【目標導航】1.主動學習欣賞、演唱古詩詞,在反復吟誦中進一步體會中華詩詞文化的燦爛輝煌;2.漫步古詩苑,領略多姿多彩的創(chuàng)作風格,了解明星璀璨的大家名人,瀏覽醒世鑒人的名篇佳句,體會博大精深的思想內容,感知美妙絕倫的藝術特色;3.激勵參與意識和創(chuàng)新精神,能借助詩歌抒發(fā)真情實感,濡染心靈,陶冶性情,培養(yǎng)文學純正趣味,提高參與者的文學綜合素養(yǎng)?!菊n時安排】1課時自由組成小組,搜集相關資料,通過多種手段如多媒體,學生繪畫,音樂等課程資源,為學生創(chuàng)設優(yōu)美的教學情境。【新課導入】中國是一個詩的國度,中華詩詞是民族文化的寶典,是一朵瑰麗的文學奇葩。今天,讓我們就漫步在這個色彩繽紛的世界,在鳥語花香中,品味古人的閑情逸致,在詩情畫意中,學習他們的曠達胸襟。
【深入研讀,探究方法】1.語言優(yōu)美,通俗易懂,妙筆生花。文章中運用“靜穆”“晶瑩”“熠熠爍爍”這些優(yōu)美鮮活的詞語,生動形象地描繪了各拉丹冬的千姿百態(tài),壯觀奇景,使文章更加的靈動,給人以無限美感。作者以自己的游覽經(jīng)歷講述,語言平實,淺顯易懂。2.主題鮮明,意味深長。文章主要講述作者的一次雪域高原之游,描寫了各拉丹冬美麗壯觀的景色和作者攀登的經(jīng)歷,給我們以啟示:做任何事情要不放棄,不半途而廢,勇往直前就能達到自己想要的目標。3.善用比喻,生動形象。文中處處可見比喻的修辭手法,“陽光……巨人” “像長發(fā)披肩”都運用了比喻的修辭手法,使各拉丹冬的景色更生動具體,富有感染力,給人以深刻的印象,引發(fā)讀者的聯(lián)想和想象。
【新課導入】抬頭仰望天空,你會發(fā)現(xiàn)曾經(jīng)湛藍的天不再那么明凈;低頭俯視大地,你會發(fā)現(xiàn)曾經(jīng)清澈見底的河流不再那么透明;靜靜聆聽,回響在我們耳邊的不再是婉轉動聽的鳥叫蟲鳴,而是轟隆隆的機器運作;放眼望去,呈現(xiàn)在我們眼前的不再是郁郁蔥蔥的森林綠地,而是灰暗單調的高樓和冰冷的水泥路面……隨著工業(yè)化的進程,我們的生活已被污染包圍,倡導低碳生活,刻不容緩?!局攸c解讀】認識低碳生活、宣傳低碳生活、爭做低碳達人。1. 認識低碳生活低碳,英文為low carbon,意指較低的溫室氣體(二氧化碳為主)排放。低碳生活,就是指生活作息時所耗用的能量要盡力減少,從而降低碳,特別是二氧化碳的排放量,進而減少對大氣的污染,減緩生態(tài)惡化,要求從節(jié)水、節(jié)電、節(jié)氣和回收四個環(huán)節(jié)來改變生活細節(jié)。
【新課導入】演講比賽是提高同學口語和表達能力的一項競賽,不僅要求參賽者有良好的文字功底和修養(yǎng),同時也要有良好的口才和表達能力,以及很強的感染力,通過自己的敘述將觀眾帶入自己的世界,同時演講比賽也是一個人綜合素質的體現(xiàn),要想更多的人認識自己,了解自己,首先就得學會說話,學會推銷自己,通過自己的介紹讓同學了解自己,喜歡自己,好的演講口才終身受用。【重點解讀】充分的賽前準備是比賽成功的基礎。建議大家:(1)舉辦小組選拔賽。選擇同一題目撰寫演講稿的同學自由組成小組,先在小組內進行選拔比賽,每組選出一到兩名同學參加班級演講。小組選拔時,一方面要重視演講的內容,同時要考慮現(xiàn)場的聲音、語氣、表情、動作等,通過綜合評價,推舉優(yōu)秀代表。
寫作背景這首詩寫于普希金被沙皇流放的日子里,是以贈詩的形式寫在他的鄰居奧希泊娃的女兒葉甫勃拉克西亞·尼古拉耶夫娜·伏里夫紀念冊上的。那里俄國革命正如火如荼,詩人卻被迫與世隔絕。在這樣的處境下,詩人卻沒有喪失希望與斗志,他熱愛生活,執(zhí)著地追求理想,相信光明必來,正義必勝。(三)、問題探究1、“假如生活欺騙了你”指的是什么?指在生活中因遭遇艱難困苦甚至不幸而身處逆境。作者寫這首詩時正被流放,是自己真實生活的寫照。2、詩人在詩中闡明了怎樣的人生態(tài)度?請結合你感受最深的詩句說說你曾有過的體驗。詩中闡明了這樣一種積極樂觀的人生態(tài)度:當生活欺騙了你時,不要悲傷,不要心急;在苦惱的時候要善于忍耐,一切都會過去,我們一定要永葆積極樂觀的心態(tài);生活中不可能沒有痛苦與悲傷,歡樂不會永遠被憂傷所掩蓋,快樂的日子終會到來。
本課采用任務型教學法,用What would you do if you had a million dollars?這個問句,引出談論假想情況的話題。 采用提問、啟發(fā)和歸納的教法,讓學生易于接受教材內容,培養(yǎng)學生的語言運用能力。 四、 教學過程設計 Step Ⅰ. Greet the whole class as usual. Step Ⅱ. Warming-up T: Do you have ten Yuan in your pocket? S1: No, I don’t. T: (Take out ten Yuan and give it to the student) OK, never mind. What would you do if it was yours? What would you do if you had ten Yuan? S1: I would buy snacks. T: OK, thank you. Sit down, please. (To the whole class) Just now, it was only ten Yuan. What about 100 Yuan? What would you doif you had 100 Yuan? S2: I’d buy a beautiful jacket. T: Thank you. (To the whole class) Now suppose you had a million dollars, what would you do? We know thatone dollar nearly equals eight Yuan, so that’s a large sum of money. Think it over carefully and tellme your ideas. What would you do if you had a million dollars? S3: I’d buy a big house. S4: I’d buy a sports car. S5: I’d put it in the bank. T: OK, stop here. Please look at the blackboard and guess what would I do if I had a million
魯迅曾把《昆蟲記》稱為“講昆蟲的故事”“講昆蟲生活”的楷模。魯迅說:“他的著作還有兩種缺點:一是嗤笑解剖學家,二是用人類道德于昆蟲界?!敝茏魅苏f:“法布爾的書中所講的是昆蟲的生活,但我們讀了卻覺得比看那些無聊的小說戲劇更有趣味,更有意義?!卑徒鹫f:“《昆蟲記》融作者畢生的研究成果和人生感悟于一爐,以人性觀照蟲性,將昆蟲世界化作供人類獲取知識、趣味、美感和思想的美文?!眰鹘y(tǒng)文化玉蟬:蟬意喻人生蟬在古人的心目中地位很高,向來被視為純潔、清高、通靈的象征。玉蟬究其用途,大體可分為四種:一是佩蟬,是專門佩戴在人身上以作裝飾和避邪用,示高潔;一種為冠蟬,是作為飾物綴于帽子上的,表示高貴;一種是琀蟬,以蟬的羽化比喻人能重生,寓指精神不死,再生復活;還有一種是鎮(zhèn)蟬,做鎮(zhèn)紙用的文房用品,多出現(xiàn)在明代以后,前三種蟬屬于高古玉,主要產(chǎn)生在商周至戰(zhàn)漢時期。
解:(1)設第一次落地時,拋物線的表達式為y=a(x-6)2+4,由已知:當x=0時,y=1,即1=36a+4,所以a=-112.所以函數(shù)表達式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結:解決此類問題的關鍵是先進行數(shù)學建模,將實際問題中的條件轉化為數(shù)學問題中的條件.常有兩個步驟:(1)根據(jù)題意得出二次函數(shù)的關系式,將實際問題轉化為純數(shù)學問題;(2)應用有關函數(shù)的性質作答.
解析:(1)連接BI,根據(jù)I是△ABC的內心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內心,得到角平分線,根據(jù)等腰三角形的性質得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結:解決本題要掌握三角形的內心的性質,以及圓周角定理.
首先請學生分析:過B、C作梯形ABCD的高,將梯形分割成兩個直角三角形和一個矩形來解.教師可請一名同學上黑板板書,其他學生筆答此題.教師在巡視中為個別學生解開疑點,查漏補缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m.引導全體同學通過評價黑板上的板演,總結解坡度問題需要注意的問題:①適當添加輔助線,將梯形分割為直角三角形和矩形.③計算中盡量選擇較簡便、直接的關系式加以計算.三、課堂小結:請學生總結:解直角三角形時,運用直角三角形有關知識,通過數(shù)值計算,去求出圖形中的某些邊的長度或角的大小.在分析問題時,最好畫出幾何圖形,按照圖中的邊角之間的關系進行計算.這樣可以幫助思考、防止出錯.四、布置作業(yè)
解析:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點C與點D關于x=-3對稱,根據(jù)點C在對稱軸左側,且CD=8,求出點C的橫坐標和縱坐標,再根據(jù)點B的坐標為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點C與點D關于x=-3對稱.∵點C在對稱軸左側,且CD=8,∴點C的橫坐標為-7,∴點C的縱坐標為(-7)2+6×(-7)+5=12.∵點B的坐標為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結:此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質,注意掌握數(shù)形結合思想與方程思想的應用.
解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結果為36.538 445 77.再按鍵:顯示結果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據(jù)tan x= ,可以求出tan x的值,然后根據(jù)例4的方法就可以求出銳角x的值.四、課堂練習1. 使用計算器求下列三角函數(shù)值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數(shù)值,使用計算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學習小結內容總結不同計算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數(shù)。在生活中運用計算器一定要注意計算器說明書的保管與使用。方法歸納在解決直角三角形的相關問題時,常常使用計算器幫助我們處理比較復雜的計算。
③設每件襯衣降價x元,獲得的利潤為y元,則定價為 元 ,每件利潤為 元 ,每星期多賣 件,實際賣出 件。所以Y= 。(0<X<20)何時有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價多少元時,才能使利潤最大?☆ 歸納反思 ☆總結得出求最值問題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內,運用公式法或通過配方法求出二次函數(shù)的最值。☆ 達標檢測 ☆ 1、用長為6m的鐵絲做成一個邊長為xm的矩形,設矩形面積是ym2,,則y與x之間函數(shù)關系式為 ,當邊長為 時矩形面積最大.2、藍天汽車出租公司有200輛出租車,市場調查表明:當每輛車的日租金為300元時可全部租出;當每輛車的日租金提高10元時,每天租出的汽車會相應地減少4輛.問每輛出租車的日租金提高多少元,才會使公司一天有最多的收入?
如圖所示,要用長20m的鐵欄桿,圍成一個一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時,才能使y的值最大?二、合作探究探究點一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結:求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練” 第1題探究點二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值
解析:點E是BC︵的中點,根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應邊成比例得結論.證明:∵點E是BC︵的中點,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結:圓周角定理的推論是和角有關系的定理,所以在圓中,解決相似三角形的問題常??紤]此定理.三、板書設計圓周角和圓心角的關系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點是圓周角與圓心角的關系,難點是應用所學知識靈活解題.在本節(jié)課的教學中,學生對圓周角的概念和“同弧所對的圓周角相等”這一性質較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關系理解起來則相對困難,因此在教學過程中要著重引導學生對這一知識的探索與理解.還有些學生在應用知識解決問題的過程中往往會忽略同弧的問題,在教學過程中要對此予以足夠的強調,借助多媒體加以突出.
教學目標:1.能利用三角函數(shù)概念推導出特殊角的三角函數(shù)值.2.在探索特殊角的三角函數(shù)值的過程中體會數(shù)形結合思想.教學重點:特殊角30°、60°、45°的三角函數(shù)值.教學難點:靈活應用特殊角的三角函數(shù)值進行計算.☆ 預習導航 ☆一、鏈接:1.如圖,用小寫字母表示下列三角函數(shù):sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三邊長有什么特殊的數(shù)量關系?如果∠A=45°,那么三邊長有什么特殊的數(shù)量關系?二、導讀:仔細閱讀課本內容后完成下面填空:
教學目標:1.知道二次函數(shù)與一元二次方程的聯(lián)系,提高綜合解決問題的能力.2.會求拋物線與坐標軸交點坐標,會結合函數(shù)圖象求方程的根.教學重點:二次函數(shù)與一元二次方程的聯(lián)系.預設難點:用二次函數(shù)與一元二次方程的關系綜合解題.☆ 預習導航 ☆一、鏈接:1.畫一次函數(shù)y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點坐標; (2)解方程2x-3=0(3)說出直線y=2x-3與x軸交點的橫坐標和方程根的關系2.不解方程3x2-2x+4=0,此方程有 個根。二、導讀畫二次函數(shù)y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點坐標是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點的橫坐標與一元二次方程x2-5x+4=0的解有什么關系?(3)一元二次方程ax2+bx+c=0是二次函數(shù)y=ax2+bx+c當函數(shù)值y=0時的特殊情況.二次函數(shù)y=ax2+bx+c的圖象與x軸交點的橫坐標與一元二次方程ax2+bx+c=0的根有什么關系?
教學目標(一)教學知識點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的應用.2.能夠把實際問題轉化為數(shù)學問題,能夠借助于計算器進行有關三角函數(shù)的計算,并能對結果的意義進行說明.(二)能力訓練要求發(fā)展學生的數(shù)學應用意識和解決問題的能力.(三)情感與價值觀要求1.在經(jīng)歷弄清實際問題題意的過程中,畫出示意圖,培養(yǎng)獨立思考問題的習慣和克服困難的勇氣. 2.選擇生活中學生感興趣的題材,使學生能積極參與數(shù)學活動,提高學習數(shù)學、學好數(shù)學的欲望.教具重點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的作用.2.發(fā)展學生數(shù)學應用意識和解決問題的能力.教學難點根據(jù)題意,了解有關術語,準確地畫出示意圖.教學方法探索——發(fā)現(xiàn)法教具準備多媒體演示
(8)物價部門規(guī)定,此新型通訊產(chǎn)品售價不得高于每件80元。在此情況下,售價定為多少元時,該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計劃年初投入進貨成本m不超過200萬元,請你分析一下,售價定為多少元,公司獲利最大?售價定為多少元,公司獲利最少?三、小練兵:某商場經(jīng)營某種品牌的童裝,購進時的單價是60元.根據(jù)市場調查,銷售量y(件)與銷售單價x(元)之間的函數(shù)關系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價x(元)之間的函數(shù)關系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務,那么商場銷售該品牌童裝獲得的最大利潤是多少元?
方法總結:解答此類題目的關鍵是根據(jù)題意構造直角三角形,然后利用所學的三角函數(shù)的關系進行解答.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升” 第7題【類型三】 構造直角三角形解決面積問題在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面積.解析:過點A作AD⊥BC于點D,根據(jù)勾股定理求出BD、AD的長,再根據(jù)解直角三角形求出CD的長,最后根據(jù)三角形的面積公式解答即可.解:過點A作AD⊥BC于點D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法總結:解答此類題目的關鍵是根據(jù)題意構造直角三角形,然后利用所學的三角函數(shù)的關系進行解答.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。