解析:要在地球儀上確定南昌市的位置,需要知道它的經(jīng)緯度,故選D.方法總結(jié):本題考查了坐標(biāo)確定位置,熟記位置的確定需要橫向與縱向的兩個數(shù)據(jù)是解題的關(guān)鍵.【類型二】 用“區(qū)域定位法”確定位置如圖所示是某市區(qū)的部分簡圖,文化宮在D2區(qū),體育場在C4區(qū),據(jù)此說明醫(yī)院在________區(qū),陽光中學(xué)在________區(qū).解析:本題首先給出的是表示文化宮和體育場的位置,即D2區(qū)和C4區(qū),這就確定了本題中表示建筑物位置的方法,即字母表示列數(shù),數(shù)字表示行數(shù).故填A(yù)3,D5.方法總結(jié):解此類題先要弄清區(qū)域定位法中字母及數(shù)字各自表示的含義,再用已知的表示方法來確定相關(guān)位置.三、板書設(shè)計確定位置有序?qū)崝?shù)對方位法經(jīng)緯度區(qū)域定位法將現(xiàn)實生活中常用的定位方法呈現(xiàn)給學(xué)生,進一步豐富學(xué)生的數(shù)學(xué)活動經(jīng)驗,培養(yǎng)學(xué)生觀察、分析、歸納、概括的能力.教學(xué)過程中創(chuàng)設(shè)生動活潑、直觀形象、且貼近他們生活的問題情境;另一方面,為學(xué)生創(chuàng)造自主學(xué)習(xí)、合作交流的機會,促使他們主動參與、積極探究.
【類型三】 已知方程組的解,用代入法求待定系數(shù)的值 已知x=2,y=1是二元一次方程組ax+by=7,ax-by=1的解,則a-b的值為()A.1 B.-1 C.2 D.3解析:把解代入原方程組得2a+b=7,2a-b=1,解得a=2,b=3,所以a-b=-1.故選B.方法總結(jié):解這類題就是根據(jù)方程組解的定義求,即將解代入方程組,得到關(guān)于字母系數(shù)的方程組,解方程組即可.三、板書設(shè)計解二元一,次方程組)基本思路是“消元”代入法解二元一次方程組的一般步驟回顧一元一次方程的解法,借此探索二元一次方程組的解法,使得學(xué)生的探究有很好的認(rèn)知基礎(chǔ),探究顯得十分自然流暢.充分體現(xiàn)了轉(zhuǎn)化與化歸思想.引導(dǎo)學(xué)生充分思考和體驗轉(zhuǎn)化與化歸思想,增強學(xué)生的觀察歸納能力,提高學(xué)生的學(xué)習(xí)能力.
第一環(huán)節(jié)感受生活中的情境,導(dǎo)入新課通過若干圖片,引導(dǎo)學(xué)生感受生活中常常需要確定位置.導(dǎo)入新課:怎樣確定位置呢?——§3.1確定位置。第二環(huán)節(jié)分類討論,探索新知1.溫故啟新(1)溫故:在數(shù)軸上,確定一個點的位置需要幾個數(shù)據(jù)呢? 答:一個,例如,若A點表示-2,B點表示3,則由-2和3就可以在數(shù)軸上找到A點和B點的位置??偨Y(jié)得出結(jié)論:在直線上, 確定一個點的位置一般需要一個數(shù)據(jù).(2)啟新:在平面內(nèi),又如何確定一個點的位置呢?請同學(xué)們根據(jù)生活中確定位置的實例,請談?wù)勛约旱目捶?2.舉例探究Ⅰ. 探究1(1)在電影院內(nèi)如何找到電影票上指定的位置?(2)在電影票上“6排3號”與“3排6號”中的“6”的含義有什么不同?(3)如果將“6排3號”簡記作(6,3),那么“3排6號”如何表示?(5,6)表示什么含義? (4) 在只有一層的電影院內(nèi),確定一個座位一般需要幾個數(shù)據(jù)?結(jié)論:生活中常常用“排數(shù)”和“號數(shù)”來確定位置. Ⅱ. 學(xué)有所用(1) 你能用兩個數(shù)據(jù)表示你現(xiàn)在所坐的位置嗎?
目的:進一步理解追擊問題的實質(zhì),與課程引入中的灰太狼追喜羊羊故事呼應(yīng),問題得到解決。環(huán)節(jié)三、運用鞏固活動內(nèi)容:育紅學(xué)校七年級學(xué)生步行郊外旅行,1班的學(xué)生組成前隊,步行速度為4千米/小時,3班的學(xué)生組成后隊,步行速度為6千米/小時,1班出發(fā)一個小時后,3班才出發(fā)。請根據(jù)以上的事實提出問題并嘗試回答。問題1:3班追上1班用了多長時間 ?問題2:3班追上1班時,他們離學(xué)校多遠(yuǎn)?問題3:………………目的:給學(xué)生提供進一步鞏固建立方程模型的基本過程和方法的熟悉機會,讓學(xué)生活學(xué)活用,真正讓學(xué)生學(xué)會借線段圖分析行程問題的方法,得出其中的等量關(guān)系,從而正確地建立方程求解問題,同時還需注意檢驗方程解的合理性.實際活動效果:由于題目較簡單,所以學(xué)生分析解答時很有信心,且正確率也比較高,同時也進一步體會到了借助“線段圖”分析行程問題的優(yōu)越性.
一.關(guān)于教學(xué)內(nèi)容和教學(xué)要求的認(rèn)識 本節(jié)課是一節(jié)探究性活動課,教學(xué)大綱上對數(shù)學(xué)活動課作了這樣的解釋:“數(shù)學(xué)活動課指在教師的指導(dǎo)下,通過學(xué)生自主活動,以獲得直接經(jīng)驗和培養(yǎng)實踐能力為主的課程。教育的目的在于彌補數(shù)學(xué)學(xué)科課程的不足,加強實踐環(huán)節(jié),重視數(shù)學(xué)思維的訓(xùn)練,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,促進學(xué)生志趣、個性、特長等自主和諧發(fā)展, 從而全面提高學(xué)生的數(shù)學(xué)素質(zhì)”??梢娊虒W(xué)大綱把實習(xí)和開展探究性教學(xué)放在了重要的地位。
解析:先利用正比例函數(shù)解析式確定A點坐標(biāo),然后觀察函數(shù)圖象得到,當(dāng)1<x<2時,直線y=2x都在直線y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,則A點坐標(biāo)為(1,2),∴當(dāng)x>1時,2x>kx+b.∵函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點B(2,0),即不等式0<kx+b<2x的解集為1<x<2.故選C.方法總結(jié):本題考查了一次函數(shù)與一元一次不等式的關(guān)系:從函數(shù)的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b在y軸上(或下)方部分所有的點的橫坐標(biāo)所構(gòu)成的集合.三、板書設(shè)計1.通過函數(shù)圖象確定一元一次不等式的解集2.一元一次不等式與一次函數(shù)的關(guān)系本課時主要是掌握運用一次函數(shù)的圖象解一元一次不等式,在教學(xué)過程中采用講練結(jié)合的方法,讓學(xué)生充分參與到教學(xué)活動中,主動、自主的學(xué)習(xí).
解析:(1)根據(jù)題設(shè)條件,求出等量關(guān)系,列一元一次方程即可求解;(2)根據(jù)題設(shè)中的不等關(guān)系列出相應(yīng)的不等式,通過求解不等式確定最值,求最值時要注意自變量的取值范圍.解:設(shè)購進A種樹苗x棵,則購進B種樹苗(17-x)棵,(1)根據(jù)題意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:購進A種樹苗10棵,B種樹苗7棵;(2)由題意得17-x172,所需費用為80x+60(17-x)=20x+1020(元),費用最省需x取最小整數(shù)9,此時17-x=17-9=8,此時所需費用為20×9+1020=1200(元).答:購買9棵A種樹苗,8棵B種樹苗的費用最省,此方案所需費用1200元.三、板書設(shè)計一元一次不等式與一次函數(shù)關(guān)系的實際應(yīng)用分類討論思想、數(shù)形結(jié)合思想本課時結(jié)合生活中的實例組織學(xué)生進行探索,在探索的過程中滲透分類討論的思想方法,培養(yǎng)學(xué)生分析、解決問題的能力,從新課到練習(xí)都充分調(diào)動了學(xué)生的思考能力,為后面的學(xué)習(xí)打下基礎(chǔ).
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出問題讓學(xué)生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個? (各有1個)(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式?(分別是二次多項式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點? (都是用自變量的二次多項式來表示的)(4)本章導(dǎo)圖中的問題以及P1頁的問題2有什么共同特點?讓學(xué)生討論、歸結(jié)為:自變量x為何值時,函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.
(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質(zhì)量檔次為第6檔.方法總結(jié):解決此類問題的關(guān)鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升”第8題三、板書設(shè)計二次函數(shù)1.二次函數(shù)的概念2.從實際問題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型.許多實際問題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過實例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡單的實際問題中二次函數(shù)的解析式.在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗從問題出發(fā)到列二次函數(shù)解析式的過程,體驗用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.
一、本章知識要點: 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學(xué)生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關(guān)系,進而才能利用直角三角形的邊與角的相互關(guān)系去解直角三角形,因此三角形函數(shù)定義既是本章的重點又是理解本章知識的關(guān)鍵,而且也是本章知識的難點。如何解決這一關(guān)鍵問題,教材采取了以下的教學(xué)步驟:1. 從實際中提出問題,如修建揚水站的實例,這一實例可歸結(jié)為已知RtΔ的一個銳角和斜邊求已知角的對邊的問題。顯然用勾股定理和直角三角形兩個銳角互余中的邊與邊或角與角的關(guān)系無法解出了,因此需要進一步來研究直角三角形中邊與角的相互關(guān)系。2. 教材又采取了從特殊到一般的研究方法利用學(xué)生的舊知識,以含30°、45°的直角三角形為例:揭示了直角三角形中一個銳角確定為30°時,那么這角的對邊與斜邊之比就確定比值為1:2。
我們知道圓是一個旋轉(zhuǎn)對稱圖形,無論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點O逆時針旋轉(zhuǎn)某個角度,畫出旋轉(zhuǎn)之后的圖形,比較前后兩個圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點:圓心角、弧、弦之間的關(guān)系【類型一】 利用圓心角、弧、弦之間的關(guān)系證明線段相等如圖,M為⊙O上一點,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關(guān)系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質(zhì).
(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應(yīng)是60°,然后結(jié)合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問題的結(jié)論有兩種可能,所以具有開放的特征,在假設(shè)存在性以后進行的推理或計算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.
解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結(jié):注意運用平面內(nèi)兩點之間的距離公式,設(shè)平面內(nèi)任意兩點的坐標(biāo)分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關(guān)系的實際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當(dāng)客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.
教學(xué)目標(biāo):1、引導(dǎo)學(xué)生通過計算、比較、觀察、等實踐活動,使學(xué)生理解倒數(shù)的意義,掌握求倒數(shù)的方法,并能正確熟練的求出倒數(shù)。2、通過自主探究、合作交流的方式培養(yǎng)學(xué)生與人合作的能力。3、提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,發(fā)展學(xué)生質(zhì)疑的習(xí)慣。教學(xué)重點:知道倒數(shù)的意義和會求一個數(shù)的倒數(shù)教學(xué)難點:1、0的倒數(shù)的求法。二、說教法基于教材內(nèi)容比較單調(diào),那么只有在教法上體現(xiàn)新、奇、特,才能讓學(xué)生想學(xué)、要學(xué)。在教學(xué)過程中,我將始終扮演一個組織者、引導(dǎo)者、合作者的角色,根據(jù)小學(xué)生從具體的形象思維逐步向抽象的邏輯思維發(fā)展的思維特點,聯(lián)系小學(xué)生熟悉的身邊實際,使抽象的內(nèi)容直觀化,激發(fā)學(xué)生的學(xué)習(xí)興趣,引導(dǎo)學(xué)生去發(fā)現(xiàn)問題、討論問題,放手讓他們自主探究和合作交流,幫助他們在自主探究、合作交流中真正理解并掌握本節(jié)課的數(shù)學(xué)知識、技能、思想和方法。
(1)課件顯示搭正方形的畫面以及問題“4根小棒搭一個正方形,13根小棒可以搭多少個正方形,還剩幾根?”。(2)組織小組討論:有13根小棒,能搭幾個正方形?請每個同學(xué)利用學(xué)具擺一擺,再依據(jù)上節(jié)課學(xué)習(xí)的除法算式,小組內(nèi)討論用豎式怎樣表示?!驹O(shè)計意圖:通過擺小棒搭正方形和自主探究等開發(fā)學(xué)生思維,促進學(xué)生多層次思考,培養(yǎng)孩子良好的思維方式,推動學(xué)生積極思考,逐步開闊學(xué)生解決問題的思路,培養(yǎng)學(xué)生橫向思維能力?!浚?)進行全班交流。指名回答;引導(dǎo)學(xué)生探究豎式各數(shù)表示的意思及單位名稱的寫法,并進一步認(rèn)識余數(shù)。課件顯示搭小棒的過程及橫式和豎式:13÷4=3(個)……1(根)答:可以搭3個正方形,還剩1根。引導(dǎo)學(xué)生認(rèn)識豎式中:“13”表示把13根小棒拿去分,“4”表示擺一個正方形需要4根小棒,“3”表示可以擺3個正方形(強調(diào)單位“個”),“12”表示3個正方形共12根(4×3=12)?!?”表示擺了3個后還剩下1根(強調(diào)單位:“根”),說明“1”是這個豎式的余數(shù),這1根不能再繼續(xù)往下分了。
二、說教學(xué)目標(biāo):1、探索有余數(shù)除法的試商方法,讓學(xué)生再探索、練習(xí)中積累有余數(shù)除法的試商經(jīng)驗。2、運用有余數(shù)除法的有關(guān)知識,聯(lián)系生活實際解決簡單的問題,體驗成功的喜悅。三、說教學(xué)重難點:1、讓學(xué)生經(jīng)歷試商的過程,積累試商的經(jīng)驗,逐步達到熟練程度。2、使學(xué)生理解和掌握有余數(shù)除法的試商方法。體會余數(shù)要比除數(shù)小。四、說教學(xué)方法:探究、自主合作交流。五、說教具:課件、六、說教學(xué)過程:由于二年級學(xué)生,他們活潑好動,爭強好勝,想象豐富,求知欲旺盛;學(xué)習(xí)責(zé)任感不斷增強,但學(xué)習(xí)往往從興趣出發(fā);他們注意力不穩(wěn)定、不持久,無意注意占主導(dǎo)地位,缺乏獨立思考能力,容易受外界事物的干擾。因此,教學(xué)中培養(yǎng)學(xué)生參與數(shù)學(xué)活動的興趣,培養(yǎng)良好的學(xué)習(xí)習(xí)慣,幫助他們逐步樹立自信、自尊、自律等積極心態(tài),是他們通過思考,提高自我認(rèn)知能力,自我控制能力,這是提高課堂教學(xué)效益的基礎(chǔ),也是教師需努力和強化之處。下面我將詳細(xì)說說我的教學(xué)過程:
一、說教學(xué)內(nèi)容及目標(biāo)?!顿I電器》是北師大版二年級數(shù)學(xué)下冊第六單元“加與減(一)”的一課時。本科教材通過創(chuàng)設(shè)學(xué)生熟悉的買電器的生活情境,請學(xué)生提出相關(guān)的數(shù)學(xué)問題,學(xué)習(xí)整百、整十?dāng)?shù)相加減的口算。本節(jié)課是在學(xué)生掌握了100以內(nèi)加減法及萬以內(nèi)數(shù)的認(rèn)識的基礎(chǔ)上進行的,學(xué)好本節(jié)課為今后進一步學(xué)習(xí)整數(shù)加減法打下了堅實的基礎(chǔ)。對學(xué)生來說,對各種電器非常熟悉,并且有逛家電商場的經(jīng)歷,能根據(jù)情境提出相應(yīng)的加減法問題。孩子們能正確迅速地口算20以內(nèi)的加減法,部分學(xué)生能口算整百、整十?dāng)?shù)的加減法,但對于算理的理解比較欠缺。為此我確定以下教學(xué)目標(biāo)及重難點。教學(xué)目標(biāo):1、引導(dǎo)學(xué)生探索并掌握整十?dāng)?shù)、整百的加減計算方法,經(jīng)歷與他人交流計算方法的過程,并能正確計算。2、結(jié)合具體情境,提出用整十?dāng)?shù)、整百數(shù)解決的問題,發(fā)展提出問題和解決問題的意識和能力。
解決了以上三個問題以后,我再讓學(xué)生先獨立將四座山的高度按照從小到大的順序排列出來,這時,我會適當(dāng)?shù)匾龑?dǎo)學(xué)生閱讀前面三個問題的解決過程,并梳理進行多位數(shù)比較的思路:先按數(shù)位比,再從高位看起。(三)分層次練習(xí),鞏固新知識在學(xué)生掌握了上述比較大數(shù)的方法以后,我將讓學(xué)生運用所學(xué)的新知識,去解決”練一練”中的第1,2,5題。其中第1,2題是為了鞏固“萬以內(nèi)的數(shù)的比較方法”,“能用符號表示萬以內(nèi)數(shù)的大小”這兩個知識點;而第五題則是為了鼓勵學(xué)生在新的情景中,進行數(shù)的大小比較。(四)課程總結(jié)這節(jié)課,同學(xué)們收獲了什么?學(xué)生一定會很輕易地將上面四座山進行比較的規(guī)律說出來的。這時,我會引導(dǎo)學(xué)生回顧全文第四,板書設(shè)計(略)本節(jié)課,我將用最簡單的文字體現(xiàn)重難點,便于學(xué)生理解。我的說課到此結(jié)束,謝謝大家!
二、學(xué)情分析對于學(xué)生來說,在認(rèn)識角之前,已經(jīng)具備了有關(guān)角的感性經(jīng)驗。但是,低年級學(xué)生的認(rèn)知規(guī)律是以具體的形象思維為主,抽象思維能力較低。這部分內(nèi)容對于二年級學(xué)生來說比較抽象,接受起來較為困難。為了幫助學(xué)生更好的認(rèn)識角,形成角的表象。我設(shè)計了一些貼近學(xué)生生活的數(shù)學(xué)活動,讓孩子在實踐活動中經(jīng)過獨立思考,合作探究去認(rèn)識角,發(fā)現(xiàn)角,從而感受到生活中處處有角。三、教學(xué)目標(biāo)及重難點依據(jù)《課標(biāo)》的要求和教材的特點,結(jié)合學(xué)生的生活實際及年齡特征,我確定了如下的教學(xué)目標(biāo):1、結(jié)合生活情境,感受生活中處處有角,體會數(shù)學(xué)與生活的密切聯(lián)系。2、通過摸一摸、找一找、搭一搭、畫一畫、比一比等活動讓學(xué)生直觀地認(rèn)識角,感受角的大小。
3、教學(xué)目標(biāo):(1)能靈活運用有余數(shù)除法的有關(guān)知識解決生活中簡單的實際問題,培養(yǎng)應(yīng)用意識。(2)在合作交流中勇于表達自己的想法,學(xué)會傾聽別人的意見。(3)通過合理解決實際問題體驗成功的喜悅。4、教學(xué)重點:解決有關(guān)“有余數(shù)除法問題”的簡單實際問題。5、教學(xué)難點:靈活處理有余數(shù)除法中需要根據(jù)實際情況而定的對余數(shù)的“取”與“舍”的問題,即對于商的“進1法”和“去尾法”?!窘谭▽W(xué)法】教法:整個教學(xué)過程,以學(xué)生為主,教師只是學(xué)生學(xué)習(xí)的服務(wù)者,知識的引路人,在教學(xué)設(shè)計中,正確理解新教材,抓住新教材特點,進行有創(chuàng)造性地使用教材,通過師生互動教學(xué),引導(dǎo)學(xué)生運用動手實踐、自主探索和合作交流等學(xué)習(xí)方式,提高參與探索的欲望。學(xué)法:1、指導(dǎo)“探索實踐”。讓學(xué)生在探索、研究活動中感悟根據(jù)實際情況而定的對于商的“進1法”和“去尾法”。2、引導(dǎo)“思”鼓勵“問”。讓學(xué)生在探究活動中勇于思考,大膽質(zhì)疑,不斷創(chuàng)新。