1、知識(shí)與技能 (1)認(rèn)識(shí)勻速圓周運(yùn)動(dòng)的概念,理解線速度的概念,知道它就是物體做勻速圓周運(yùn)動(dòng)的瞬時(shí)速度;理解角速度和周期的概念,會(huì)用它們的公式進(jìn)行計(jì)算; (2)理解線速度、角速度、周期之間的關(guān)系:v=rω=2πr/T; (3)理解勻速圓周運(yùn)動(dòng)是變速運(yùn)動(dòng)?! ?、過程與方法 (1)運(yùn)用極限法理解線速度的瞬時(shí)性.掌握運(yùn)用圓周運(yùn)動(dòng)的特點(diǎn)如何去分析有關(guān)問題; (2)體會(huì)有了線速度后.為什么還要引入角速度.運(yùn)用數(shù)學(xué)知識(shí)推導(dǎo)角速度的單位。
【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因?yàn)閜是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范圍是(0,3].解題技巧:(利用充分、必要、充分必要條件的關(guān)系求參數(shù)范圍)(1)化簡p、q兩命題,(2)根據(jù)p與q的關(guān)系(充分、必要、充要條件)轉(zhuǎn)化為集合間的關(guān)系,(3)利用集合間的關(guān)系建立不等關(guān)系,(4)求解參數(shù)范圍.跟蹤訓(xùn)練三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,求實(shí)數(shù)a的取值范圍.【答案】見解析【解析】因?yàn)椤皒∈P”是x∈Q的必要條件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范圍是[-1,5].五、課堂小結(jié)讓學(xué)生總結(jié)本節(jié)課所學(xué)主要知識(shí)及解題技巧
等式性質(zhì)與不等式性質(zhì)是高中數(shù)學(xué)的主要內(nèi)容之一,在高中數(shù)學(xué)中占有重要地位,它是刻畫現(xiàn)實(shí)世界中量與量之間關(guān)系的有效數(shù)學(xué)模型,在現(xiàn)實(shí)生活中有著廣泛的應(yīng),有著重要的實(shí)際意義.同時(shí)等式性質(zhì)與不等式性質(zhì)也為學(xué)生以后順利學(xué)習(xí)基本不等式起到重要的鋪墊.課程目標(biāo)1. 掌握等式性質(zhì)與不等式性質(zhì)以及推論,能夠運(yùn)用其解決簡單的問題.2. 進(jìn)一步掌握作差、作商、綜合法等比較法比較實(shí)數(shù)的大?。?3. 通過教學(xué)培養(yǎng)學(xué)生合作交流的意識(shí)和大膽猜測(cè)、樂于探究的良好思維品質(zhì)。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:不等式的基本性質(zhì);2.邏輯推理:不等式的證明;3.數(shù)學(xué)運(yùn)算:比較多項(xiàng)式的大小及重要不等式的應(yīng)用;4.數(shù)據(jù)分析:多項(xiàng)式的取值范圍,許將單項(xiàng)式的范圍之一求出,然后相加或相乘.(將減法轉(zhuǎn)化為加法,將除法轉(zhuǎn)化為乘法);5.數(shù)學(xué)建模:運(yùn)用類比的思想有等式的基本性質(zhì)猜測(cè)不等式的基本性質(zhì)。
(4)“不論m取何實(shí)數(shù),方程x2+2x-m=0都有實(shí)數(shù)根”是全稱量詞命題,其否定為“存在實(shí)數(shù)m0,使得方程x2+2x-m0=0沒有實(shí)數(shù)根”,它是真命題.解題技巧:(含有一個(gè)量詞的命題的否定方法)(1)一般地,寫含有一個(gè)量詞的命題的否定,首先要明確這個(gè)命題是全稱量詞命題還是存在量詞命題,并找到其量詞的位置及相應(yīng)結(jié)論,然后把命題中的全稱量詞改成存在量詞,存在量詞改成全稱量詞,同時(shí)否定結(jié)論.(2)對(duì)于省略量詞的命題,應(yīng)先挖掘命題中隱含的量詞,改寫成含量詞的完整形式,再依據(jù)規(guī)則來寫出命題的否定.跟蹤訓(xùn)練三3.寫出下列命題的否定,并判斷其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一個(gè)實(shí)數(shù)x,使x3+1=0.【答案】見解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命題.
反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個(gè)基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時(shí),一般要結(jié)合圖形,運(yùn)用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運(yùn)算法則,逐步向基向量過渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時(shí),通常選取公共起點(diǎn)最集中的向量或關(guān)系最明確的向量作為基底,例如,在正方體、長方體、平行六面體、四面體中,一般選用從同一頂點(diǎn)出發(fā)的三條棱所對(duì)應(yīng)的向量作為基底.例2.在棱長為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點(diǎn),點(diǎn)G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個(gè)空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(shè)(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構(gòu)成空間的一個(gè)正交基底.
(2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時(shí)實(shí)數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計(jì)算方法(1)判斷兩點(diǎn)的橫坐標(biāo)是否相等,若相等,則直線的斜率不存在.(2)若兩點(diǎn)的橫坐標(biāo)不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進(jìn)行計(jì)算.金題典例 光線從點(diǎn)A(2,1)射到y(tǒng)軸上的點(diǎn)Q,經(jīng)y軸反射后過點(diǎn)B(4,3),試求點(diǎn)Q的坐標(biāo)及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點(diǎn)Q的坐標(biāo)為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點(diǎn)B(4,3)關(guān)于y軸的對(duì)稱點(diǎn)為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點(diǎn)共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點(diǎn)Q的坐標(biāo)為(0,5/3).
一、溫故導(dǎo)入好的導(dǎo)入未成曲調(diào)先有情,可以取得事半功信的教學(xué)效果。對(duì)于本節(jié)課我以溫故知新的方式導(dǎo)入,以蘇軾的《赤壁賦》和《念奴嬌》引導(dǎo)學(xué)生感受蘇軾的豪放和闊達(dá),從學(xué)生熟悉領(lǐng)域出發(fā),引導(dǎo)學(xué)生探究他內(nèi)心深處的“柔情似水”,感受他的“十年生死”之夢(mèng)。二、誦讀感知(亮點(diǎn)一)《語文課程標(biāo)準(zhǔn)》中建議“教師要充分關(guān)注學(xué)生閱讀需求的多樣性,閱讀心理的獨(dú)特性”。所以在本環(huán)節(jié)我將綜合運(yùn)用聽、讀、問、答四種方式教學(xué)。首先通過多媒體聽讀,激發(fā)學(xué)生學(xué)習(xí)興趣,直觀感受蘇軾的痛徹心扉和傷心欲絕。其次指定學(xué)生誦讀,并在誦讀之后,由學(xué)生點(diǎn)評(píng),加深學(xué)生對(duì)于斷句、輕重、快慢的理解,進(jìn)一步感受本詞的凄苦哀怨。最后配樂讀,利用凄清的音樂引導(dǎo)學(xué)生通過自己的誦讀來表現(xiàn)詩中所蘊(yùn)含的真摯之感。設(shè)計(jì)意圖:通過多種閱讀方法,反復(fù)閱讀本詞,引導(dǎo)學(xué)生由淺入深的理解本詞的思想內(nèi)容和藝術(shù)風(fēng)格,初步感受作者對(duì)妻子的摯愛之情和他的痛徹心扉,加深學(xué)生對(duì)文章的理解。
答案:銅車馬的輝煌,來自原料的精挑細(xì)選、工藝的精巧極致和工匠的精心雕琢??梢哉f,是精益求精的工匠精神鍛造出了“青銅之冠”的銅車馬。2.“工匠精神”如此重要,那么,你認(rèn)為“工匠精神”有著怎樣的現(xiàn)實(shí)意義?觀點(diǎn)一:工匠精神在企業(yè)層面,可以認(rèn)為是企業(yè)精神。具體而言,表現(xiàn)在以下幾個(gè)方面。第一,創(chuàng)新是企業(yè)不斷發(fā)展的精神內(nèi)核。第二,敬業(yè)是企業(yè)領(lǐng)導(dǎo)者精神的動(dòng)力。第三,執(zhí)著是企業(yè)走得長久的底氣。改革開放40 多年來,我國涌現(xiàn)出大批有工匠精神的企業(yè),但也有一些企業(yè)缺乏企業(yè)精神,只追求“短平快”的經(jīng)濟(jì)效益。這正是經(jīng)濟(jì)發(fā)展的隱憂所在。觀點(diǎn)二:工匠精神在員工層面,就是一-種認(rèn)真精神、敬業(yè)精神。其核心是: 不僅僅把工作當(dāng)作賺錢養(yǎng)家糊口的工具,而是樹立起對(duì)職業(yè)敬畏、對(duì)工作執(zhí)著、對(duì)產(chǎn)品負(fù)責(zé)的態(tài)度,極度注重細(xì)節(jié),不斷追求完美和極致,給客戶無可挑剔的體驗(yàn)。我國制造業(yè)存在大而不強(qiáng)、產(chǎn)品檔次整體不高、自主創(chuàng)新能力較弱等現(xiàn)象,多少與工匠精神稀缺、“差不多精神”有關(guān)。
(一)導(dǎo)入新課“時(shí)勢(shì)造英雄”,惡劣的環(huán)境造就名詩名篇。正因如此,懷才不遇于古人是恒久的情感素材。同學(xué)們,請(qǐng)大家回憶我們學(xué)過哪些抒發(fā)作者懷才不遇的詩詞?(二)解釋題意擬:仿照,模擬《行路難》,是樂府雜曲,本為漢代歌謠,晉人袁山松改變其音調(diào),創(chuàng)制新詞,流行一時(shí)。 鮑照《擬行路難》共十八首,歌詠人世的種種憂慮,寄寓悲憤,今天我們學(xué)習(xí)的是其中第四首。(三)作者簡介、寫作背景門閥制度之下,“上品無寒門,下品無世族”,出身寒微的文人往往空懷一腔熱忱,卻報(bào)國無門,不得不在壯志未酬的遺恨中坐視時(shí)光流逝。即使躋身仕途,也多是充當(dāng)幕僚、府掾,備受壓抑,在困頓坎坷中徒然掙扎,只落得身心交瘁。
一、教材解析《桂枝香·金陵懷古》選自統(tǒng)教版必修下冊(cè)古詩詞誦讀單元,此詞通過對(duì)金陵景物的贊美和歷史興亡的感喟,寄托了作者對(duì)當(dāng)時(shí)朝政的擔(dān)憂和對(duì)國家政治大事的關(guān)心。全詞情景交融,境界雄渾闊大,風(fēng)格沉郁悲壯,把壯麗的景色和歷史內(nèi)容和諧地融合在一起,自成一格,堪稱名篇。二、學(xué)情分析高中一年級(jí)的學(xué)生已具有一定的詩歌閱讀鑒賞能力,對(duì)學(xué)生來說,最重要的是積累誦讀方法,提升鑒賞能力。在本文的教學(xué)過程中著重落實(shí)“讀”,通過多樣化的“讀”,提升對(duì)詩歌“美”的感悟鑒賞能力。三、教學(xué)目標(biāo)從課程標(biāo)準(zhǔn)中“全面提高學(xué)生語文素養(yǎng)”的基本理念出發(fā),我設(shè)計(jì)了以下教學(xué)目標(biāo):1.語言建構(gòu)與運(yùn)用:疏通疑難字詞,讀懂詩句體會(huì)詞的誦讀要領(lǐng)。
王安石,字介甫,號(hào)半山。北宋著名政治家、思想家、文學(xué)家、改革家,唐宋八大家之一。歐陽修稱贊王安石:“翰林風(fēng)月三千首,吏部文章二百年。老去自憐心尚在,后來誰與子爭(zhēng)先?!眰魇牢募小锻跖R川集》、《臨川集拾遺》等。其詩文各體兼擅,詞雖不多,但亦擅長,世人哄傳之詩句莫過于《泊船瓜洲》中的“春風(fēng)又綠江南岸,明月何時(shí)照我還。”且有名作《桂枝香》等。介紹之后設(shè)置這樣的導(dǎo)入語:今天我們共同走進(jìn)王安石,一起欣賞名作《桂枝香·金陵懷古》。(板書標(biāo)題)(二)整體感知整體感知是賞析文章的前提,通過初讀,可以使學(xué)生初步了解將要學(xué)到的基本內(nèi)容,了解文章大意及思想意圖,使學(xué)生對(duì)課文內(nèi)容形成整體感知。首先,我會(huì)讓學(xué)生根據(jù)課前預(yù)習(xí),出聲誦讀課文,同時(shí)注意朗讀的快慢、停頓、語調(diào)、輕重音等,然后再播放音頻,糾正他們的讀音與停頓。其次,我會(huì)引導(dǎo)學(xué)生談?wù)勊惺?。學(xué)生通過朗讀,能夠說出本詞雄壯、豪放、有氣勢(shì),有對(duì)景物的贊美和對(duì)歷史的感喟。
本節(jié)內(nèi)容是三角恒等變形的基礎(chǔ),是正弦線、余弦線和誘導(dǎo)公式等知識(shí)的延伸,同時(shí),它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對(duì)于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有著重要的支撐作用。 課程目標(biāo)1、能夠推導(dǎo)出兩角和與差的正弦、余弦、正切公式并能應(yīng)用; 2、掌握二倍角公式及變形公式,能靈活運(yùn)用二倍角公式解決有關(guān)的化簡、求值、證明問題.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運(yùn)用公式解決基本三角函數(shù)式的化簡、證明等問題;3.數(shù)學(xué)運(yùn)算:運(yùn)用公式解決基本三角函數(shù)式求值問題.4.數(shù)學(xué)建模:學(xué)生體會(huì)到一般與特殊,換元等數(shù)學(xué)思想在三角恒等變換中的作用。.
問題導(dǎo)學(xué)類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點(diǎn)M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時(shí),|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對(duì)稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對(duì)稱,我們把拋物線的對(duì)稱軸叫做拋物線的軸.拋物線只有一條對(duì)稱軸. 3. 頂點(diǎn)拋物線和它軸的交點(diǎn)叫做拋物線的頂點(diǎn).拋物線的頂點(diǎn)坐標(biāo)是坐標(biāo)原點(diǎn) (0, 0) .4. 離心率拋物線上的點(diǎn)M 到焦點(diǎn)的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
一、情境導(dǎo)學(xué)我國著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點(diǎn)是排除了數(shù)量關(guān)系,對(duì)于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運(yùn)算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點(diǎn)O和一個(gè)單位正交基底{i,j,k},以點(diǎn)O為原點(diǎn),分別以i,j,k的方向?yàn)檎较颉⒁运鼈兊拈L為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時(shí)我們就建立了一個(gè)空間直角坐標(biāo)系Oxyz,O叫做原點(diǎn),i,j,k都叫做坐標(biāo)向量,通過每兩個(gè)坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱為Oxy平面,Oyz平面,Ozx平面.
問題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點(diǎn)的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對(duì)稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點(diǎn)都是對(duì)稱。x軸、y軸是雙曲線的對(duì)稱軸,原點(diǎn)是對(duì)稱中心,又叫做雙曲線的中心。3、頂點(diǎn)(1)雙曲線與對(duì)稱軸的交點(diǎn),叫做雙曲線的頂點(diǎn) .頂點(diǎn)是A_1 (-a,0)、A_2 (a,0),只有兩個(gè)。(2)如圖,線段A_1 A_2 叫做雙曲線的實(shí)軸,它的長為2a,a叫做實(shí)半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實(shí)軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫出雙曲線的草圖
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對(duì)稱軸為坐標(biāo)軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個(gè)焦點(diǎn),M為其上任一點(diǎn),則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個(gè)焦點(diǎn)為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點(diǎn)在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點(diǎn)坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點(diǎn)坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對(duì)稱性:關(guān)于x軸、y軸、原點(diǎn)對(duì)稱;③頂點(diǎn):長軸端點(diǎn)(0,10),(0,-10),短軸端點(diǎn)(-8,0),(8,0);④焦點(diǎn):(0,6),(0,-6);⑤離心率:e=3/5.
二、探究新知一、空間中點(diǎn)、直線和平面的向量表示1.點(diǎn)的位置向量在空間中,我們?nèi)∫欢c(diǎn)O作為基點(diǎn),那么空間中任意一點(diǎn)P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點(diǎn)P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點(diǎn),則點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點(diǎn)O,可以得到點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點(diǎn)及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個(gè)平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個(gè)D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項(xiàng)正確.
5.循環(huán)經(jīng)濟(jì)當(dāng)前,發(fā)展循環(huán)經(jīng)濟(jì)和知識(shí)經(jīng)濟(jì)已成為國際社會(huì)的兩大趨勢(shì),有的發(fā)達(dá)國家甚至以立法的方式加以推進(jìn)。循環(huán)經(jīng)濟(jì)本質(zhì)上是一種生態(tài)經(jīng)濟(jì),它要求運(yùn)用生態(tài)學(xué)規(guī)律而不是機(jī)械的規(guī)律來指導(dǎo)人類社會(huì)的經(jīng)濟(jì)活動(dòng),減量化、再利用和資源化是其三大原則。傳統(tǒng)經(jīng)濟(jì)是一種“資源——產(chǎn)品——污染排放”單向流動(dòng)的線性經(jīng)濟(jì),特征是高開采、低利用、高排放;與之不同,循環(huán)經(jīng)濟(jì)倡導(dǎo)的是一種與環(huán)境和諧的經(jīng)濟(jì)發(fā)展模式,它要求把經(jīng)濟(jì)活動(dòng)組織成一個(gè)“資源——產(chǎn)品——再生資源”的反饋式流程,特征是低開采、高利用、低排放。目前,我國已經(jīng)把發(fā)展循環(huán)經(jīng)濟(jì)作為編制“十一五”規(guī)劃的重要指導(dǎo)原則。6.當(dāng)心被優(yōu)勢(shì)“絆倒”有三個(gè)旅行者同時(shí)住進(jìn)一家旅店,早上同時(shí)出門旅游。晚上歸來時(shí),拿傘的人淋得渾身是水,拿拐杖的人跌得滿身是傷,而什么也沒有帶的人卻安然無恙。
本課是高中數(shù)學(xué)第一章第4節(jié),充要條件是中學(xué)數(shù)學(xué)中最重要的數(shù)學(xué)概念之一, 它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學(xué)學(xué)習(xí)特別是數(shù)學(xué)推理的學(xué)習(xí)打下基礎(chǔ)。從學(xué)生學(xué)習(xí)的角度看,與舊教材相比,教學(xué)時(shí)間的前置,造成學(xué)生在學(xué)習(xí)充要條件這一概念時(shí)的知識(shí)儲(chǔ)備不夠豐富,邏輯思維能力的訓(xùn)練不夠充分,這也為教師的教學(xué)帶來一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個(gè)概念,由于這些概念比較抽象,中學(xué)生不易理解,用它們?nèi)ソ鉀Q具體問題則更為困難,因此”充要條件”的教學(xué)成為中學(xué)數(shù)學(xué)的難點(diǎn)之一,而必要條件的定義又是本節(jié)內(nèi)容的難點(diǎn).A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會(huì)判斷命題的充分條件、必要條件、充要條件.C.通過學(xué)習(xí),使學(xué)生明白對(duì)條件的判定應(yīng)該歸結(jié)為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學(xué)生思維能力的嚴(yán)密性品質(zhì).
本章是第三章第一節(jié)的開端,學(xué)生在第二節(jié)已經(jīng)學(xué)習(xí)了元素的組成和一些生物大分子,本節(jié)課內(nèi)容是學(xué)會(huì)使用顯微鏡,這是生物學(xué)習(xí)過程中最為重要的一種手段之一。對(duì)于今后的實(shí)驗(yàn)學(xué)習(xí)有著極其重要的作用。 學(xué)生中大部分同學(xué)在初中階段都有接觸過光學(xué)顯微鏡,所以在學(xué)習(xí)理論知識(shí)的時(shí)候能夠順利的進(jìn)行,但因?yàn)閷W(xué)校的條件有限,不能保證同學(xué)們進(jìn)行顯微鏡的實(shí)驗(yàn),本節(jié)課結(jié)合學(xué)生情況和實(shí)際情況,采用圖片和模型展示的方法進(jìn)行。 知識(shí)與能力 1、概述細(xì)胞學(xué)說建立的過程。 2、概述細(xì)胞學(xué)說的內(nèi)容和意義。 3、學(xué)習(xí)制作臨時(shí)玻片標(biāo)本,使用顯微鏡和繪圖的能。