【類型三】 已知三邊作三角形已知三條線段a、b、c,用尺規(guī)作出△ABC,使BC=a,AC=b、AB=c.解:作法:1.作線段BC=a;2.以點C為圓心,以b為半徑畫弧,再以B為圓心,以c為半徑畫弧,兩弧相交于點A;3.連接AC和AB,則△ABC即為所求作的三角形,如圖所示.方法總結:已知三角形三邊的長,根據全等三角形的判定“SSS”,知三角形的形狀和大小也就確定了.作三角形相當于確定三角形三個頂點的位置.因此可先確定三角形的一條邊(即兩個頂點),再分別以這條邊的兩個端點為圓心,以已知線段長為半徑畫弧,兩弧的交點即為另一個頂點.三、板書設計1.已知兩邊及其夾角作三角形2.已知兩角及其夾邊作三角形3.已知三邊作三角形本節(jié)課學習了有關三角形的作圖,主要包括兩種基本作圖:作一條線段等于已知線段,作一個角等于已知角.作圖時,鼓勵學生一邊作圖,一邊用幾何語言敘述作法,培養(yǎng)學生的動手能力、語言表達能力
證法二:(1)延長BD交AC于E(或延長CD交AB于E),如圖.則∠BDC是△CDE的一個外角.∴∠BDC>∠DEC.(三角形的一個外角大于任何一個和它不相鄰的內角)∵∠DEC是△ABE的一個外角(已作)∴∠DEC>∠A(三角形的一個外角大于任何一個和它不相鄰的內角)∴∠BDC>∠A(不等式的性質)(2)延長BD交AC于E,則∠BDC是△DCE的一個外角.∴∠BDC=∠C+∠DEC(三角形的一個外角等于和它不相鄰的兩個內角的和)∵∠DEC是△ABE的一個外角∴∠DEC=∠A+∠B(三角形的一個外角等于和它不相鄰的兩個內角的和)∴∠BDC=∠B+∠C+∠BAC(等量代換)活動目的:讓學生接觸各種類型的幾何證明題,提高邏輯推理能力,培養(yǎng)學生的證明思路,特別是不等關系的證明題,因為學生接觸較少,因此更需要加強練習.注意事項:學生對于幾何圖形中的不等關系的證明比較陌生,因此有必要在證明第2小題中,要引導學生找到一個過渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等關系的傳遞性得出∠1>∠2。
解:方法一:因為DE∥BC,所以∠ADE=∠B,∠AED=∠C,所以△ADE∽△ABC,所以ADAB=DEBC,即44+8=5BC,所以BC=15cm.又因為DF∥AC,所以四邊形DFCE是平行四邊形,所以FC=DE=5cm,所以BF=BC-FC=15-5=10(cm).方法二:因為DE∥BC,所以∠ADE=∠B.又因為DF∥AC,所以∠A=∠BDF,所以△ADE∽△DBF,所以ADDB=DEBF,即48=5BF,所以BF=10cm.方法總結:求線段的長,常通過找三角形相似得到成比例線段而求得,因此選擇哪兩個三角形就成了解題的關鍵,這就需要通過已知的線段和所求的線段分析得到.三、板書設計(1)相似三角形的定義:三角分別相等、三邊成比例的兩個三角形叫做相似三角形;(2)相似三角形的判定定理1:兩角分別相等的兩個三角形相似.感受相似三角形與相似多邊形、相似三角形與全等三角形的區(qū)別與聯(lián)系,體驗事物間特殊與一般的關系.讓學生經歷從實驗探究到歸納證明的過程,發(fā)展學生的合情推理能力,培養(yǎng)學生的觀察、動手探究、歸納總結的能力.
合探2 與同伴合作,兩個人分別畫△ABC和△A′B′ C′,使得∠A和∠A′都等于∠α,∠B和∠B′都等于∠β,此時,∠C與∠C′相等嗎?三邊的比 相等嗎?這樣的兩個三角形相似嗎?改變∠α,∠β的大小,再試一試.四、導入定理判定 定理1:兩角分別相等的兩個三角形相似.這個定理的 出 現(xiàn)為判定兩三角形相似增加了一條新的途徑.例:如圖,D ,E分別是△ABC的邊AB,AC上的點,DE∥BC,AB= 7,AD=5,DE=10,求B C的長。解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴△ADE∽△ABC(兩角分別相等的兩 個三角形相似).∴ ADAB=DEBC.∴BC=AB×DEAD = 7×105=14.五、學生練習:1. 討論隨堂練 習第1題有一個銳角相等的兩個直角三角形是否相似?為什么?2.自己獨立完成隨堂練習第2題六、小結本節(jié)主要學習了相似三角形的定義及相似三角形的判定定理1,一定要掌握好這個定理.七、作業(yè):
探究點二:三角形內角和定理的推論2如圖,P是△ABC內的一點,求證:∠BPC>∠A.解析:由題意無法直接得出∠BPC>∠A,延長BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得證.證明:延長BP交AC于D,∵∠BPC是△ABC的外角(外角定義),∴∠BPC>∠PDC(三角形的一個外角大于任何一個和它不相鄰的內角).同理可證:∠PDC>∠A,∴∠BPC>∠A.方法總結:利用推論2證明角的大小時,兩個角應是同一個三角形的內角和外角.若不是,就需借助中間量轉化求證.三、板書設計三角形的外角外角:三角形的一邊與另一邊的延長線所組成的 角,叫做三角形的外角推論1:三角形的一個外角等于和它不相鄰的兩 個內角的和推論2:三角形的一個外角大于任何一個和它不 相鄰的內角利用已經學過的知識來推導出新的定理以及運用新的定理解決相關問題,進一步熟悉和掌握證明的步驟、格式、方法、技巧.進一步培養(yǎng)學生的邏輯思維能力和推理能力,特別是培養(yǎng)有條理的想象和探索能力,從而做到強化基礎,激發(fā)學習興趣.
同理,圖③中,三角形的三邊長分別為2,5,3;同理,圖④中,三角形的三邊長分別為2,5,13.∵21=22=105=2,∴圖②中的三角形與△ABC相似.方法總結:(1)各個圖形中的三角形均為格點三角形,可以根據勾股定理求出各邊的長,然后根據三角形三邊的長度是否成比例來判斷兩個三角形是否相似;(2)判斷三邊是否成比例,可以將三角形的三邊長按大小順序排列,然后分別計算他們對應邊的比,最后由比值是否相等來確定兩個三角形是否相似.三、板書設計相似三角形的判定定理3:三邊成比例的兩個三角形相似.從學生已學的知識入手,通過設置問題,引導學生進行計算、推理和歸納,提高分析問題和解決問題的能力.感受兩個三角形相似的判定定理3與全等三角形判定定理(SSS)的區(qū)別與聯(lián)系,體會事物間一般到特殊、特殊到一般的關系.讓學生經歷從實驗探究到歸納證明的過程,發(fā)展學生的合情推理能力,培養(yǎng)學生與他人交流、合作的意識和品質.
(一)導入新課三角形全等的判定中AA S 和ASA對應于相似三 角形的判定的判定定理1,SAS對應于相似三 角形的判定的判定定理2,那么SSS 對應的三角形相似的判定命題是否正確,這就是本節(jié)研究的內容.(板書)(二) 做一做畫△ABC與△A′B′C′,使 、 和 都等 于給定的值k.(1)設法比較∠A與∠A′的大?。唬?)△ABC與△A′B′C′相似嗎?說說你的理由.改變k值的大小,再試一試.定理3:三邊:成比例的兩個三 角形相似.(三)例題學習例:如圖,在△ABC和△ADE中,ABAD=BCDE=ACAE ,∠BAD=20°,求∠CAE的度數(shù).解:∵ABAD=BCDE=ACAE ,∴△ABC∽△ADE(三邊成比例的兩個三角形相似). ∴∠BAC=∠DAE,∴∠BAC-∠DAC =∠D AE-∠DAC,即∠BAD=∠CAE.∵∠BAD=20°,∴∠CAE=20°. 三、鞏固練習四、小結本節(jié)學 習了相似三角形的判定定理3,使用時一定要注意它使用的條件.
[想一想]同學們經歷了上述三種方法,你還能想出哪些測量旗桿高度的方法?你認為最優(yōu)化的方法是哪種?思路點拔:1、如果旗桿周圍有足夠地空地使旗桿在太陽光照射下影子都在平地上,并能測出影子的長度,那么,可以在平地垂直樹一根小棒,等到小棒的影子恰好等于棒高時,再量旗桿的影子,此時旗桿的影子長度就是這個旗桿的高度.2、可以采用立一個已知長度的參照物在旗桿旁照相后量出照片中旗桿與參照物的長度根據線段成比例來進行計算.3、拿一根知道長度的直棒,手臂伸直,不斷調整自己的位置,使直棒剛好完全擋住旗桿,量出此時人到旗桿的距離、人手臂的長度和棒長,就可以利用三角形相似來進行計算.等等.第四環(huán)節(jié) 課堂小結1、本節(jié)課你學到了哪些知識?2、在運用科學知識進行實踐過程中,你是否想到最優(yōu)的方法?3、在與同伴合作交流中,你對自己的表現(xiàn)滿意嗎?第五環(huán)節(jié) 布置作業(yè),反思提煉
當Δ=l2-4mn<0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的一個點P;當Δ=l2-4mn=0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的兩個點P;當Δ=l2-4mn>0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的三個點P.方法總結:由于相似情況不明確,因此要分兩種情況討論,注意要找準對應邊.三、板書設計相似三角形判定定理的證明判定定理1判定定理2判定定理3本課主要是證明相似三角形判定定理,以學生的自主探究為主,鼓勵學生獨立思考,多角度分析解決問題,總結常見的輔助線添加方法,使學生的推理能力和幾何思維都獲得提高,培養(yǎng)學生的探索精神和合作意識.
●教學目標(一)教學知識點1.相似三角形的周長比,面積比與相似比的關系.2. 相似三角形的周長比,面積比在實際中的應用.(二)能 力訓練要求1.經歷探索相似三角形的 性質的過程,培養(yǎng)學生的探索能力.2.利用相似三角形的性質解決實際問題訓練學生的運用能力.(三)情 感與價值觀要求1.學 生通過交流、歸納,總結相似三角形的周長比、面積比與相似比的關系,體會知識遷移、溫故知新的好處.2.運用相似多邊形的周長比,面積比解決實際問題,增強學生對知識的應用意識.●教學重點1.相似三角形的周長比、面積比與相似比關系的推導.2.運用相似三角形的比例關系解決實際問題.●教學難點相似三角形周長比、面積比與相似比的關系的推導及運用.●教學方法引導啟發(fā)式通過溫故知新,知識遷移,引導學生發(fā)現(xiàn)新的結論,通過比較、分析,應用獲得的知識達到理解并掌握的 目的.●教具準備投影片兩張第一張:(記作§4.7.2 A)第二張:(記作§4.7.2 B)
解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點.∵點E是AB的中點,∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯提醒:在運用“相似三角形的面積比等于相似比的平方”這一性質時,同樣要注意是對應三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯誤.三、板書設計相似三角形的周長和面積之比:相似三角形的周長比等于相似比,面積比等于相似比的平方.經歷相似三角形的性質的探索過程,培養(yǎng)學生的探索能力.通過交流、歸納,總結相似三角形的周長比、面積比與相似比的關系,體驗化歸思想.運用相似多邊形的周長比,面積比解決實際問題,訓練學生的運用能力,增強學生對知識的應用意識.
如通過數(shù)方格的方法求出三角形面積,讓學生用兩個三角形拼擺。一方面啟發(fā)學生設法把研究的圖形轉化為已經會計算面積的圖形,另一方面主動探索所研究的圖形與已學的預先之間有什么樣的聯(lián)系,從而找出面積的計算方法,而不是把計算公式直接告訴學生。這樣,既使學生在理解的基礎上掌握三角形面積計算公式,印象深刻,又培養(yǎng)了學生的思維能力,動手操作能力,發(fā)展了空間觀念。5、教材重點、難點和關鍵本節(jié)教學內容的重點是掌握三角形面積的計算公式;難點是理解三角形面積公式的推導過程;關鍵是通過操作實驗,使學生明確每個三角形的面積是等底等高的平行四邊形面積一半。在教學過程中注意以下幾點,重點難點問題就迎刃而解。⑴ 加強學生動手操作,通過三次對兩個完全相同的直角三角形、銳角三角形、鈍角三角形的拼擺,引導學生弄清三角形面積與平行四邊形面積關系,啟發(fā)學生探索三角形面積的計算方法。
依照《新課程標準》的要求,結合教材和學生的特點,從知識與技能、過程與方法、情感態(tài)度與價值觀三方面制定以下教學目標:1、經歷搭立體圖形的操作過程,體會必須根據立體圖形的正面、上面和側面(左面或右面)的形狀特征,才能確定所搭的立體圖形。結合搭立體圖形的活動,進一步體驗搭立體圖形某一面(如正面)的形狀,所搭的立體圖形是不唯一的。2、在搭立體圖形和觀察立體圖形的活動中,逐步發(fā)展空間觀念以及觀察和操作能力。3、讓學生體驗數(shù)學和生活的密切聯(lián)系,培養(yǎng)同學之間合作的習慣。。三、說教法學法根據四年級學生心理、認知規(guī)律等特點,本節(jié)課準備主要采用觀察法和動手法進行教學。注重從學生已有的經驗出發(fā),讓學生在問題情境中主動地探究解決問題的方法,真正成為課堂的主人。
1、說教材:本節(jié)課是北師大版小學數(shù)學四年級下冊第94-95頁。猜數(shù)游戲是在學生已經學習了用字母表示數(shù)、方程、等式的性質等知識的基礎上進行學習的。本節(jié)課主要學會用等式的性質解“ax±b=c”這樣的方程,并能用方程解決簡單的實際問題。教材通過笑笑和淘氣猜數(shù)游戲,利用等量關系列出方程,重點是利用等式的性質解方程,能口頭檢驗,形成檢驗的意識。本節(jié)課我通過游戲激發(fā)學生的興趣,使學生體會方程的作用,并產生學習方程解法的愿望,為以后學習解方程、用方程思想解決問題打下重要基礎。2、說教學目標:通過猜數(shù)游戲的這個情景,讓學生會解形如“ax±b=c”的方程,并會簡單應用,讓學生在此過程中,體驗解方程的思路,并掌握方法。在情感、態(tài)度、價值觀方面,通過游戲,訓練學生的數(shù)學思維能力,養(yǎng)成善于思考的習慣。3、說重、難點:本節(jié)課的重點是會解形如“ax±b=c”的方程,并會簡單應用;難點是利用等式的性質解方程
一、說教材(一)說教學內容我說課的內容是北師大版義務教育課程第八冊第四單元“觀察物體”一節(jié),是一節(jié)新授課。(二)教材簡析觀察物體是在學生學習并掌握了“上下、前后、左右”位置關系的基礎上安排的。通過這部分內容的教學,不但可以使學生能通過由低到高來觀察物體的活動,從而體會到不同的位置看到的情景不一樣,而且能通過由遠到近看景物,能體會到看到的范圍越來越小。(三)說教材重點和難點。教學重點:想象、判斷觀察到畫面發(fā)生的相應變化,發(fā)展空間觀念。教學難點:想象、判斷觀察到畫面發(fā)生的相應變化,發(fā)展空間觀念。二、說教學目標依照《新課程標準》的要求,結合教材和學生的特點,從知識、能力、情感態(tài)度三方面制定以下教學目標:1、通過引導學生參與各種形式的數(shù)學活動,使他們體驗從不同的角度觀察同一物體所看到的圖形可能并不完全相同,領悟觀察物體的方法,培養(yǎng)和發(fā)展學生的空間觀念。2、培養(yǎng)學生運用所學知識解決實際問題的能力、與人交流的能力以及觀察能力。
3、變換角度,深入思考第三幅情境圖隱含著多樣的等量關系,也正是引發(fā)學生數(shù)學思考的最佳情境。根據學生認識的深入程度,可適當讓學生體會到等式的“值等”和“意等”,并放手讓學生探究,根據不同的認識找到不同的等量關系,列出等量關系不同的同解方程。在教學中,先引導孩子發(fā)現(xiàn)情境中的基本相等關系:2瓶水的水量+一杯水的水量=一壺水的水量,并且列出等式2z+200=2000,在此基礎上,再引導孩子發(fā)現(xiàn)其他的等量關系。在這一過程中,充分激發(fā)孩子探求知識的欲望,調動孩子思考的主動性和靈活性,從而找到多樣化的等量關系,并進一步提高孩子解決數(shù)學問題的能力。4、建立概念,判斷鞏固在前面教學的基礎上總結、抽象出方程的含義。通過三道例題的簡潔數(shù)學式子表達,讓小組合作尋找他們的共同特點,從而建立方程的概念。“含有未知數(shù)”與“等式”是方程概念的兩點最重要的內涵。并通過“練一練”讓學生直接找出方程。
《包裝》是北師大版四年級下冊第三單元第四課時的內容。本課主要讓學生探索小數(shù)乘小數(shù)的豎式計算方法,是在學生掌握小數(shù)點位置的移動引起小數(shù)大小變化的規(guī)律以及積的小數(shù)位數(shù)與兩個乘數(shù)的小數(shù)位數(shù)之間關系的基礎上教學的。小數(shù)乘法的豎式計算是本單元的重點,是學生正確進行小數(shù)乘法計算的關鍵。課本首先安排了三個問題:第一個問題是結合解決實際問題的過程,會選擇適當方法估計運算結果,發(fā)展數(shù)感,并通過交流進一步理解小數(shù)乘法與整數(shù)乘法之間相互轉化的條件;第二個問題也是結合解決實際問題的過程,掌握小數(shù)乘法轉化為整數(shù)乘法進行運算的一般步驟,從而歸納總結小數(shù)乘法的豎式計算方法;第三個問題是經歷獨立計算和交流小數(shù)乘法的過程,體驗算法的多樣化,發(fā)展運算能力。其次安排了6道練習題,目的是為了進一步發(fā)展數(shù)感,鞏固小數(shù)乘法的豎式計算方法,體會小數(shù)乘法的豎式計算在生活中的應用。
三、說教學重點、難點重點是小數(shù)乘法的豎式計算方法和積與乘數(shù)的大小關系。難點是小數(shù)乘法中乘數(shù)末位有0的計算。四、說學情在進行本節(jié)內容學習之前,學生已經學習了整數(shù)乘法的運算規(guī)律,小數(shù)的意義及其加減法,還有小數(shù)乘法的計算規(guī)律。本節(jié)內容重點是學會把小數(shù)乘法的運算方法應用到解決實際問題中去。根據四年級學生的認知特點和課堂注意力時間有限的特點,在教學中一定要提高課堂效率五、說教法、學法在本課教學中,我采取的教學方法是:1.通過復習,回顧計算規(guī)律,并把它應用到豎式中去。2.情境展示,把數(shù)學問題直接放在實際問題中來學習并解決。3.解決問題時采用自主探索、獨立思考和小組合作交流的學習方式。通過這些教學法激發(fā)學生學習的積極性和主動性,引導學生把學到的規(guī)律應用到現(xiàn)實生活中來解決實際問題。六、說教學過程(一)舉例說明積的小數(shù)位數(shù)與乘數(shù)小數(shù)位數(shù)的關系。通過比眼力,做一做,復習前一節(jié)課所學內容,為本節(jié)課打下基礎。
今天我說課的內容是人教版一年級數(shù)學下冊第三單元《分類與整理》。我打算從說教學內容、說教學目標、說教學重難點、說教具準備、說教法學法和說教學過程等方面進行說課。一、 說教學內容一年級數(shù)學下冊第三單元《分類與整理》要求學生在分類的基礎上用自己的方式呈現(xiàn)整理的結果,但又不是正式的學習統(tǒng)計圖和統(tǒng)計表,它是為以后學習統(tǒng)計圖和統(tǒng)計表打下基礎。二、 說教學目標一年級的心理特點和有具體到抽象的認知規(guī)律,我確定以下的教學目標:1.使同學能按照給定的標準或自己選定的標準對事物進行分類;能對分類結果進行整理,能夠用自己的方式(文字、圖畫、表格等)呈現(xiàn)分類的結果;能對數(shù)據進行簡單的分析,能根據數(shù)據提出并回答簡單的問題。2.在小組交流合作中學習,經歷收集信息、分類、統(tǒng)計的過程,體會對同一事物按單一標準分類的一致性。三、說教學重難點根據教材的編排和學生年齡特點,我認為本節(jié)課的重點是按單一標準對事物進行分類,本節(jié)課的難點是對分類結果進行整理,完成簡單的統(tǒng)計活動,也就是能根據結果提出問題,回答問題。針對本節(jié)課的重難點,我設計的突破方法是首先通過把黑板上圖形擺放整齊,讓學生體會分類的意義和作用,然后創(chuàng)設情境,讓學生在討論合作交流中體會按單一標準對事物進行分類得到結果的一致性,最后對分類結果進行整理,完成統(tǒng)計活動。
(四)提高應用已知:在△ABC中,已知∠ACB=90°,CD⊥AB于D,請找出圖中的相似三角形,并說明理由。設計意圖:訓練學生靈活運用知識的能力(五)小結反思1.、相似三角形的判定方法一:如果一個三角形的兩個角分別與另一個三角形的兩個角對應相等,那么這兩個三角形相似. 2、在找對應角相等時要十分重視隱含條件,如公共角、對頂角、直角等. 3、掌握由平行線構造的兩類相似圖形:一類是A字型,另一類是X型. (回顧定理,強調兩個基本圖形,培養(yǎng)學生養(yǎng)成認真觀察,注意尋找圖形中的隱含信息的意識) 4、 常用的找對應角的方法:①已知角相等;②已知角度計算得出相等的對應角;③公共角;④對頂角;⑤同角的余(補)角相等.