三、總結規(guī)律、形成概念通過學生積極討論,充分調動了學生的積極參與學習,既發(fā)揮了學生學習的主動性,又培養(yǎng)了學生的發(fā)散性思維,引導學生總結出:有的分數(shù)可以化成有限小數(shù),有的分數(shù)不可以化成有限小數(shù),請同學們再看一看什么樣的分數(shù)可以化成有限小數(shù)?什么樣的分數(shù)不可以化成有限小數(shù)?啟發(fā)學生從分母的最小公倍數(shù)著手。 最后總結出:一個最簡分數(shù),如果分母中只含有素因數(shù)2和5,再無其它素因數(shù),那么這個分數(shù)就可以化成有限小數(shù),否則就不能化成有限小數(shù)。 例題2,請把下列小數(shù)化成分數(shù),說說你是怎樣把小數(shù)化成分數(shù)的? 0.06,0.4,1.8,2.45,1.465, 歸納:(學生為主,教師點撥)1、原來有幾位小數(shù),就在1后面寫幾個零作分母。原來的小數(shù)去掉小數(shù)點作分子。2、小數(shù)化成分數(shù)后,能約分的要約分。常用的因數(shù)是2和5。 對于小數(shù)如何化成分數(shù)的題目,課前了解到學生在小學時已學過把小數(shù)如何化成分數(shù)的方法,因而以學生練習為主,加以操練并鞏固,有錯誤的及時糾正。
還有一點思考是作為教師應該有這樣一種認識,學生從自己的頭腦中搜索有價值的數(shù)學知識儲備,并對這些知識儲備進行篩選和取舍,這是一種重要的能力。換句話講,這就是學生分析問題和解決問題的能力,這種能力是需要培養(yǎng)的,這也是在第二學段“綜合應用”中必須把握的準則。教學目標:1、讓學生經歷粉刷圍墻的實踐活動,鞏固長方體表面積的計算方法,加強數(shù)學知識在實際生活中的應用。2、通過活動,培養(yǎng)學生收集、分析信息的意識和能力,使學生能根據(jù)實際情況,選擇合理方案。3、讓學生體驗數(shù)學知識與生活的緊密聯(lián)系,并利用數(shù)學知識科學地指導生活,感受成功。教學重點:整理分析和比較信息,制定方案。教學難點:策略的優(yōu)化。教學準備:課前做好相關數(shù)據(jù)收集整理的準備工作,教師尤其要在課前了解學生調查的涂料價目。學生準備:計算器,記錄紙等。
3. 實驗(課件演示)每個人每天要喝1400毫升水,也就是1.4升,讓同學們猜出猜看能有幾杯水,通過實驗告訴學生每天至少要喝多少杯水。(課件演示)閱讀材料,對學生進行節(jié)約用水的思想教育。4. 教師:我們知道了容積和容積單位,也知道了它們與體積單位的關系,現(xiàn)在讓我們試一試怎樣計算一個容器的容積.出示例5、一種小汽車上的油箱,里面長5dm,寬4dm,高2dm。這個油箱可以裝汽油多少升?請一位同學讀題.教師:這道題告訴了我們油箱里面的長、寬、高,我們能不能計算出它的容積?(可以.)但是,我們能不能直接算出它的容積是多少升?(不能.)那么應該怎樣做?(先算出體積,再把算出的體積單位的名數(shù)改寫成容積單位的名數(shù).)教師讓學生獨立做題,教師行間巡視,做完后一步一步地指名讓學生說一說是怎么做的,集體訂正。
5、 你能結合剛才的活動說一說你的感受嗎?6、 看來物體所占空間還有大小之分,那你能判斷出手機、收音機哪個物體所占的空間大?哪個物體所占的空間小嗎?7、 象石塊、手機、書包等這些都是它們的體積,誰能根據(jù)你的理解說一說什么是物體的體積?[小學生的思維以形象思維為主,隨著年齡的增長逐步向抽象思維過渡。根據(jù)這一特點,我在學生感知“空間”的基礎上,通過三次摸一摸的活動,引導學生進行操作、觀察,思考,使操作、觀察與思維、語言表達緊密結合起來,然后再逐步擺脫直觀形象,利用表象逐步抽象形成概念,由感性認識上升到理性認識。](三) 嘗試、解決問題在新一輪課改中,《標準》所提倡的數(shù)學課堂教學應“由單純的傳授知識的殿堂轉變?yōu)閷W生主動從事數(shù)學活動的場所;學生從單純的知識接受者轉變?yōu)閿?shù)學學習的主人?!?/p>
(4)判斷中進行教學內容的遞深,形成了反思——學習——強化的整個學習過程。在學生做出“6是倍數(shù)”的正確判斷之后,并不簡單換章,而是以此為契機“教學找一個數(shù)的因數(shù)”以談話導入,形成知識相互的聯(lián)系與區(qū)別,“談話:必須說清誰是誰的倍數(shù),誰是誰的因數(shù)。所以6可能是某些數(shù)的倍數(shù),也可能是某些數(shù)的因數(shù),那我們就來找一個數(shù)的因數(shù)。你能找出36所有的因數(shù)嗎?”(5)討論互評,自主學習放手讓學生學習找一個數(shù)的因數(shù),從無序到有序,從自尋到互學,請學生板書,學生評價,“提問:你是用什么方法找到一個數(shù)的因數(shù),可以介紹給大家嗎?還有其他方法嗎?”1×36=36 36÷1=362×18=36 36÷2=183×12=36 36÷3=124×9=363 6÷4=96×6=36 36÷6=6(6)自主不失指導,掌握不失總結如:提問:5為什么不是36的因數(shù)?(因為36÷5不能整除,有余數(shù))
4、認識長方體的立體圖。師:(出示課件長方體)你最多能看到這個長方體的幾個面?你看到了哪三個面?哪三個面看不到?(上面、前面、右面)師:我們把所看到的這個長方體根據(jù)透視原理畫下來就是這樣的。(媒體演示) 這就是長方體的立體圖形。師:大家會認了嗎?試一試。師小結:以后,我們要判斷一個物體是不是長方體,要根據(jù)長方體的特征去分析。5、畫長方體師:同學們都學得非常認真知道了長方體的特征,那么大家會畫長方體嗎?畫長方體步驟:1、畫一個平行四邊形。2、畫出長方體的高。3、連線。6、 教學長方體的長、寬、高。 (1)、師:同學們剛畫出了長方體,那么長方體的長、寬、高有什么特點?師課件展示后,學生匯報。(2)、大家想不想親手制作一個長方體的框架呢?把你思考的結果和大家分享分享。生匯報。
正方體的體積=棱長×棱長×棱長用字母a表示棱長,V=a×a×a.也可以寫成a3讀作a的立方.表示3個a相乘.不要誤認為a與3相乘。寫a3時3寫在a的右上角要寫小些.所以正方體的體積公式一般寫成: V=a3(五)、鞏固練習、運用公式練習是數(shù)學中教學鞏固新知、形成技能、發(fā)展思維、提高學生分析問題、解決問題能力的有效手段,為了加強學生的理解,使學生能正確運用公式.我設計了多層次的練習。1、通過讓學生完成看圖求體積,這樣有助于學生理解長方體正方體的體積與它的長寬高的關系,記住長方體的體積計算公式.2、我對安排了四個判斷題,以加深學生對a的立方的理解和運用。3,解決實際問題,我安排了兩道題目的是讓學生所學新知識解決生活中的一些實際問題。
1、說課內容:義務教育課程標準實驗教科書數(shù)學(人教版)五年級下冊第69頁例1、例2。2、教材地位及作用:學生在三年級已初步認識分數(shù),但那時所學的分數(shù)都是分子小于分母的分數(shù),所以,學習這節(jié)內容,使學生比較全面地理解分數(shù)概念與培養(yǎng)對分數(shù)的數(shù)感,起著重要的作用。3、教學目標的確定:當今時代是經濟全球化,文化多元化,社會信息化的時代,所以教育也要追隨時代發(fā)展的步伐。遵循課標提出的“為了每一位學生的發(fā)展”教育理念,確定本課教學目標如下:①使學生理解真分數(shù)和假分數(shù)的意義;②通過學習真分數(shù)、假分數(shù),加深學生對分數(shù)意義的理解;③使學生掌握真分數(shù),假分數(shù)的特征;④培養(yǎng)學生的觀察、比較、分析及概括的能力;⑤使學生在思考中、討論中,體會學習數(shù)學的快樂,體驗成功的喜悅。4、教學重點、難點:
(通過這道題的練習,可以看出中國的漢字是非常美的。誰能舉例說出哪些漢字可以寫成軸對稱圖形嗎?)(師生共同品味中國文字的對稱美,從而宏揚中國文化,做到知識性、技能性、思想性和藝術性溶為一體。)4、配樂剪軸對稱圖形比賽。請同學們拿出一張彩色紙用對折的方法剪出一個軸對稱圖形,然后貼在白紙上。并把剪得的作品貼在黑板上讓大家欣賞。引導學生觀察:哪些圖形較美?為什么?五、歸納小結。設問 :今天學了什么?什么叫軸對稱圖形? 怎樣判斷軸對稱圖形? 什么叫對稱軸?怎樣找出軸對稱圖形的對稱軸?(新課后的總結能起到畫龍點睛的作用,同時有利于幫助學生理清知識結構,形成完整認識。)全課小結:這節(jié)課,我通過五個環(huán)節(jié)的教學設計,既遵循了概念教學的規(guī)律,又符合小學生的認知特點,指導學生操作、觀察、引導概括,獲取新知;同時注重培養(yǎng)學生的形象思維和抽象思維。
2、81頁的做一做。做完后,引導學生觀察4和8;16和32這一組的最大公因數(shù)的特點:當較大數(shù)是較小數(shù)的倍數(shù)時,他們的最大公因數(shù)是較小數(shù)。1和7;8和9這一組數(shù)的最大公因數(shù)只有1。這樣的練習設計,目的是讓學生發(fā)現(xiàn)求最大公因數(shù)中的特殊情況。四、遷移運用,拓展探究寫出下列各分數(shù)分子和分母的最大公因數(shù)。7/21 8/28 16/40 6/15 目的是為下一節(jié)課《約分》做好了知識的鋪墊。全課總結:通過今天的學習,你有什么收獲?同桌互說,指名匯報。這樣的總結,從知識的層面上做了一次回顧。并及時的總結了解學情,真正做到“堂堂清”五、說板書設計我本節(jié)課的板書設計力圖全面而簡明的將本課的內容傳遞給學生,便于學生理解和記憶。各位評委老師,我僅從教材、教法、學法、及教學過程、板書設計等幾個方面對本課進行說明。這只是我預設的一種方案,但是課堂千變萬化的生成效果,最終還要和學生、課堂相結合。說課的不足之處還請多多指教,我的說課到此結束,謝謝各位評委老師。
3、歸納求最小公倍數(shù)的方法。師:想一想找“共同的休息日”和“總人數(shù)”的過程,說一說可以怎樣求兩個數(shù)的最小公倍數(shù)?(①找倍數(shù):從小到大依次找出各個數(shù)的倍數(shù);②找公有:把各個數(shù)的倍數(shù)進行對照找出公有的倍數(shù);③找最?。簭墓械谋稊?shù)中找出最小的一個。)4、看書88——89頁,你還有什么問題?師:觀察一下,為什么6和8這兩個數(shù)不相同,卻可以寫出相同的公倍數(shù)呢?公倍數(shù)與原有的這兩個數(shù)有什么關系?公倍數(shù)與它們的最小公倍數(shù)又有什么關系?教師畫出數(shù)軸表示6和8的倍數(shù),并可生動地比喻6寶寶步子小,要走3次才能到達24的位置。而8寶寶步子大,只要走兩次就到達24的位置。到達24的位置后,6寶寶和8寶寶就碰面了??梢姽稊?shù)24是6和8的不同倍數(shù)。三、解決問題,深化理解(練習是理解知識,掌握知識,形成技能的基本途徑,又是運用知識,發(fā)展智能,完善認知結構的重要手段。
一、教學內容本節(jié)課是九年義務教育六年制小學數(shù)學教科書(新人教版)二年級下冊第42頁的例3的內容。二、教材分析例3是用除法解決問題的內容,和“表內乘法(二)”中的解決問題相對應。這個題目中所涉及的數(shù)量已由離散量擴展到連續(xù)量,由實物個數(shù)擴展到了取自于量的數(shù)量,它所反映的數(shù)量關系是除法現(xiàn)實模型的拓展,滲透了單價、數(shù)量、總價的數(shù)量關系,需要學生根據(jù)除法的含義來解決?!跋胍幌搿笔抢^續(xù)深化學生對除法意義的理解,并培養(yǎng)了學生發(fā)現(xiàn)問題,提出問題的能力。三、教學目標1、根據(jù)除法的意義,初步理解數(shù)量、單價、總價的數(shù)量關系,會用除法解決生活中與此數(shù)量有關的實際問題。2、將處罰擴展到連續(xù)量中去,深化學生對除法含義的理解。3、培養(yǎng)學生從具體生活情境中發(fā)現(xiàn)問題,根據(jù)問題篩選有用的信息從而培養(yǎng)解決問題的能力。
不足之處是: 1 、在如何有效地組織學生開展探索規(guī)律時,我認為猜想可以鍛煉孩子們的創(chuàng)新思維,但猜想必須具有一定的基礎,需要因勢利導。在開展探索規(guī)律時,我先組織讓學生猜想秘訣是什么?由于學生缺乏猜想的依據(jù),因此,他們的思維不夠活躍,甚至有的學生在 “亂猜 ”。這說明學生缺乏猜想的方向和思維的空間,也是教師在組織教學時需要考慮的問題。 2 、總怕學生在這節(jié)課里不能很好的接受知識,所以在個別應放手的地方卻還在牽著學生走??偨Y性的語言也顯得有些羅嗦。 3 、課堂上學生參與學習的程度差異很明顯的:一部分學生爭先恐后地應答,表現(xiàn)得很出眾,很活躍;但更多的學生或缺乏勇氣,或不善言辭,或沒有機會,而淪為聽眾或觀眾。 4 、本節(jié)課在教學評價方式上略顯單一。對學生的評價少,激勵性的語言不夠。
【設計意圖:這是為例4的教學而設計的情境,起過渡作用,使學生明確通分的重要性,同時能促進學生的學習積極性、主動性?!浚ǘ┏鍪緦W習目標:(1)教學例3第一層:嘗試做例3,讓學生獨立探究,運用舊知識去解決新問題。教師針對這一問題,啟發(fā)點撥:這兩個分數(shù)能直接比較大小嗎?那么,能不能借助一些學過的知識,設法把這兩個分數(shù)化為能直接比較的分數(shù),再比較出它們的大小呢?學生:獨立探究,小組交流,全班匯報?!驹O計意圖:讓學生獨立嘗試探究,初步感知通分】第二層:看書自學例3,并出示自學 要求:1.書上是如何比較 和大小的?(動筆寫一寫) 2.什么叫公分母?3.什么叫通分?質疑問難:“通過你們自學例3,還有什么疑問嗎?”“找兩個分數(shù)的公分母,為什么要找4和6的最小公倍數(shù)呢?”【設計意圖:通過自學理解什么是“公分母”和“通分”,使學生對新概念有一個自我內化的過程】
活動三:認識正方體的特征,總結長方體、正方體的關系(1)學生用類比法學習正方體的特征,并揭示出長方體和正方體的內在聯(lián)系,得出:正方體是特殊的長方體。(2)說說生活中哪些物體是長方體、正方體? 開放的學習方式,以學生的自主學習為中心,讓學生通過自身的發(fā)展嘗試總結,驗證,實現(xiàn)知識的“再創(chuàng)造”。比較是認識事物的主要方法之一,特別在幾何體教學中,運用比較方法,加強形體間的聯(lián)系和區(qū)別,提高識別能力。同時滲透事物普遍聯(lián)系和發(fā)展變化的辯證唯物主義觀。聯(lián)系生活,體現(xiàn)數(shù)學來源于生活,又應用于生活的特點?;顒铀模簩W以致用智慧屋,包含判斷題、計算題等多種題型的練習,培養(yǎng)學生展開多向思維,是學生能夠從不同角度解決問題的基礎。這樣的練習題,側重于知識點的落實,鞏固新知。
2、互動交流,探究規(guī)律。 (1)、小組內交流討論: 讓每個同學說出自己的發(fā)現(xiàn),說說自己的猜想,并討論郵政編碼中的數(shù)字是怎樣編排的。(師巡視,隨機參與討論。) (2)、全班展示交流: 師:那個小組愿意先來展示一下你們的探究結果? 生1:我們發(fā)現(xiàn)郵政編碼都是由6個數(shù)字組成的。…… 生2:我們發(fā)現(xiàn)前兩位數(shù)字表示省,如…… 生3:同一個省、市的郵政編碼前三位數(shù)字相同。比如……。 (讓學生充分發(fā)言) 【設計意圖:“自主探索——互動交流——匯報展示”,充分展現(xiàn)學生自主探究的過程,突出了學生的主體地位,培養(yǎng)了學生自主獲取知識的能力和合作交流的意識。】 3、共同優(yōu)化,形成結論。 (1) 教師配合多媒體課件說明郵政編碼的結構和組成: 師:我國郵政編碼的結構與含義采用“四級六位制”。編碼含義:郵政編碼的六位數(shù)字分別代表了省、市、郵政、縣市、投遞局四級單位。其中:前二位表示省(自治區(qū)、直轄市);前三位表示郵區(qū);前四位表示縣(市);最后兩位表示投遞局(所)
一、教材分析 1、教材內容及所處地位綜合實踐活動是在新一輪基礎教育課程改革中應運而生的新型課程。所謂綜合實踐活動,主要指以學生的興趣和直接經驗為基礎,以與學生學習生活和社會生活密切相關的各類現(xiàn)實性、綜合性、實踐性問題為內容,以研究性學習為主導學習方式,以培養(yǎng)學生的創(chuàng)新精神、實踐能力及體現(xiàn)對知識的綜合運用為主要目的一類新型課程。具有以下特點: 1、基于興趣與直接經驗。2、回歸生活世界。3、立足實踐。4、著眼創(chuàng)新。5、以研究性學習為主導學習方式:(1)以轉變學生的學習方式為出發(fā)點。(2)強調知識的聯(lián)系和綜合運用。(3)注重過程。(4)強調開放。(5)重視師生互動。四年級下冊綜合實踐活動課程要培養(yǎng)學生對生活、學習的積極態(tài)度,使他們具備一定的交往合作能力、觀察分析能力、動手操作能力;要讓他們初步掌握參與社會實踐的方法,信息資料的搜集、分析和處理問題的方法以及研究探索的方法;使學生形成合作、分享、積極進取等良好的個性品質,成為創(chuàng)新生活的小主人。2、單元內容分析本教材包括?方法與指導?和?活動與探究?兩部分內容, ?方法與探究? 主要是讓學生掌握如何進行采訪,通過一系列活動,掌握采訪的準備、注意事項、具體實施,及最后的交流總結,培養(yǎng)學生交往能力。 ?活動與探究?包括六個主題,主題一我們身邊的標志,通過讓學生認識標志,體會含義。學會分類,最后學會制作標志,循序漸進,蘊含了創(chuàng)新、守規(guī)、審美等能力的培養(yǎng);主題二早餐與健康通過談論,調查、分析討論培養(yǎng)學生交流總結能力,樹立健康生活意識;主題三,有趣的絲網(wǎng)花,通過制作培養(yǎng)學生合作、審美、動手能力;主題四巧手做風箏繼續(xù)對學生進行培養(yǎng);主題五植物的扦插與嫁接,與現(xiàn)實生活聯(lián)系密切,通過活動掌握方法,體驗快樂,體驗勞動的樂趣;主題六爭做小小志愿者,通過了解體驗志愿者的活動,豐富閱歷,培養(yǎng)學生的服務意識,自身獲得提升與發(fā)展。教材的重點、難點:重點:學會交流,提升能力;認識各種標志,學會制作;學會健康的生活;通過制作絲網(wǎng)花、風箏、植物的扦插于嫁接,學會制作,提高動手能力,通過體驗小小志愿者,提高服務意識。難點:教學中讓學生親身參與、主動實踐,在實踐中綜合運用所學知識解決各種實際問題,提高解決實際問題的能力。學習基礎:四年級學生已具備了一定的實踐能力,因此要逐步培養(yǎng)學生一些探究問題的方法,提高學生的動手意識,能夠從生活和學習中挖掘自己感興趣的活動主題,能夠試著和同學展開小組合作學習,在有效的活動中不斷提高學生的動手與創(chuàng)新的潛能。
已知一水壩的橫斷面是梯形ABCD,下底BC長14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長為46m,求它的上底的長(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過點A作AE⊥BC于E,過點D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過點A作AE⊥BC,過點D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長約為3.1m.方法總結:考查對坡度的理解及梯形的性質的掌握情況.解決問題的關鍵是添加輔助線構造直角三角形.
一、本章知識要點: 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關系,進而才能利用直角三角形的邊與角的相互關系去解直角三角形,因此三角形函數(shù)定義既是本章的重點又是理解本章知識的關鍵,而且也是本章知識的難點。如何解決這一關鍵問題,教材采取了以下的教學步驟:1. 從實際中提出問題,如修建揚水站的實例,這一實例可歸結為已知RtΔ的一個銳角和斜邊求已知角的對邊的問題。顯然用勾股定理和直角三角形兩個銳角互余中的邊與邊或角與角的關系無法解出了,因此需要進一步來研究直角三角形中邊與角的相互關系。2. 教材又采取了從特殊到一般的研究方法利用學生的舊知識,以含30°、45°的直角三角形為例:揭示了直角三角形中一個銳角確定為30°時,那么這角的對邊與斜邊之比就確定比值為1:2。
(3)若要滿足結論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應是60°,然后結合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設存在點P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結:由于存在性問題的結論有兩種可能,所以具有開放的特征,在假設存在性以后進行的推理或計算.一般思路是:假設存在——推理論證——得出結論.若能導出合理的結果,就做出“存在”的判斷,若導出矛盾,就做出“不存在”的判斷.