2、測量。各個組的成員根據(jù)上面的設(shè)計方案在小組長的帶領(lǐng)下到操場測量相關(guān)數(shù)據(jù)。比一比,哪組最先測量完并回到教室?(二)根據(jù)測量結(jié)果計算相關(guān)物體高度。時間為2分鐘。要求:獨立計算,并填寫好實驗報告上。(三)展示測量結(jié)果。時間為3分鐘。各組都將自己計算的結(jié)果報告,看哪些同學(xué)計算準確些?(四)整理實驗報告,上交作為作業(yè)。此活動主要是讓學(xué)生通過動手實踐,分工合作,近一步理解三角函數(shù)知識,以及從中體會學(xué)習(xí)數(shù)學(xué)的重要性,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和激情,增強團隊意識。四、小結(jié):本節(jié)課你有哪些收獲?你的疑惑是什么?(2分鐘)1、 知識上:2、 思想方法上:五、板書設(shè)計1、目標展示在小黑板上2、自主學(xué)習(xí)的問題展示在小黑板上3、學(xué)生設(shè)計的方案示意圖在小組展示板上展示
引導(dǎo)學(xué)生回憶所學(xué)知識。通過這節(jié)課的學(xué)習(xí)你得到什么啟示和收獲?談?wù)勀愕母惺?目的:總結(jié)回顧學(xué)習(xí)內(nèi)容,有助于學(xué)生養(yǎng)成整理知識的習(xí)慣;有助于學(xué)生在剛剛理解了新知識的基礎(chǔ)上,及時把知識系統(tǒng)化、條理化。(四)作業(yè)布置加強“教、學(xué)”反思,進一步提高“教與學(xué)”效果。四、說板書設(shè)計采用了如下板書,要點突出,簡明清晰。一次函數(shù)正比例函數(shù)圖像的畫法:確定兩點為(0,0)和(1,K)一次函數(shù)選擇的兩點為:(0,k)和(-b\k,0)五、說課后小結(jié)實踐證明,在教學(xué)中,充分利用教學(xué)方法的優(yōu)勢,為學(xué)生創(chuàng)造一個好的學(xué)習(xí)氛圍,來引導(dǎo)學(xué)生發(fā)現(xiàn)問題、分析問題從而解決問題。多媒體課件支撐著整個教學(xué)過程,令學(xué)生在一個生動有趣的課堂上,能愉快地接受知識
二、教法分析為了讓學(xué)生較好掌握本課內(nèi)容,本節(jié)課主要采用觀察法、討論法等教學(xué)方法,通過創(chuàng)設(shè)情境,使學(xué)生由淺到深,由易到難分層次對本節(jié)課內(nèi)容進行掌握。三、學(xué)法分析本課要求學(xué)生通過自主地觀察、討論、反思來參與學(xué)習(xí),認識和理解數(shù)學(xué)知識,學(xué)會發(fā)現(xiàn)問題并嘗試解決問題,在學(xué)習(xí)活動中進一步提升自己的能力。四、教學(xué)過程創(chuàng)設(shè)問題情景,引入新課活動內(nèi)容:尋找不等的量 課本例一,例二設(shè)計目的:學(xué)生體會在現(xiàn)實生活中除了存在許多等量關(guān)系外,更多的是不等關(guān)系的存在,并通過感受生活中的大量不等關(guān)系,初步體會不等式是刻畫量與量之間關(guān)系的重要數(shù)學(xué)模型。經(jīng)歷由具體實例建立不等式模型的過程,進一步發(fā)展學(xué)生的符號感與數(shù)學(xué)化的能力。課本例四,例五設(shè)計目的:培養(yǎng)學(xué)生數(shù)學(xué)抽象能力,提高把實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力。六.課堂小結(jié)體會 常量與常量間的不等關(guān)系變量與常量間的不等關(guān)系變量與變量間的不等關(guān)系
通過以上例題幫助學(xué)生總結(jié)出分式乘除法的運算步驟(當分式的分子與分母都是單項式時和當分式的分子、分母中有多項式兩種情況)4、隨堂練習(xí)。(約5分鐘)76頁第一題,共3個小題。教學(xué)效果:在總結(jié)出分式乘除法的運算步驟后,大部分學(xué)生能很好的掌握,但是還有些學(xué)生忘記運算結(jié)果要化成最簡形式,老師要及時提醒學(xué)生。 分解因式的知識沒掌握好,將會影響到分式的運算,所以有的學(xué)生有必要復(fù)習(xí)和鞏固一下分解因式的知識。5、數(shù)學(xué)理解(約5分鐘)教材77頁的數(shù)學(xué)理解,學(xué)生很容易出現(xiàn)像小明那樣的錯誤。但是也很容易找出錯誤的原因。補充例3 計算(xy-x2)÷ ? 教學(xué)效果:鞏固分式乘除法法則,掌握分式乘除法混合運算的方法。提醒學(xué)生,負號要提到分式前面去。6、課堂小結(jié)(約3分鐘)先學(xué)生分組小結(jié),在全班交流,最后老師總結(jié)。
設(shè)計意圖:考慮學(xué)生的個別差異,分層次布置作業(yè),讓基礎(chǔ)差的學(xué)生能夠吃飽,基礎(chǔ)好的學(xué)生吃好,使每位學(xué)生都感到學(xué)有所獲。五、評價分析數(shù)學(xué)課程標準指出:學(xué)生的數(shù)學(xué)學(xué)習(xí)內(nèi)容應(yīng)當是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的,而動手實踐、自主探究與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。本著這一理念,在本課的教學(xué)過程中,我嚴格遵循由感性到理性,將數(shù)學(xué)知識始終與現(xiàn)實生活中學(xué)生熟悉的實際問題相結(jié)合,不斷提高他們應(yīng)用數(shù)學(xué)方法分析問題、解決問題的能力。在重視課本基礎(chǔ)知識的基礎(chǔ)上,適當進行拓展延伸,培養(yǎng)學(xué)生的創(chuàng)新意識,同時根據(jù)新課程標準的評價理念,在教學(xué)過程中,不僅注重學(xué)生的參與意識,而且注重學(xué)生對待學(xué)習(xí)的態(tài)度是否積極。課堂中也盡量給學(xué)生更多的空間、更多展示自我的機會,讓學(xué)生在和諧的氛圍中認識自我、找到自信、體驗成功的樂趣。使學(xué)生的主體地位得到充分的體現(xiàn),使教學(xué)過程成為一個在發(fā)現(xiàn)在創(chuàng)造的認知過程。
回顧整節(jié)課的設(shè)計,我主要著力于以下三個方面:1.關(guān)于教材處理:認真處理教材,目的只有一個——為我的學(xué)生盡可能多地提供參與活動的機會,在本節(jié)課中主要體現(xiàn)在以下幾點:(1)通過“合成代數(shù)式”、“賦予分式實際意義”兩個活動,激發(fā)興趣,吸引學(xué)生參與活動;(2)通過“互舉例子”、“填表探究”兩個活動,鼓勵學(xué)生主動參與活動;(3)通過“應(yīng)用新知”這個環(huán)節(jié),促進學(xué)生參與活動。2.關(guān)于教與學(xué)方法的選擇:我在設(shè)計中始終關(guān)注:如何精心組織活動,讓學(xué)生在豐富的活動中探索、交流與創(chuàng)新,因此我選擇了“引導(dǎo)——發(fā)現(xiàn)教學(xué)法”,具體做法如下: (1)用數(shù)、式通性的思想,類比分數(shù),引導(dǎo)學(xué)生獨立思考、小組協(xié)作,完成對分式概念及意義的自主建構(gòu),突出數(shù)學(xué)合情推理能力的養(yǎng)成;(2)加強應(yīng)用性,通過“應(yīng)用新知”、“深化拓展”兩個環(huán)節(jié),密切分式與現(xiàn)實生活及其他學(xué)科的聯(lián)系,發(fā)展數(shù)學(xué)應(yīng)用意識,突出分式的模型思想。
設(shè)計目的:通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對公因式概念的理解是否到位,提取公因式的方法與步驟是否掌握,以便教師能及時地進行查缺補漏.但依然有部分同學(xué)會出現(xiàn)問題,如對首項出現(xiàn)負號時不能正確處理,此時,需要老師進一步引導(dǎo).第四環(huán)節(jié) 課堂小結(jié)從今天的課程中,你學(xué)到了哪些知識?你認為提公因式法與單項式乘多項式有什么關(guān)系?怎樣用提公因式法分解因式?設(shè)計目的:通過學(xué)生的回顧與反思,強化學(xué)生對確定公因式的方法及提公因式法的步驟的理解,進一步清楚地了解提公因式法與單項式乘多項式的互逆關(guān)系,加深對類比的數(shù)學(xué)思想的理解。第五環(huán)節(jié) 當堂檢測把下列各式分解因式(1)2x2-4x (2)8m2n+2mn(3)-4a3b3+6a2b-2ab (4)2n2-mn-n*(5)3an+1-2anc-7an+2設(shè)計目的:檢驗學(xué)生的目標達成情況,其中第五小題供學(xué)有余力的學(xué)生選作。第六環(huán)節(jié) 課后反思教學(xué)反思
1.能從統(tǒng)計圖中獲取信息,并求出相關(guān)數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù);(重點)2.理解并分析平均數(shù)、中位數(shù)、眾數(shù)所體現(xiàn)的集中趨勢.(難點)一、情境導(dǎo)入某次射擊比賽,甲隊員的成績?nèi)缦拢?1)根據(jù)統(tǒng)計圖,確定10次射擊成績的眾數(shù)、中位數(shù),說說你的做法,并與同伴交流.(2)先估計這10次射擊成績的平均數(shù),再具體算一算,看看你的估計水平如何.二、合作探究探究點一:從折線統(tǒng)計圖分析數(shù)據(jù)的集中趨勢廣州市努力改善空氣質(zhì)量,近年空氣質(zhì)量明顯好轉(zhuǎn),根據(jù)廣州市環(huán)境保護局公布的2006~2010年這五年各年的全年空氣質(zhì)量優(yōu)良的天數(shù),繪制成折線圖如圖所示.根據(jù)圖中信息回答:(1)這五年的全年空氣質(zhì)量優(yōu)良天數(shù)的中位數(shù)是________;(2)這五年的全年空氣質(zhì)量優(yōu)良天數(shù)與它前一年相比較,增加最多的是________年(填寫年份);(3)求這五年的全年空氣質(zhì)量優(yōu)良天數(shù)的平均數(shù).解析:(1)由圖知,把這五年的全年空氣質(zhì)量優(yōu)良天數(shù)按照從小到大的順序排列為:333,334,345,347,357,所以中位數(shù)是345;
(1)用簡潔明快的語言概括大意,不能超過200字;(2)圖表中能確定的數(shù)值,在故事敘述中不得少于3個,且要分別涉及時間、路和速度這三個量.意圖:旨在檢測學(xué)生的識圖能力,可根據(jù)學(xué)生情況和上課情況適當調(diào)整。說明:練習(xí)注意了問題的梯度,由淺入深,一步步引導(dǎo)學(xué)生從不同的圖象中獲取信息,對同學(xué)的回答,教師給予點評,對回答問題暫時有困難的同學(xué),教師應(yīng)幫助他們樹立信心。第四環(huán)節(jié):課時小結(jié)內(nèi)容:本節(jié)課我們學(xué)習(xí)了一次函數(shù)圖象的應(yīng)用,在運用一次函數(shù)解決實際問題時,可以直接從函數(shù)圖象上獲取信息解決問題,當然也可以設(shè)法得出各自對應(yīng)的函數(shù)關(guān)系式,然后借助關(guān)系式完全通過計算解決問題。通過列出關(guān)系式解決問題時,一般首先判斷關(guān)系式的特征,如兩個變量之間是不是一次函數(shù)關(guān)系?當確定是一次函數(shù)關(guān)系時,可求出函數(shù)解析式,并運用一次函數(shù)的圖象和性質(zhì)進一步求得我們所需要的結(jié)果.
方法總結(jié):要認真觀察圖象,結(jié)合題意,弄清各點所表示的意義.探究點二:一次函數(shù)與一元一次方程一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象如圖所示,根據(jù)圖象信息可求得關(guān)于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數(shù)經(jīng)過點(0,1)可得b=1,再將點(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數(shù)的表達式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結(jié):此題主要考查了一次函數(shù)與一元一次方程的關(guān)系,關(guān)鍵是正確利用待定系數(shù)法求出一次函數(shù)的關(guān)系式.三、板書設(shè)計一次函數(shù)的應(yīng)用單個一次函數(shù)圖象的應(yīng)用一次函數(shù)與一元一次方程的關(guān)系探究的過程由淺入深,并利用了豐富的實際情景,增加了學(xué)生的學(xué)習(xí)興趣.教學(xué)中要注意層層遞進,逐步讓學(xué)生掌握求一次函數(shù)與一元一次方程的關(guān)系.教學(xué)中還應(yīng)注意尊重學(xué)生的個體差異,使每個學(xué)生都學(xué)有所獲.
本節(jié)課開始時,首先由一個要在一塊長方形木板上截出兩塊面積不等的正方形,引導(dǎo)學(xué)生得出兩個二次根式求和的運算。從而提出問題:如何進行二次根式的加減運算?這樣通過問題指向本課研究的重點,激發(fā)學(xué)生的學(xué)習(xí)興趣和強烈的求知欲望。本節(jié)課是二次根式加減法,目的是探索二次根式加減法運算法則,在設(shè)計本課時教案時,著重從以下幾點考慮:1.先通過對實際問題的解決來引入二次根式的加減運算,再由學(xué)生自主討論并總結(jié)二次根式的加減運算法則。2.四人小組探索、發(fā)現(xiàn)、解決問題,培養(yǎng)學(xué)生用數(shù)學(xué)方法解決實際問題的能力。3.對法則的教學(xué)與整式的加減比較學(xué)習(xí)。在理解、掌握和運用二次根式的加減法運算法則的學(xué)習(xí)過程中,滲透了分析、概括、類比等數(shù)學(xué)思想方法,提高學(xué)生的思維品質(zhì)和興趣。
1.會用二次根式的四則運算法則進行簡單地運算;(重點)2.靈活運用二次根式的乘法公式.(難點)一、情境導(dǎo)入下面正方形的邊長分別是多少?這兩個數(shù)之間有什么關(guān)系,你能借助什么運算法則或運算律解釋它?二、合作探究探究點一:二次根式的乘除運算【類型一】 二次根式的乘法計算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法總結(jié):幾個二次根式相乘,把它們的被開方數(shù)相乘,根指數(shù)不變,如果積含有能開得盡方的因數(shù)或因式,一定要化簡.【類型二】 二次根式的除法計算a2-2a÷a的結(jié)果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故選C.
1.關(guān)于二次根式的概念,要注意以下幾點:(1)從形式上看,二次根式是以根號“ ”表示的代數(shù)式,這里的開方運算是最后一步運算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運算;(2)當一個二次根式前面乘有一個有理數(shù)或有理式(整式或分式)時,雖然最后運算不是開方而是乘法,但為了方便起見,我們把它看作一個整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開方數(shù),可以是某個確定的非負實數(shù),也可以是某個代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負實數(shù);(4)像“ , ”等雖然可以進行開方運算,但它們?nèi)詫儆诙胃健?.二次根式的主要性質(zhì)(1) ; (2) ; (3) ;(4)積的算術(shù)平方根的性質(zhì): ;(5)商的算術(shù)平方根的性質(zhì): ;
方法總結(jié):(1)若被開方數(shù)中含有負因數(shù),則應(yīng)先化成正因數(shù),如(3)題.(2)將二次根式盡量化簡,使被開方數(shù)(式)中不含能開得盡方的因數(shù)(因式),即化為最簡二次根式(后面學(xué)到).探究點三:最簡二次根式在二次根式8a,c9,a2+b2,a2中,最簡二次根式共有()A.1個 B.2個C.3個 D.4個解析:8a中有因數(shù)4;c9中有分母9;a3中有因式a2.故最簡二次根式只有a2+b2.故選A.方法總結(jié):只需檢驗被開方數(shù)是否還有分母,是否還有能開得盡方的因數(shù)或因式.三、板書設(shè)計二次根式定義形如a(a≥0)的式子有意義的條件:a≥0性質(zhì):(a)2=a(a≥0),a2=a(a≥0)最簡二次根式本節(jié)經(jīng)歷從具體實例到一般規(guī)律的探究過程,運用類比的方法,得出實數(shù)運算律和運算法則,使學(xué)生清楚新舊知識的區(qū)別和聯(lián)系,加深學(xué)生對運算法則的理解,能否根據(jù)問題的特點,選擇合理、簡便的算法,能否確認結(jié)果的合理性等等.
屬于此類問題一般有以下三種情況①具體數(shù)字,此時化簡的條件已暗中給定,②恒為非負值或根據(jù)題中的隱含條件,如(1)小題。③給出明確的條件,如(2)小題。第二類,需討論后再化簡。當題目中給定的條件不能判定絕對值符號內(nèi)代數(shù)式值的符號時,則需討論后化簡,如(4)小題。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同號,又∵a+b=-6<0,∴a<0,b<0∴ .說明:此題中的隱含條件a<0,b<0不能忽視。否則會出現(xiàn)錯誤。例4.化簡: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.這樣x=6, ,x=-5,把數(shù)軸分成四段(四個區(qū)間)在這五段里分別討論如下:當x≥6時,原式=(x-6)-(1+2x)+(x+5)=-2.當 時,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.當 時,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.當x<-5時,原式=-(x-6)+(1+2x)-(x+5)=2.說明:利用公式 ,如果絕對值符號里面的代數(shù)式的值的符號無法決定,則需要討論。方法是:令每一個絕對值內(nèi)的代數(shù)式為零,求出對應(yīng)的“零點”,再用這些“零點”把數(shù)軸分成若干個區(qū)間,再在每個區(qū)間內(nèi)進行化簡。
由②得y=23x+23.在同一直角坐標系中分別作出一次函數(shù)y=3x-4和y=23x+23的圖象.如右圖,由圖可知,它們的圖象的交點坐標為(2,2).所以方程組3x-y=4,2x-3y=-2的解是x=2,y=2.方法總結(jié):用畫圖象的方法可以直觀地獲得問題的結(jié)果,但不是很準確.三、板書設(shè)計1.二元一次方程組的解是對應(yīng)的兩條直線的交點坐標;2.用圖象法解二元一次方程組的步驟:(1)變形:把兩個方程化為一次函數(shù)的形式;(2)作圖:在同一坐標系中作出兩個函數(shù)的圖象;(3)觀察圖象,找出交點的坐標;(4)寫出方程組的解.通過引導(dǎo)學(xué)生自主學(xué)習(xí)探索,進一步揭示了二元一次方程和函數(shù)圖象之間的對應(yīng)關(guān)系,很自然的得到二元一次方程組的解與兩條直線的交點之間的對應(yīng)關(guān)系.進一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識,充分提高學(xué)生數(shù)形結(jié)合的能力,使學(xué)生在自主探索中學(xué)會不同數(shù)學(xué)知識間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法.
2. 在彈性限度內(nèi),彈簧的長度y(厘米)是所掛物體質(zhì)量x(千克)的一次函數(shù).當所掛物體的質(zhì)量為1千克時彈簧長15厘米;當所掛物體的質(zhì)量為3千克時,彈簧長16厘米.寫出y與x之間的函數(shù)關(guān)系式,并求當所掛物體的質(zhì)量為4千克時彈簧的長度.答案: 當x=4是,y= 3. 教材例2的再探索:我邊防局接到情報,近海處有一可疑船只A正向公海方向行駛.邊防局迅速派出快艇B追趕,如圖所示, , 分別表示兩船相對于海岸的距離s(海里)與追趕時間t(分)之間的關(guān)系.當時間t等于多少分鐘時,我邊防快艇B能夠追趕上A。答案:直線 的解析式: ,直線 的解析式: 15分鐘第五環(huán)節(jié)課堂小結(jié)(2分鐘,教師引導(dǎo)學(xué)生總結(jié))內(nèi)容:一、函數(shù)與方程之間的關(guān)系.二、在解決實際問題時從不同角度思考問題,就會得到不一樣的方法,從而拓展自己的思維.三、掌握利用二元一次方程組求一次函數(shù)表達式的一般步驟:1.用含字母的系數(shù)設(shè)出一次函數(shù)的表達式: ;2.將已知條件代入上述表達式中得k,b的二元一次方程組;3.解這個二元一次方程組得k,b,進而得到一次函數(shù)的表達式.
內(nèi)容:情景1:多媒體展示:提出問題:從二教樓到綜合樓怎樣走最近?情景2:如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?意圖:通過情景1復(fù)習(xí)公理:兩點之間線段最短;情景2的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情.效果:從學(xué)生熟悉的生活場景引入,提出問題,學(xué)生探究熱情高漲,為下一環(huán)節(jié)奠定了良好基礎(chǔ).第二環(huán)節(jié):合作探究內(nèi)容:學(xué)生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線.讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導(dǎo)學(xué)生體會利用數(shù)學(xué)解決實際問題的方法.
解:∵y=23x+a與y=-12x+b的圖象都過點A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類題要先求得頂點的坐標,即兩個一次函數(shù)的交點和它們分別與x軸、y軸交點的坐標.三、板書設(shè)計兩個一次函數(shù)的應(yīng)用實際生活中的問題幾何問題進一步訓(xùn)練學(xué)生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實際問題,在函數(shù)圖象信息獲取過程中,進一步培養(yǎng)學(xué)生的數(shù)形結(jié)合意識,發(fā)展形象思維.在解決實際問題的過程中,進一步發(fā)展學(xué)生的分析問題、解決問題的能力和數(shù)學(xué)應(yīng)用意識.
學(xué)習(xí)目標1.掌握兩個一次函數(shù)圖像的應(yīng)用;(重點)2.能利用函數(shù)圖象解決實際問題。(難點)教學(xué)過程一、情景導(dǎo)入在一次蠟燭燃燒實驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(厘米)與燃燒時間x(小時)之間的關(guān)系如圖所示.請你根據(jù)圖象所提供的信息回答下列問題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點燃到燃盡所用的時間分別是 小時、 小時.你會解答上面的問題嗎?學(xué)完本解知識,相信你能很快得出答案。二、 合作探究探究點一:兩個一次函數(shù)的應(yīng)用(2015?日照模擬)自來水公司有甲、乙兩個蓄水池,現(xiàn)將甲池的中水勻速注入乙池,甲、乙兩個蓄水池中水的深度y(米)與注水時間x(時)之間的函數(shù)圖象如下所示,結(jié)合圖象回答下列問題.(1)分別求出甲、乙兩個蓄水池中水的深度y與注水時間x之間的函數(shù)表達式;(2)求注入多長時間甲、乙兩個蓄水池水的深度相同;(3)求注入多長時間甲、乙兩個蓄水的池蓄水量相同;