,沖出家門,奔向田野的孩子,我們還能體會到尋找春天的急切心情,感受到發(fā)現(xiàn)春天的欣喜。二年級學(xué)生具有好奇、愛探索、易受感染的心理特點,容易被新鮮的事物、活動的東西所吸引。在一年半的語文學(xué)習(xí)后,他們已經(jīng)能夠說一段較完整的話,并能在教師創(chuàng)設(shè)的情境中體驗、感受,達到情感的共鳴,同時也積累了不少生活素材,這些都是學(xué)習(xí)本課的有利因素。

  • 北師大初中九年級數(shù)學(xué)下冊確定二次函數(shù)的表達式1教案

    北師大初中九年級數(shù)學(xué)下冊確定二次函數(shù)的表達式1教案

    解析:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點C與點D關(guān)于x=-3對稱,根據(jù)點C在對稱軸左側(cè),且CD=8,求出點C的橫坐標(biāo)和縱坐標(biāo),再根據(jù)點B的坐標(biāo)為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點C與點D關(guān)于x=-3對稱.∵點C在對稱軸左側(cè),且CD=8,∴點C的橫坐標(biāo)為-7,∴點C的縱坐標(biāo)為(-7)2+6×(-7)+5=12.∵點B的坐標(biāo)為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.

  • 北師大初中九年級數(shù)學(xué)下冊正切與坡度1教案

    北師大初中九年級數(shù)學(xué)下冊正切與坡度1教案

    已知一水壩的橫斷面是梯形ABCD,下底BC長14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長為46m,求它的上底的長(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過點A作AE⊥BC于E,過點D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過點A作AE⊥BC,過點D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長約為3.1m.方法總結(jié):考查對坡度的理解及梯形的性質(zhì)的掌握情況.解決問題的關(guān)鍵是添加輔助線構(gòu)造直角三角形.

  • 北師大初中九年級數(shù)學(xué)下冊切線長定理教案

    北師大初中九年級數(shù)學(xué)下冊切線長定理教案

    (3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應(yīng)是60°,然后結(jié)合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問題的結(jié)論有兩種可能,所以具有開放的特征,在假設(shè)存在性以后進行的推理或計算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.

  • 北師大初中九年級數(shù)學(xué)下冊正切與坡度2教案

    北師大初中九年級數(shù)學(xué)下冊正切與坡度2教案

    教學(xué)目標(biāo):1、理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。2、了解計算一個銳角的正切值的方法。教學(xué)重點:理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。教學(xué)難點:計算一個銳角的正切值的方法。教學(xué)過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設(shè)計了多種形式的臺階。下列圖中的兩個臺階哪個更陡?你是怎么判斷的?圖(1) 圖(2)[點撥]可將這兩個臺階抽象地看成兩個三角形答:圖 的臺階更陡,理由 二、探索活動1、思考與探索一:除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?① 可通過測量BC與AC的長度,② 再算出它們的比,來說明臺階的傾斜程度。(思考:BC與AC長度的比與臺階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:

  • 北師大初中九年級數(shù)學(xué)下冊正弦與余弦2教案

    北師大初中九年級數(shù)學(xué)下冊正弦與余弦2教案

    [教學(xué)目標(biāo)]1、 理解并掌握正弦、余弦的含義,會在直角三角形中求出某個銳角的正弦和余弦值。2、能用函數(shù)的觀點理解正弦、余弦和正切。[教學(xué)重點與難點] 在直角三角形中求出某個銳角的正弦和余弦值。[教學(xué)過程] 一、情景創(chuàng)設(shè)1、問題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對位置升高了多少?行走了a m呢?2、問題2:在上述問題中,他在水平方向又分別前進了多遠(yuǎn)?二、探索活動1、思考:從上面的兩個問題可以看出:當(dāng)直角三角形的一個銳角的大小已確定時,它的對邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達式嗎?)試試看.___________.

  • 北師大初中九年級數(shù)學(xué)下冊第一章復(fù)習(xí)教案

    北師大初中九年級數(shù)學(xué)下冊第一章復(fù)習(xí)教案

    一、本章知識要點: 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學(xué)生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關(guān)系,進而才能利用直角三角形的邊與角的相互關(guān)系去解直角三角形,因此三角形函數(shù)定義既是本章的重點又是理解本章知識的關(guān)鍵,而且也是本章知識的難點。如何解決這一關(guān)鍵問題,教材采取了以下的教學(xué)步驟:1. 從實際中提出問題,如修建揚水站的實例,這一實例可歸結(jié)為已知RtΔ的一個銳角和斜邊求已知角的對邊的問題。顯然用勾股定理和直角三角形兩個銳角互余中的邊與邊或角與角的關(guān)系無法解出了,因此需要進一步來研究直角三角形中邊與角的相互關(guān)系。2. 教材又采取了從特殊到一般的研究方法利用學(xué)生的舊知識,以含30°、45°的直角三角形為例:揭示了直角三角形中一個銳角確定為30°時,那么這角的對邊與斜邊之比就確定比值為1:2。

  • 北師大初中九年級數(shù)學(xué)下冊圓教案

    北師大初中九年級數(shù)學(xué)下冊圓教案

    解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結(jié):注意運用平面內(nèi)兩點之間的距離公式,設(shè)平面內(nèi)任意兩點的坐標(biāo)分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關(guān)系的實際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當(dāng)客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.

  • 北師大初中九年級數(shù)學(xué)下冊圓的對稱性教案

    北師大初中九年級數(shù)學(xué)下冊圓的對稱性教案

    我們知道圓是一個旋轉(zhuǎn)對稱圖形,無論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點O逆時針旋轉(zhuǎn)某個角度,畫出旋轉(zhuǎn)之后的圖形,比較前后兩個圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點:圓心角、弧、弦之間的關(guān)系【類型一】 利用圓心角、弧、弦之間的關(guān)系證明線段相等如圖,M為⊙O上一點,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關(guān)系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質(zhì).

上一頁123...616263646566676869707172下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!