提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

人教版高中政治必修3第六課我們的中華文化精品教案

  • 北師大初中數(shù)學(xué)八年級上冊兩個(gè)一次函數(shù)圖象的應(yīng)用2教案

    北師大初中數(shù)學(xué)八年級上冊兩個(gè)一次函數(shù)圖象的應(yīng)用2教案

    學(xué)習(xí)目標(biāo)1.掌握兩個(gè)一次函數(shù)圖像的應(yīng)用;(重點(diǎn))2.能利用函數(shù)圖象解決實(shí)際問題。(難點(diǎn))教學(xué)過程一、情景導(dǎo)入在一次蠟燭燃燒實(shí)驗(yàn)中,甲、乙兩根蠟燭燃燒時(shí)剩余部分的高度y(厘米)與燃燒時(shí)間x(小時(shí))之間的關(guān)系如圖所示.請你根據(jù)圖象所提供的信息回答下列問題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點(diǎn)燃到燃盡所用的時(shí)間分別是 小時(shí)、 小時(shí).你會解答上面的問題嗎?學(xué)完本解知識,相信你能很快得出答案。二、 合作探究探究點(diǎn)一:兩個(gè)一次函數(shù)的應(yīng)用(2015?日照模擬)自來水公司有甲、乙兩個(gè)蓄水池,現(xiàn)將甲池的中水勻速注入乙池,甲、乙兩個(gè)蓄水池中水的深度y(米)與注水時(shí)間x(時(shí))之間的函數(shù)圖象如下所示,結(jié)合圖象回答下列問題.(1)分別求出甲、乙兩個(gè)蓄水池中水的深度y與注水時(shí)間x之間的函數(shù)表達(dá)式;(2)求注入多長時(shí)間甲、乙兩個(gè)蓄水池水的深度相同;(3)求注入多長時(shí)間甲、乙兩個(gè)蓄水的池蓄水量相同;

  • 北師大初中數(shù)學(xué)八年級上冊平行線的判定1教案

    北師大初中數(shù)學(xué)八年級上冊平行線的判定1教案

    (2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分線定義).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代換).又∵∠1=∠2(已知),∴∠1=∠3(等量代換),∴DF∥BE(內(nèi)錯角相等,兩直線平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分線定義),∠ADE=∠1(等量代換).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形內(nèi)角和為180°及等量代換),即∠A+∠ABC=180°,∴AD∥BC(同旁內(nèi)角互補(bǔ),兩直線平行).方法總結(jié):解此類題應(yīng)首先結(jié)合圖形猜測結(jié)論,然后證明.證明兩條直線平行,一般先找它們的截線,再求同位角相等(或內(nèi)錯角相等,同旁內(nèi)角互補(bǔ))來說明兩直線平行.若沒有公共截線,則需作出兩直線的截線輔助證明.三、板書設(shè)計(jì)平行線,的判定)判定公理:同位角相等,兩直線平行判定定理內(nèi)錯角相等,兩直線平行同旁內(nèi)角互補(bǔ),兩直線平行本節(jié)課通過經(jīng)歷探索平行線的判定方法的過程,發(fā)展學(xué)生的邏輯推理能力,逐步掌握規(guī)范的推理論證格式.

  • 北師大初中八年級數(shù)學(xué)下冊不等式的基本性質(zhì)教案

    北師大初中八年級數(shù)學(xué)下冊不等式的基本性質(zhì)教案

    【類型二】 根據(jù)不等式的變形確定字母的取值范圍如果不等式(a+1)x<a+1可變形為x>1,那么a必須滿足________.解析:根據(jù)不等式的基本性質(zhì)可判斷a+1為負(fù)數(shù),即a+1<0,可得a<-1.方法總結(jié):只有當(dāng)不等式的兩邊都乘(或除以)一個(gè)負(fù)數(shù)時(shí),不等號的方向才改變.三、板書設(shè)計(jì)1.不等式的基本性質(zhì)性質(zhì)1:不等式的兩邊都加上(或減去)同一個(gè)整式,不等號的方向不變;性質(zhì)2:不等式的兩邊都乘(或除以)同一個(gè)正數(shù),不等號的方向不變;性質(zhì)3:不等式的兩邊都乘(或除以)同一個(gè)負(fù)數(shù),不等號方向改變.2.把不等式化成“x>a”或“x<a”的形式“移項(xiàng)”依據(jù):不等式的基本性質(zhì)1;“將未知數(shù)系數(shù)化為1”的依據(jù):不等式的基本性質(zhì)2、3.本節(jié)課學(xué)習(xí)不等式的基本性質(zhì),在學(xué)習(xí)過程中,可與等式的基本性質(zhì)進(jìn)行類比,在運(yùn)用性質(zhì)進(jìn)行變形時(shí),要注意不等號的方向是否發(fā)生改變;課堂教學(xué)時(shí),鼓勵學(xué)生大膽質(zhì)疑,通過練習(xí)中易出現(xiàn)的錯誤,引導(dǎo)學(xué)生歸納總結(jié),提升學(xué)生的自主探究能力.

  • 北師大初中八年級數(shù)學(xué)下冊分式的有關(guān)概念教案

    北師大初中八年級數(shù)學(xué)下冊分式的有關(guān)概念教案

    解析:由分式有意義的條件得3x-1≠0,解得x≠13.則分式無意義的條件是x=13,故選C.方法總結(jié):分式無意義的條件是分母等于0.【類型三】 分式值為0的條件若使分式x2-1x+1的值為零,則x的值為()A.-1 B.1或-1C.1 D.1和-1解析:由題意得x2-1=0且x+1≠0,解得x=1,故選C.方法總結(jié):分式的值為零的條件:(1)分子為0;(2)分母不為0.這兩個(gè)條件缺一不可.三、板書設(shè)計(jì)1.分式的概念:一般地,如果A、B表示兩個(gè)整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有無意義的條件:當(dāng)B≠0時(shí),分式有意義;當(dāng)B=0時(shí),分式無意義.3.分式AB值為0的條件:當(dāng)A=0,B≠0時(shí),分式的值為0.本節(jié)采取的教學(xué)方法是引導(dǎo)學(xué)生獨(dú)立思考、小組合作,完成對分式概念及意義的自主探索.提出問題讓學(xué)生解決,問題由易到難,層層深入,既復(fù)習(xí)了舊知識又在類比過程中獲得了解決新知識的途徑.在這一環(huán)節(jié)提問應(yīng)注意循序性,先易后難、由簡到繁、層層遞進(jìn),臺階式的提問使問題解決水到渠成.

  • 北師大初中數(shù)學(xué)九年級上冊反比例函數(shù)的圖象1教案

    北師大初中數(shù)學(xué)九年級上冊反比例函數(shù)的圖象1教案

    解:(1)∵點(diǎn)(1,5)在反比例函數(shù)y=kx的圖象上,∴5=k1,即k=5,∴反比例函數(shù)的解析式為y=5x.又∵點(diǎn)(1,5)在一次函數(shù)y=3x+m的圖象上,∴5=3+m,即m=2,∴一次函數(shù)的解析式為y=3x+2;(2)由題意,聯(lián)立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴這兩個(gè)函數(shù)圖象的另一個(gè)交點(diǎn)的坐標(biāo)為(-53,-3).三、板書設(shè)計(jì)反比例函數(shù)的圖象形狀:雙曲線位置當(dāng)k>0時(shí),兩支曲線分別位于   第一、三象限內(nèi)當(dāng)k<0時(shí),兩支曲線分別位于   第二、四象限內(nèi)畫法:列表、描點(diǎn)、連線(描點(diǎn)法)通過學(xué)生自己動手列表、描點(diǎn)、連線,提高學(xué)生的作圖能力.理解函數(shù)的三種表示方法及相互轉(zhuǎn)換,對函數(shù)進(jìn)行認(rèn)識上的整合,逐步明確研究函數(shù)的一般要求.反比例函數(shù)的圖象具體展現(xiàn)了反比例函數(shù)的整體直觀形象,為學(xué)生探索反比例函數(shù)的性質(zhì)提供了思維活動的空間.

  • 北師大初中數(shù)學(xué)九年級上冊復(fù)雜圖形的三視圖1教案

    北師大初中數(shù)學(xué)九年級上冊復(fù)雜圖形的三視圖1教案

    解析:熟記常見幾何體的三種視圖后首先可排除選項(xiàng)A,因?yàn)殚L方體的三視圖都是矩形;因?yàn)樗o的主視圖中間是兩條虛線,故可排除選項(xiàng)B;選項(xiàng)D的幾何體中的俯視圖應(yīng)為一個(gè)梯形,與所給俯視圖形狀不符.只有C選項(xiàng)的幾何體與已知的三視圖相符.故選C.方法總結(jié):由幾何體的三種視圖想象其立體形狀可以從如下途徑進(jìn)行分析:(1)根據(jù)主視圖想象物體的正面形狀及上下、左右位置,根據(jù)俯視圖想象物體的上面形狀及左右、前后位置,再結(jié)合左視圖驗(yàn)證該物體的左側(cè)面形狀,并驗(yàn)證上下和前后位置;(2)從實(shí)線和虛線想象幾何體看得見部分和看不見部分的輪廓線.在得出原立體圖形的形狀后,也可以反過來想象一下這個(gè)立體圖形的三種視圖,看與已知的三種視圖是否一致.探究點(diǎn)四:三視圖中的計(jì)算如圖所示是一個(gè)工件的三種視圖,圖中標(biāo)有尺寸,則這個(gè)工件的體積是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三種視圖可以看出,該工件是上下兩個(gè)圓柱的組合,其中下面的圓柱高為4cm,底面直徑為4cm;上面的圓柱高為1cm,底面直徑為2cm,則V=4×π×22+1×π×12=17π(cm3).故選B.

  • 北師大初中數(shù)學(xué)九年級上冊一元二次方程的解及其估算1教案

    北師大初中數(shù)學(xué)九年級上冊一元二次方程的解及其估算1教案

    方法總結(jié):(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計(jì)算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進(jìn)一步在這個(gè)范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計(jì)一元二次方程根的取值范圍時(shí),當(dāng)ax2+bx+c(a≠0)的值由正變負(fù)或由負(fù)變正時(shí),x的取值范圍很重要,因?yàn)橹挥性谶@個(gè)范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設(shè)計(jì)一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實(shí)際問題確定其解的大致范圍;(2)再通過列表,具體計(jì)算,進(jìn)行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實(shí)際生活中一些較為復(fù)雜的方程時(shí)應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計(jì)上,強(qiáng)調(diào)自主學(xué)習(xí),注重合作交流,在探究過程中獲得數(shù)學(xué)活動的經(jīng)驗(yàn),提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

  • 北師大初中數(shù)學(xué)九年級上冊線段的比和成比例線段1教案

    北師大初中數(shù)學(xué)九年級上冊線段的比和成比例線段1教案

    故線段d的長度為94cm.方法總結(jié):利用比例線段關(guān)系求線段長度的方法:根據(jù)線段的關(guān)系寫出比例式,并把它作為相等關(guān)系構(gòu)造關(guān)于要求線段的方程,解方程即可求出線段的長.已知三條線段長分別為1cm,2cm,2cm,請你再給出一條線段,使得它的長與前面三條線段的長能夠組成一個(gè)比例式.解析:因?yàn)楸绢}中沒有明確告知是求1,2,2的第四比例項(xiàng),因此所添加的線段長可能是前三個(gè)數(shù)的第四比例項(xiàng),也可能不是前三個(gè)數(shù)的第四比例項(xiàng),因此應(yīng)進(jìn)行分類討論.解:若x:1=2:2,則x=22;若1:x=2:2,則x=2;若1:2=x:2,則x=2;若1:2=2:x,則x=22.所以所添加的線段的長有三種可能,可以是22cm,2cm,或22cm.方法總結(jié):若使四個(gè)數(shù)成比例,則應(yīng)滿足其中兩個(gè)數(shù)的比等于另外兩個(gè)數(shù)的比,也可轉(zhuǎn)化為其中兩個(gè)數(shù)的乘積恰好等于另外兩個(gè)數(shù)的乘積.

  • 北師大初中數(shù)學(xué)九年級上冊線段的比和成比例線段2教案

    北師大初中數(shù)學(xué)九年級上冊線段的比和成比例線段2教案

    (三)成比例線段的概念1、一般地,在四條線段中,如果 等于 的比,那么這四條線段叫做成比例線段。(舉例說明)如:2、四條線段a,b ,c,d成比例,有順序關(guān)系。即a,b,c,d成比例線段,則比例式為:a:b=c:d;a,b, d,c成比例線段,則比例式為:a:b=d:c3思考:a=12,b=8,c=6,d=4成比例嗎?a=12,b=8,c=15,d=10呢?三、例題解析: 例1、A、B兩地的實(shí)際距離AB= 250m,畫在一張地圖上的距離A'B'=5 cm,求該地圖的比例尺。例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜邊AB=2。求⑴ ,⑵ 四、鞏固練習(xí)1、已知某一時(shí)刻物體高度與其影長的比值為2:7,某 天同一時(shí)刻測得一棟樓的影長為30米,則這棟樓的高度為多少?2、某地圖上的比例尺為1:1000,甲,乙兩地的實(shí)際距離為300米,則在地圖上甲、乙兩地的距離為多少?3、已知線段a,d,b,c是成比例線段,其中a=4,b=5,c=10,求線段d的長。

  • 北師大初中數(shù)學(xué)九年級上冊相似三角形的周長和面積之比2教案

    北師大初中數(shù)學(xué)九年級上冊相似三角形的周長和面積之比2教案

    ●教學(xué)目標(biāo)(一)教學(xué)知識點(diǎn)1.相似三角形的周長比,面積比與相似比的關(guān)系.2. 相似三角形的周長比,面積比在實(shí)際中的應(yīng)用.(二)能 力訓(xùn)練要求1.經(jīng)歷探索相似三角形的 性質(zhì)的過程,培養(yǎng)學(xué)生的探索能力.2.利用相似三角形的性質(zhì)解決實(shí)際問題訓(xùn)練學(xué)生的運(yùn)用能力.(三)情 感與價(jià)值觀要求1.學(xué) 生通過交流、歸納,總結(jié)相似三角形的周長比、面積比與相似比的關(guān)系,體會知識遷移、溫故知新的好處.2.運(yùn)用相似多邊形的周長比,面積比解決實(shí)際問題,增強(qiáng)學(xué)生對知識的應(yīng)用意識.●教學(xué)重點(diǎn)1.相似三角形的周長比、面積比與相似比關(guān)系的推導(dǎo).2.運(yùn)用相似三角形的比例關(guān)系解決實(shí)際問題.●教學(xué)難點(diǎn)相似三角形周長比、面積比與相似比的關(guān)系的推導(dǎo)及運(yùn)用.●教學(xué)方法引導(dǎo)啟發(fā)式通過溫故知新,知識遷移,引導(dǎo)學(xué)生發(fā)現(xiàn)新的結(jié)論,通過比較、分析,應(yīng)用獲得的知識達(dá)到理解并掌握的 目的.●教具準(zhǔn)備投影片兩張第一張:(記作§4.7.2 A)第二張:(記作§4.7.2 B)

  • 北師大初中數(shù)學(xué)九年級上冊相似三角形的周長和面積之比1教案

    北師大初中數(shù)學(xué)九年級上冊相似三角形的周長和面積之比1教案

    解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點(diǎn).∵點(diǎn)E是AB的中點(diǎn),∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯提醒:在運(yùn)用“相似三角形的面積比等于相似比的平方”這一性質(zhì)時(shí),同樣要注意是對應(yīng)三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯誤.三、板書設(shè)計(jì)相似三角形的周長和面積之比:相似三角形的周長比等于相似比,面積比等于相似比的平方.經(jīng)歷相似三角形的性質(zhì)的探索過程,培養(yǎng)學(xué)生的探索能力.通過交流、歸納,總結(jié)相似三角形的周長比、面積比與相似比的關(guān)系,體驗(yàn)化歸思想.運(yùn)用相似多邊形的周長比,面積比解決實(shí)際問題,訓(xùn)練學(xué)生的運(yùn)用能力,增強(qiáng)學(xué)生對知識的應(yīng)用意識.

  • 北師大初中數(shù)學(xué)九年級上冊一元二次方程的解及其估算1教案

    北師大初中數(shù)學(xué)九年級上冊一元二次方程的解及其估算1教案

    首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計(jì)算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進(jìn)一步在這個(gè)范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計(jì)一元二次方程根的取值范圍時(shí),當(dāng)ax2+bx+c(a≠0)的值由正變負(fù)或由負(fù)變正時(shí),x的取值范圍很重要,因?yàn)橹挥性谶@個(gè)范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設(shè)計(jì)一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實(shí)際問題確定其解的大致范圍;(2)再通過列表,具體計(jì)算,進(jìn)行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實(shí)際生活中一些較為復(fù)雜的方程時(shí)應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計(jì)上,強(qiáng)調(diào)自主學(xué)習(xí),注重合作交流,在探究過程中獲得數(shù)學(xué)活動的經(jīng)驗(yàn),提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

  • 北師大初中數(shù)學(xué)九年級上冊正方形的判定1教案

    北師大初中數(shù)學(xué)九年級上冊正方形的判定1教案

    ∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

  • 北師大初中九年級數(shù)學(xué)下冊三角函數(shù)的應(yīng)用2教案

    北師大初中九年級數(shù)學(xué)下冊三角函數(shù)的應(yīng)用2教案

    教學(xué)目標(biāo)(一)教學(xué)知識點(diǎn)1.經(jīng)歷探索船是否有觸礁危險(xiǎn)的過程,進(jìn)一步體會三角函數(shù)在解決問題過程中的應(yīng)用.2.能夠把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,能夠借助于計(jì)算器進(jìn)行有關(guān)三角函數(shù)的計(jì)算,并能對結(jié)果的意義進(jìn)行說明.(二)能力訓(xùn)練要求發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識和解決問題的能力.(三)情感與價(jià)值觀要求1.在經(jīng)歷弄清實(shí)際問題題意的過程中,畫出示意圖,培養(yǎng)獨(dú)立思考問題的習(xí)慣和克服困難的勇氣. 2.選擇生活中學(xué)生感興趣的題材,使學(xué)生能積極參與數(shù)學(xué)活動,提高學(xué)習(xí)數(shù)學(xué)、學(xué)好數(shù)學(xué)的欲望.教具重點(diǎn)1.經(jīng)歷探索船是否有觸礁危險(xiǎn)的過程,進(jìn)一步體會三角函數(shù)在解決問題過程中的作用.2.發(fā)展學(xué)生數(shù)學(xué)應(yīng)用意識和解決問題的能力.教學(xué)難點(diǎn)根據(jù)題意,了解有關(guān)術(shù)語,準(zhǔn)確地畫出示意圖.教學(xué)方法探索——發(fā)現(xiàn)法教具準(zhǔn)備多媒體演示

  • 北師大初中九年級數(shù)學(xué)下冊確定二次函數(shù)的表達(dá)式1教案

    北師大初中九年級數(shù)學(xué)下冊確定二次函數(shù)的表達(dá)式1教案

    解析:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點(diǎn)C與點(diǎn)D關(guān)于x=-3對稱,根據(jù)點(diǎn)C在對稱軸左側(cè),且CD=8,求出點(diǎn)C的橫坐標(biāo)和縱坐標(biāo),再根據(jù)點(diǎn)B的坐標(biāo)為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點(diǎn)C與點(diǎn)D關(guān)于x=-3對稱.∵點(diǎn)C在對稱軸左側(cè),且CD=8,∴點(diǎn)C的橫坐標(biāo)為-7,∴點(diǎn)C的縱坐標(biāo)為(-7)2+6×(-7)+5=12.∵點(diǎn)B的坐標(biāo)為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.

  • 北師大初中九年級數(shù)學(xué)下冊三角函數(shù)的應(yīng)用1教案

    北師大初中九年級數(shù)學(xué)下冊三角函數(shù)的應(yīng)用1教案

    然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達(dá)C處,此時(shí),測得A點(diǎn)的俯角是15°.已知小麗的步行速度是18米/分,圖中點(diǎn)A、B、E、D、C在同一平面內(nèi),且點(diǎn)D、E、B在同一水平直線上.求出娛樂場地所在山坡AE的長度(參考數(shù)據(jù):2≈1.41,結(jié)果精確到0.1米).解析:作輔助線EF⊥AC于點(diǎn)F,根據(jù)速度乘以時(shí)間得出CE的長度,通過坡度得到∠ECF=30°,通過平角減去其他角從而得到∠AEF=45°,即可求出AE的長度.解:作EF⊥AC于點(diǎn)F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂場地所在山坡AE的長度約為190.4米.方法總結(jié):解決本題的關(guān)鍵是能借助仰角、俯角和坡度構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.

  • 北師大初中數(shù)學(xué)九年級上冊復(fù)雜圖形的三視圖2教案

    北師大初中數(shù)學(xué)九年級上冊復(fù)雜圖形的三視圖2教案

    教學(xué)目標(biāo):1.會畫直棱柱(僅限于直三棱柱和直四棱柱)的三種視圖,體會這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。2. 會根據(jù)三視圖描述原幾何體。教學(xué)重點(diǎn):掌握直棱柱的三視圖的畫法。能根據(jù)三視圖描述原幾何體。教學(xué)難點(diǎn):幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學(xué)方法:觀察實(shí)踐法一、實(shí)物觀察、空間想像觀察:請同學(xué)們拿出事先準(zhǔn)備好的直三棱柱、直四棱柱,根據(jù)你所擺放的位置經(jīng)過 想像,再抽象出這兩個(gè)直棱柱的主視圖,左視圖和俯視圖。繪制:請你將抽象出來的三種視圖畫出來,并與同伴交流。比較:小亮畫出了其中一個(gè)幾何體的主視圖、左視圖和俯視圖,你認(rèn)為他畫的對不對?談?wù)勀愕目捶?。拓展:?dāng)你手中的兩個(gè)直棱柱擺放的角度變化時(shí),它們的三種視圖是否會隨之改變?試一試。

  • 北師大初中數(shù)學(xué)九年級上冊一元二次方程的解及其估算2教案

    北師大初中數(shù)學(xué)九年級上冊一元二次方程的解及其估算2教案

    探索1:上節(jié)我們列出了與地毯的花邊寬度有關(guān)的方程。地毯花邊的寬x(m),滿足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進(jìn)一步計(jì)算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當(dāng)堂訓(xùn)練:完成課本34頁隨堂練習(xí)四、學(xué)習(xí)體會:五、課后作業(yè)

  • 北師大初中七年級數(shù)學(xué)上冊多邊形和圓的初步認(rèn)識教案2

    北師大初中七年級數(shù)學(xué)上冊多邊形和圓的初步認(rèn)識教案2

    1、 如圖4-25,將一個(gè)圓分成三個(gè)大小相同的扇形,你能算出它們的圓心角的度數(shù)嗎?你知道每個(gè)扇形的面積和整個(gè)圓的面積的關(guān)系嗎?與同伴進(jìn)行交流2、 畫一個(gè)半徑是2cm的圓,并在其中畫一個(gè)圓心為60º的扇形,你會計(jì)算這個(gè)扇形的面積嗎?與同伴交流。教師對答案進(jìn)行匯總,講解本題解題思路:1、 因?yàn)橐粋€(gè)圓被分成了大小相同的扇形,所以每個(gè)扇形的圓心角相同,又因?yàn)閳A周角是360º,所以每個(gè)扇形的圓心角是360º÷3=120º,每個(gè)扇形的面積為整個(gè)圓的面積的三分之一。2、 先求出這個(gè)圓的面積S=πR²=4π,60÷360=1/6扇形面積=4π×1/6=2π/3【設(shè)計(jì)意圖】運(yùn)用小組合作交流的方式,既培養(yǎng)了學(xué)生的合作意識和能力,又達(dá)到了互幫互助以弱帶強(qiáng)的目的,使學(xué)習(xí)比較吃力的同學(xué)也能參與到學(xué)習(xí)中來,體現(xiàn)了學(xué)生是學(xué)習(xí)的主體。

  • 北師大初中七年級數(shù)學(xué)上冊比較線段的長短教案1

    北師大初中七年級數(shù)學(xué)上冊比較線段的長短教案1

    1.了解“兩點(diǎn)之間,線段最短”.2.能借助尺、規(guī)等工具比較兩條線段的大小,能用圓規(guī)作一條線段等于已知線段.3.了解線段的中點(diǎn)及線段的和、差、倍、分的意義,并能根據(jù)條件求出線段的長.一、情境導(dǎo)入愛護(hù)花草樹木是我們每個(gè)人都應(yīng)具備的優(yōu)秀品質(zhì).從教學(xué)樓到圖書館,總有少數(shù)同學(xué)不走人行道而橫穿草坪(如圖),同學(xué)們,你覺得這樣做對嗎?為了解釋這種現(xiàn)象,學(xué)習(xí)了下面的知識,你就會知道.二、合作探究探究點(diǎn)一:線段長度的計(jì)算【類型一】 根據(jù)線段的中點(diǎn)求線段的長如圖,若線段AB=20cm,點(diǎn)C是線段AB上一點(diǎn),M、N分別是線段AC、BC的中點(diǎn).(1)求線段MN的長;(2)根據(jù)(1)中的計(jì)算過程和結(jié)果,設(shè)AB=a,其它條件不變,你能猜出MN的長度嗎?請用簡潔的話表達(dá)你發(fā)現(xiàn)的規(guī)律.

上一頁123...154155156157158159160161162163164165下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動畫,PPT模板免費(fèi)下載,專注素材下載!