一、本章知識要點: 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關系,進而才能利用直角三角形的邊與角的相互關系去解直角三角形,因此三角形函數(shù)定義既是本章的重點又是理解本章知識的關鍵,而且也是本章知識的難點。如何解決這一關鍵問題,教材采取了以下的教學步驟:1. 從實際中提出問題,如修建揚水站的實例,這一實例可歸結為已知RtΔ的一個銳角和斜邊求已知角的對邊的問題。顯然用勾股定理和直角三角形兩個銳角互余中的邊與邊或角與角的關系無法解出了,因此需要進一步來研究直角三角形中邊與角的相互關系。2. 教材又采取了從特殊到一般的研究方法利用學生的舊知識,以含30°、45°的直角三角形為例:揭示了直角三角形中一個銳角確定為30°時,那么這角的對邊與斜邊之比就確定比值為1:2。
(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產品的質量檔次為第6檔.方法總結:解決此類問題的關鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第8題三、板書設計二次函數(shù)1.二次函數(shù)的概念2.從實際問題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見的函數(shù),應用非常廣泛,它是客觀地反映現(xiàn)實世界中變量之間的數(shù)量關系和變化規(guī)律的一種非常重要的數(shù)學模型.許多實際問題往往可以歸結為二次函數(shù)加以研究.本節(jié)課是學習二次函數(shù)的第一節(jié)課,通過實例引入二次函數(shù)的概念,并學習求一些簡單的實際問題中二次函數(shù)的解析式.在教學中要重視二次函數(shù)概念的形成和建構,在概念的學習過程中,讓學生體驗從問題出發(fā)到列二次函數(shù)解析式的過程,體驗用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.
1. _____________________________________________2. _____________________________________________你會計算菱形的周長嗎?三、例題精講例1.課本3頁例1例2.已知:在菱形ABCD中,對角線AC、BD相交于點O,E、F、G、H分別是菱形ABCD各邊的中點,求證:OE=OF=OG=OH.四、課堂檢測:1.已知四邊形ABCD是菱形,O是兩條對角線的交點,AC=8cm,DB=6cm,菱形的邊長是________cm.2.菱形ABCD的周長為40cm,兩條對角線AC:BD=4:3,那么對角線AC=______cm,BD=______cm.3.若菱形的邊長等于一條對角線的長,則它的一組鄰角的度數(shù)分別為 4.已知菱形的面積為30平方厘米,如果一條對角線長為12厘米,則別一條對角線長為________厘米.5.菱形的兩條對角線把菱形分成全等的直角三角形的個數(shù)是( ).(A)1個 (B)2個 (C)3個 (D)4個6.在菱形ABCD中,CE⊥AB,E為垂足,BC=2,BE=1,求菱形的周長和面積
方法三:一個同學先畫兩條等長的線段AB、AD,然后分別以B、D為圓心,AB為半徑畫弧,得到兩弧的交點C,連接BC、CD,就得到了一個四邊形,猜一猜,這是什么四邊形?請你畫一畫。通過探究,得到: 的四邊形是菱形。證明上述結論:三、例題鞏固課本6頁例2 四、課堂檢測1、下列判別錯誤的是( )A.對角線互相垂直,平分的四邊形是菱形. B、對角線互相垂直的平行四邊形是菱形C.有一條對角線平分一組對角的四邊形是菱形. D.鄰邊相等的平行四邊形是菱形.2、下列條件中,可以判定一個四邊形是菱形的是( )A.兩條對角線相等 B.兩條對角線互相垂直C.兩條對角線相等且垂直 D.兩條對角線互相垂直平分3、要判斷一個四邊形是菱形,可以首先判斷它是一個平行四邊形,然后再判定這個四邊形的一組__________或兩條對角線__________.4、已知:如圖 ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F求證:四邊形AFCE是菱形
(2)相似多邊形的對應邊的比稱為相似比;(3)當相似比為1時,兩個多邊形全等.二、運用相似多邊形的性質.活動3 例:如圖27.1-6,四邊形ABCD和EFGH相似,求角 的大小和EH的長度 .27.1-6教師活動:教師出示例題,提出問題;學生活動:學生通過例題運用相似多邊形的性質,正確解答出角 的大小和EH的長度 .(2人板演)活動41.在比例尺為1﹕10 000 000的地圖上,量得甲、乙兩地的距離是30 cm,求兩地的實際距離.2.如圖所示的兩個直角三角形相似嗎?為什么?3.如圖所示的兩個五邊形相似,求未知邊 、 、 、 的長度.教師活動:在活動中,教師應重點關注:(1)學生參與活動的熱情及語言歸納數(shù)學結論的能力;(2)學生對于相似多邊形的性質的掌握情況.三、回顧與反思.(1)談談本節(jié)課你有哪些收獲.(2)布置課外作業(yè):教材P88頁習題4.4
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設該商品每天的利潤為y元,求y與x的函數(shù)關系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導學生觀察函數(shù)關系式(1)和(2),提出問題讓學生思考回答;(1)函數(shù)關系式(1)和(2)的自變量各有幾個? (各有1個)(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式?(分別是二次多項式)(3)函數(shù)關系式(1)和(2)有什么共同特點? (都是用自變量的二次多項式來表示的)(4)本章導圖中的問題以及P1頁的問題2有什么共同特點?讓學生討論、歸結為:自變量x為何值時,函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.
(3)若要滿足結論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應是60°,然后結合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設存在點P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結:由于存在性問題的結論有兩種可能,所以具有開放的特征,在假設存在性以后進行的推理或計算.一般思路是:假設存在——推理論證——得出結論.若能導出合理的結果,就做出“存在”的判斷,若導出矛盾,就做出“不存在”的判斷.
解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結:注意運用平面內兩點之間的距離公式,設平面內任意兩點的坐標分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關系的實際應用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.
教學目標:1、理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。2、了解計算一個銳角的正切值的方法。教學重點:理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。教學難點:計算一個銳角的正切值的方法。教學過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設計了多種形式的臺階。下列圖中的兩個臺階哪個更陡?你是怎么判斷的?圖(1) 圖(2)[點撥]可將這兩個臺階抽象地看成兩個三角形答:圖 的臺階更陡,理由 二、探索活動1、思考與探索一:除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?① 可通過測量BC與AC的長度,② 再算出它們的比,來說明臺階的傾斜程度。(思考:BC與AC長度的比與臺階的傾斜程度有何關系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:
已知一水壩的橫斷面是梯形ABCD,下底BC長14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長為46m,求它的上底的長(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過點A作AE⊥BC于E,過點D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過點A作AE⊥BC,過點D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長約為3.1m.方法總結:考查對坡度的理解及梯形的性質的掌握情況.解決問題的關鍵是添加輔助線構造直角三角形.
若a,b,c都是不等于零的數(shù),且a+bc=b+ca=c+ab=k,求k的值.解:當a+b+c≠0時,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,則k=2(a+b+c)a+b+c=2;當a+b+c=0時,則有a+b=-c.此時k=a+bc=-cc=-1.綜上所述,k的值是2或-1.易錯提醒:運用等比性質的條件是分母之和不等于0,往往忽視這一隱含條件而出錯.本題題目中并沒有交代a+b+c≠0,所以應分兩種情況討論,容易出現(xiàn)的錯誤是忽略討論a+b+c=0這種情況.三、板書設計比例的性質基本性質:如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性質:如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab經歷比例的性質的探索過程,體會類比的思想,提高學生探究、歸納的能力.通過問題情境的創(chuàng)設和解決過程進一步體會數(shù)學與生活的緊密聯(lián)系,體會數(shù)學的思維方式,增強學習數(shù)學的興趣.
二、教學 1a,1b.1.First the teacher asks the students what kind of fruit food and drink you like the best and writes down on the blackboard.教師問學生最喜歡什么水果和飲料并把它們寫在黑板上。比如:potato chips,ice cream,tea,lemon,chocolate,oranges,salad,popcorn,pickle and so on.2.接著叫學生表達以上食物的味道,引出新單詞——sweet,crispy,salty,sour,delicious,hot,awful,nice…并且完成lb教學內容通過此活動,以舊帶新引入新單詞。其目的是讓學生自主學習新知識。 三、教學 2a,2b1.首先,聽力前的brainstormFirst,Let students describe how potato chips taste and describe how helpful the potato chips.Then,ask:When and where were potato chips invented?Who were potato chips invented by?How were potato chips invented?(Let students guess according to the following key words.)Key words:by accident,customer,restaurant,by mistake.(說明:通過問題讓學生對對話內容有整體了解,為聽力練習做好準備;又培養(yǎng)學生的注意力,想像力,觀察力。)
五、教學反思:時鐘的秒針、分針、時針掃的圖形, 汽車擋風玻璃的刮水器;刷工人刷過的面積近似看為扇形。圓中的計算問題---弧長和扇形的面積,雖然新課標、新教材要求學習,但本節(jié)教師結合學生的實際要求,將其作為內容進行拓展與延伸,具有一定的實際意義。用生活中動態(tài)幾何解釋扇形,體驗解決問題策略的多樣性,發(fā)展實踐能力與創(chuàng)新精神。本節(jié)課,教師通過“扇子”的問題情景引入新課,它蘊含了大量的情感信息,有效激發(fā)學生的求知欲望,充分調動學生的學習積極性,注重學生的參與,讓出時間與空間由學生動手實踐,鼓勵學生自主探索、合作交流、展示成果,提高了學生發(fā)現(xiàn)問題、提出問題、解決問題的能力。用“扇子變化”,幫助學生探索自然界中事物的動靜結合問題,利用“扇子的文化”的新奇感激起學生的學習熱情,陶冶了學生的學習情操,從而使學生更深切地理解問題,使原本單調枯燥的數(shù)學變得生動、形象,激發(fā)學生的情感,使課堂充滿生機。
三、說教學目標基于以上對教材和學情的分析,我在研讀新課的要求,閱讀文學作品時也有著情感體驗說感知文章的內涵,從中獲得對自然社會人生的有益啟示。從三維目標三方面制定了如下教學目標:1.了解作者的生平與新月派詩歌“三美”主張,把握詩歌內容2.通過誦讀法、自主合作探究法,多角度體會詩歌的語言美,這也是本節(jié)課的重難點。3,理解作者隱藏在文字下深沉的母愛,體會生命的美好。四、說教法學法教學的目的所在,正如葉圣陶先生所說,教是為了不教,學是為了會學,教學中理應靈活處理多種教學方法,因此,我將多媒體輔助教學法、提問法,點撥法的教法與學生誦讀品味法、圈點勾畫法、自主合作探究法的學法結合起來,以求達到事半功倍的效果。
一、說教材(一)教材的地位和作用:《范進中舉》是初中語文第五冊第六單元的講讀課。這是一個小說教學單元。本文是一篇揭露封建科舉制度和封建文化教育對讀書人殘害的名著。節(jié)選自《儒林外史》,通過本文的學習,可以使學生對封建科舉制度的腐朽與罪角有更深的了解,同時還有利于學生在比較閱讀中欣賞、感知藝術形象。為提高學生閱讀和鑒賞文學名著的能力打下較好的基礎。(二)教學重、難點:1、重點:學習運用"比較法"閱讀分析范進中舉前后截然不同的境遇,分析重要人物范進和胡屠戶的人物形象。2、難點:理解范進發(fā)瘋的原因及對科舉制度的批判。(三)教材處理:這篇文章內容生動、語言形象,在一課時教完,學生容易被其情節(jié)和語言所吸引,而不容易著眼于對思想性和藝術性的分析。因此,在教學中,教師應加強主導作用,引導學生不斷發(fā)展興趣,領會本文深刻的思想性和高度的藝術性。長課文尤其要注意精講,講求適當?shù)娜∩帷?/p>
證明:如圖,過點C作CF∥PD交AB于點F,則BPCP=BDDF,ADDF=AECE.∵AD=AE,∴DF=CE,∴BPCP=BDCE.方法總結:證明四條線段成比例時,如果圖形中有平行線,則可以直接應用平行線分線段成比例的基本事實以及推論得到相關比例式.如果圖中沒有平行線,則需構造輔助線創(chuàng)造平行條件,再應用平行線分線段成比例的基本事實及其推論得到相關比例式.三、板書設計平行線分線段成比例基本事實:兩條直線被一組平行線所截, 所得的對應線段成比例推論:平行于三角形一邊的直線與其他 兩邊相交,截得的對應線段成比例通過教學,培養(yǎng)學生的觀察、分析、概括能力,了解特殊與一般的辯證關系.再次鍛煉類比的數(shù)學思想,能把一個復雜的圖形分成幾個基本圖形,通過應用鍛煉識圖能力和推理論證能力.在探索過程中,積累數(shù)學活動的經驗,體驗探索結論的方法和過程,發(fā)展學生的合情推理能力和有條理的說理表達能力.
1.創(chuàng)設情景法:利用多媒體課件,音樂、圖片、文字相結合,激發(fā)學生學習興趣和對本課的求知欲望,從而達到良好的教學效果。2.“自學——點撥——歸納”法:課前,教師根據(jù)教學目標設計出本課的“自學問題單”,讓學生結合“自學問題單”先自學,預習課文;課堂上,小組合作討論、解疑,教師適時點撥,最后歸納,逐步解決“自學問題單”中的問題,從而完成“教學目標”中的任務。四、說學法郭沫若先生曾說讀書要“用自己的頭腦來想,用自己的眼睛來看,用自己的手來做”?!墩Z文課程標準》也特別強調:語文課程必須面向全體學生,使學生獲得基本的語文素養(yǎng),自主、合作、探究的學習方式應得到積極的提倡。九年級學生經過兩年的初中學習后,已基本形成了一定的學習方法,也已經有了自主意識和自主學習的能力,所以,我采用了“自主、合作、探究”的學習方式。
二、說教法:我在設計這節(jié)課時努力實踐新課程理念,充分突出學生的主體地位選擇教學方法,整堂課以“在情節(jié)與現(xiàn)實寫照中得到情感體驗”為教學主線,通過整體感知,情節(jié)領悟,細節(jié)品味等途徑,運用快速閱讀,自主合作探究等方法,引導學生深入文本,感受主旨,與文章對話,與自己對話,與同學老師對話,在這種感受,體驗、交流的課堂學習過程中逐步提升情感態(tài)度價值觀。三、說學法:采用“自主、合作、探究”的學習方式,讓學生自主進入文本,讀出感受,通過小組合作交流探究來解決問題?!径?#183;三理論依據(jù)】教學過程必須根據(jù)學生語文學習的特點,關注學生的個體的學習需求,愛護學生的好奇心,求知欲,充分激發(fā)學生的主動意識,倡導自主、合作、探究的學習方式,有助于學生學習方式的形成。
一.教材的地位和作用《故鄉(xiāng)》是人教版九年級上冊第四單元中的一篇小說。第四單元選編的主要是描寫少年生活的小說。而《故鄉(xiāng)》中因為有少年閏土的形象,所以也放在了本單元。《故鄉(xiāng)》是魯迅短篇小說集《吶喊》中的一篇。教材入選這篇小說,目的是讓學生通過閱讀名家名篇,學習閱讀小說的方法,培養(yǎng)學生運用對比手法刻畫人物的能力,品析文中富有內涵的語言,領悟文章內涵,從而獲得人生真諦!二.教學對象分析本文教學的對象是初三的學生,他們已經有了閱讀小說的知識基礎,因此設計教學活動的目的主要是增加他們的知識積累和提高閱讀能力。通過合作探究學習,讓學生自己感悟文章的深層內涵,只有這樣才能真正提高學生的閱讀能力。三.教學目標及重點、難點的設定
一、 教材分析《敬業(yè)與樂業(yè)》是部編版中學語文九年級上冊第二單元的一篇課文,它是梁啟超的一篇有關事業(yè)與人生的演講稿。文章層次清楚、條理清晰、論據(jù)充分,發(fā)人深思,讓學生們體會敬業(yè)樂業(yè)的趣味。二、 學情分析:九年級學生對議論文體已有了初步的認識,并且已經開始學習寫一些簡單的議論文。但無論從學生的閱讀還是寫作來看,學生對議論文掌握的情況都有待加強。本篇課文無論在議論的層次、結構還是方法等方面都是最有代表性的,也是演講的特點和技巧體現(xiàn)得很明顯的文章,因此,有必要學習。三、 教學目標根據(jù)教材分析和學生實際能力特點,我確定了如下的教學目標:知識與技能:在反復閱讀課文的基礎上,找出作者的主要觀點,梳理出作者的論證思路,體會并領悟敬業(yè)與樂業(yè)的精神,從中受到人文熏陶。過程與方法:學習本文運用的多種論證方法,條理清楚地闡述自己的觀點。