提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

北師大初中九年級數(shù)學下冊30°,45°,60°角的三角函數(shù)值2教案

  • 北師大初中七年級數(shù)學下冊多項式除以單項式教案

    北師大初中七年級數(shù)學下冊多項式除以單項式教案

    一、情境導入1.計算:(1)-6x3y4z2÷(-23x2y2);(2)9mn÷(-6mn)2·(13n2);(3)6(a-b)3c5÷[-35(a-b)2c]·[-2(a-b)3c4].2.m(a+b+c)=am+bm+cm,(am+bm+cm)÷m=am÷m+bm÷m+cm÷m=a+b+c.你能根據(jù)多項式乘以單項式的運算歸納出多項式除以單項式的運算法則嗎?二、合作探究探究點:多項式除以單項式【類型一】 直接利用多項式除以單項式進行計算計算:(72x3y4-36x2y3+9xy2)÷(-9xy2).解析:根據(jù)多項式除以單項式,先用多項式的每一項分別除以這個單項式,然后再把所得的商相加.解:原式=72x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2)+9xy2÷(-9xy2)=-8x2y2+4xy-1.方法總結:多項式除以單項式,先把多項式的每一項都分別除以這個單項式,然后再把所得的商相加.

  • 北師大初中七年級數(shù)學下冊單項式除以單項式教案

    北師大初中七年級數(shù)學下冊單項式除以單項式教案

    光的速度約為3×108米/秒,一顆人造地球衛(wèi)星的速度是8×103米/秒,則光的速度是這顆人造地球衛(wèi)星速度的多少倍?解析:要求光速是人造地球衛(wèi)星的速度的倍數(shù),用光速除以人造地球衛(wèi)星的速度,可轉化為單項式相除問題.解:(3×108)÷(8×103)=(3÷8)·(108÷103)=3.75×104.答:光速是這顆人造地球衛(wèi)星速度的3.75×104倍.方法總結:解整式除法的實際應用題時,應分清何為除式,何為被除式,然后應當單項式除以單項式法則計算.三、板書設計1.單項式除以單項式的運算法則:單項式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式.2.單項式除以單項式的應用在教學過程中,通過生活中的情景導入,引導學生根據(jù)單項式乘以單項式的乘法運算推導出其逆運算的規(guī)律,在探究的過程中經(jīng)歷數(shù)學概念的生成過程,從而加深印象

  • 北師大初中七年級數(shù)學下冊單項式與單項式相乘教案

    北師大初中七年級數(shù)學下冊單項式與單項式相乘教案

    解析:先求出長方形的面積,再求出綠化的面積,兩者相減即可求出剩下的面積.解:長方形的面積是xym2,綠化的面積是35x×34y=920xy(m2),則剩下的面積是xy-920xy=1120xy(m2).方法總結:掌握長方形的面積公式和單項式乘單項式法則是解題的關鍵.三、板書設計1.單項式乘以單項式的運算法則:單項式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對于只在一個單項式里面含有的字母,則連同它的指數(shù)作為積的一個因式.2.單項式乘以單項式的應用本課時的重點是讓學生理解單項式的乘法法則并能熟練應用.要求學生在乘法的運算律以及冪的運算律的基礎上進行探究.教師在課堂上應該處于引導位置,鼓勵學生“試一試”,學生通過動手操作,能夠更為直接的理解和應用該知識點

  • 北師大初中八年級數(shù)學下冊變形后提公因式因式分解教案

    北師大初中八年級數(shù)學下冊變形后提公因式因式分解教案

    (3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù)).解析:(1)根據(jù)已知計算過程直接得出因式分解的方法即可;(2)根據(jù)已知分解因式的方法可以得出答案;(3)由(1)中計算發(fā)現(xiàn)規(guī)律進而得出答案.解:(1)因式分解的方法是提公因式法,共應用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需應用上述方法2016次,結果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法總結:解決此類問題需要認真閱讀,理解題意,根據(jù)已知得出分解因式的規(guī)律是解題關鍵.三、板書設計1.提公因式分解因式的一般步驟:(1)觀察;(2)適當變形;(3)確定公因式;(4)提取公因式.2.提公因式法因式分解的應用本課時是在上一課時的基礎上進行的拓展延伸,在教學時要給學生足夠主動權和思考空間,突出學生在課堂上的主體地位,引導和鼓勵學生自主探究,在培養(yǎng)學生創(chuàng)新能力的同時提高學生的邏輯思維能力.

  • 北師大初中八年級數(shù)學下冊直接提公因式因式分解教案

    北師大初中八年級數(shù)學下冊直接提公因式因式分解教案

    解析:(1)首先提取公因式13,進而求出即可;(2)首先提取公因式20.15,進而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法總結:在計算求值時,若式子各項都含有公因式,用提取公因式的方法可使運算簡便.三、板書設計1.公因式多項式各項都含有的相同因式叫這個多項式各項的公因式.2.提公因式法如果一個多項式的各項有公因式,可以把這個公因式提到括號外面,這種因式分解的方法叫做提公因式法.本節(jié)中要給學生留出自主學習的空間,然后引入稍有層次的例題,讓學生進一步感受因式分解與整式的乘法是逆過程,從而可用整式的乘法檢查錯誤.本節(jié)課在對例題的探究上,提倡引導學生合作交流,使學生發(fā)揮群體的力量,以此提高教學效果.

  • 北師大初中數(shù)學九年級上冊幾何問題及數(shù)字問題與一元二次方程1教案

    北師大初中數(shù)學九年級上冊幾何問題及數(shù)字問題與一元二次方程1教案

    解:設個位數(shù)字為x,則十位數(shù)字為14-x,兩數(shù)字之積為x(14-x),兩個數(shù)字交換位置后的新兩位數(shù)為10x+(14-x).根據(jù)題意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因為個位數(shù)上的數(shù)字不可能是負數(shù),所以x=-3應舍去.當x=8時,14-x=6.所以這個兩位數(shù)是68.方法總結:(1)數(shù)字排列問題常采用間接設未知數(shù)的方法求解.(2)注意數(shù)字只有0,1,2,3,4,5,6,7,8,9這10個,且最高位上的數(shù)字不能為0,而其他如分數(shù)、負數(shù)根不符合實際意義,必須舍去.三、板書設計幾何問題及數(shù)字問題幾何問題面積問題動點問題數(shù)字問題經(jīng)歷分析具體問題中的數(shù)量關系,建立方程模型解決問題的過程,認識方程模型的重要性.通過列方程解應用題,進一步提高邏輯思維能力和分析問題、解決問題的能力.經(jīng)歷探索過程,培養(yǎng)合作學習的意識.體會數(shù)學與實際生活的聯(lián)系,進一步感知方程的應用價值.

  • 北師大初中數(shù)學九年級上冊用因式分解法求解一元二次方程1教案

    北師大初中數(shù)學九年級上冊用因式分解法求解一元二次方程1教案

    探究點二:選用適當?shù)姆椒ń庖辉畏匠逃眠m當?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒有實數(shù)根.方法總結:解一元二次方程時,若沒有具體的要求,應盡量選擇最簡便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時,要先計算b2-4ac的值,若b2-4ac<0,則判斷原方程沒有實數(shù)根.沒有特殊要求時,一般不用配方法.

  • 北師大初中數(shù)學九年級上冊利用一元二次方程解決面積問題1教案

    北師大初中數(shù)學九年級上冊利用一元二次方程解決面積問題1教案

    ∴此方程無解.∴兩個正方形的面積之和不可能等于12cm2.方法總結:對于生活中的應用題,首先要全面理解題意,然后根據(jù)實際問題的要求,確定用哪些數(shù)學知識和方法解決,如本題用方程思想和一元二次方程的根的判定方法來解決.三、板書設計列一元二次方程解應用題的一般步驟可以歸結為“審,設,列,解,檢,答”六個步驟:(1)審:審題要弄清已知量和未知量,問題中的等量關系;(2)設:設未知數(shù),有直接和間接兩種設法,因題而異;(3)列:列方程,一般先找出能夠表達應用題全部含義的一個相等關系,列代數(shù)式表示相等關系中的各個量,即可得到方程;(4)解:求出所列方程的解;(5)檢:檢驗方程的解是否正確,是否保證實際問題有意義;(6)答:根據(jù)題意,選擇合理的答案.經(jīng)歷列方程解決實際問題的過程,體會一元二次方程是刻畫現(xiàn)實世界中數(shù)量關系的一個有效數(shù)學模型.通過學生創(chuàng)設解決問題的方案,增強學生的數(shù)學應用意識和能力.

  • 北師大初中七年級數(shù)學上冊數(shù)據(jù)的收集教案1

    北師大初中七年級數(shù)學上冊數(shù)據(jù)的收集教案1

    新建成的紅星中學,首次招收七年級新生12個班共500人,學校準備修建一個自行車車棚.請問需要修建多大面積的自行車車棚?請你設計一個調查方案解決這個問題.解析:決定自行車車棚面積的因素有兩個,即自行車的數(shù)量與每輛自行車的占地面積.因此收集數(shù)據(jù)的重點應圍繞這兩個因素進行.解:調查方案如下:(1)對全體新生的到校方式進行問卷調查.調查問卷如下:你到校的方式是騎自行車嗎?A.經(jīng)常是 B.不經(jīng)常是C.很少是 D.從不是(2)根據(jù)調查問卷結果分類統(tǒng)計騎自行車的人數(shù);(3)實際測量或估計存放1輛自行車的大約占地面積;(4)根據(jù)學校的建設規(guī)劃、財力等因素確定自行車車棚的面積.方法總結:確定調查方案時必須明確兩個問題:(1)需要收集哪些數(shù)據(jù)?(2)采用什么方式進行調查可以獲得這些數(shù)據(jù)?探究點三:從圖表中獲取信息小冰就公眾對在餐廳吸煙的態(tài)度進行了調查,并將調查結果制作成如圖所示的統(tǒng)計圖,請根據(jù)圖中的信息回答下列問題:

  • 北師大初中七年級數(shù)學上冊絕對值教案1

    北師大初中七年級數(shù)學上冊絕對值教案1

    方法總結:由絕對值的定義可知,一個數(shù)的絕對值越小,離原點越近.將實際問題轉化為數(shù)學問題,即為與標準質量的差的絕對值越小,越接近標準質量.【類型四】 絕對值的非負性已知|x-3|+|y-2|=0,求x+y的值.解析:一個數(shù)的絕對值總是大于或等于0,即為非負數(shù),若兩個非負數(shù)的和為0,則這兩個數(shù)同為0.解:由題意得x-3=0,y-2=0,所以x=3,y=2.所以x+y=3+2=5.方法總結:幾個非負數(shù)的和為0,則這幾個數(shù)都為0.三、板書設計絕對值相反數(shù)絕對值性質→|a|=a(a>0)0(a=0)-a(a<0)互為相反數(shù)的兩個數(shù)的絕對值相等兩個負數(shù)比較大?。航^對值大的反而小絕對值這個名詞既陌生,又是一個不易理解的數(shù)學術語,是本章的重點內容,同時也是一個難點內容.教材從幾何的角度給出絕對值的概念,也就是從數(shù)軸上表示數(shù)的點的位置出發(fā),得出定義的.

  • 北師大初中數(shù)學八年級上冊函數(shù)1教案

    北師大初中數(shù)學八年級上冊函數(shù)1教案

    探究點三:函數(shù)的圖象洗衣機在洗滌衣服時,每漿洗一遍都經(jīng)歷了注水、清洗、排水三個連續(xù)過程(工作前洗衣機內無水).在這三個過程中,洗衣機內的水量y(升)與漿洗一遍的時間x(分)之間函數(shù)關系的圖象大致為()解析:∵洗衣機工作前洗衣機內無水,∴A,B兩選項不正確,淘汰;又∵洗衣機最后排完水,∴D選項不正確,淘汰,所以選項C正確,故選C.方法總結:本題考查了對函數(shù)圖象的理解能力,看函數(shù)圖象要理解兩個變量的變化情況.三、板書設計函數(shù)定義:自變量、因變量、常量函數(shù)的關系式三種表示方法函數(shù)值函數(shù)的圖象在教學過程中,注意通過對以前學過的“變量之間的關系”的回顧與思考,力求提供生動有趣的問題情境,激發(fā)學生的學習興趣,并通過層層深入的問題設計,引導學生進行觀察、操作、交流、歸納等數(shù)學活動.在活動中歸納、概括出函數(shù)的概念,并通過師生交流、生生交流、辨析識別等加深學生對函數(shù)概念的理解.

  • 北師大初中七年級數(shù)學上冊科學記數(shù)法教案2

    北師大初中七年級數(shù)學上冊科學記數(shù)法教案2

    光年是表示較大距離的一個單位, 而納米(nanometer)則是表示微小距離的單位。1納米= 米,即1米= 納米。我們通常使用的尺上的一小格是一毫米(mm),1毫米= 米。可見,1毫米= 納米,容易算出,1納米相當于1毫米的一百萬分之一??上攵?,1納米是多么的小。超微粒子的大小一般在1~100 納米范圍內,故又稱納米粒子。納米粒子的尺寸小,表面積大,具有高度的活性。因此,利用納米粒子可制備活性極高的催化劑,在火箭固體燃料中摻入鋁的納米微粒,可提高燃燒效率若干倍。利用鐵磁納米材料具有很高矯頑力的特點,可制成磁性信用卡、磁性鑰匙,以及高性能錄像帶等 。利用納米材料等離子共振頻率的可調性可制成隱形飛機的涂料。納米材料的表面積大,對外界環(huán)境(物理的和化學的)十分敏感,在制造傳感器方面是有前途的材料,目前已開發(fā)出測量溫度、熱輻射和檢測各種特定氣體的傳感器。在生物和醫(yī)學中也有重要應用。納米材料科學是20世紀80年代末誕生并正在崛起的科技新領域,它將成為跨世紀的科技熱點之一。

  • 北師大初中七年級數(shù)學上冊頻數(shù)直方圖教案2

    北師大初中七年級數(shù)學上冊頻數(shù)直方圖教案2

    [師]同學們想一想,你同父母一起去商店買衣服時,衣服上的號碼都有哪些,標志是什么?[生]我看到有些衣服上標有M、S、L、XL、XXL等號碼.但我不清楚代表的具體范圍.適合什么人穿.但肯定與身高、胖瘦有關.[師]這位同學很善動腦,也愛觀察. S代表最小號,身高在150~155 cm的人適合穿S號.M號適合身高在155~160 cm的人群著裝…….廠家做衣服訂尺寸也并不是按所有人的尺寸定做,而是按某個范圍分組批量生產(chǎn).如何確定組距與組數(shù)呢?分組組數(shù)的確定,不僅與數(shù)據(jù)多少有關,還與數(shù)據(jù)的取值情況有關.在實際決定組數(shù)時,常有一個嘗試過程:先定組距,再計算出相應的組數(shù).看看這個組數(shù)是否大致符合確定組數(shù)的經(jīng)驗法則.在嘗試中,往往要比較相應于幾個組距的組數(shù),然后從中選定一個較為合適的組數(shù).我們一起看下表:小亮的做法.

  • 北師大初中七年級數(shù)學上冊代數(shù)式教案2

    北師大初中七年級數(shù)學上冊代數(shù)式教案2

    1.進一步理解字母表示數(shù)的意義,能結合具體情景給字母賦于實際意義;理解代數(shù)式和代數(shù)式的值的意義,能解釋一些簡單代數(shù)式的實際背景或幾何意義,在具體情景中能求出代數(shù)式的值. (重難點)2.通過創(chuàng)設實際背景和引用符號,經(jīng)歷觀察、體驗、驗算、猜想、歸納等數(shù)學過程,體會數(shù)學與現(xiàn)實世界的聯(lián)系,增強符號感,發(fā)展運用符號解決問題和數(shù)學探究意識. 教法學法:教學方法:引導—探究—發(fā)現(xiàn)法.學習方法:自主探究與合作交流相結合.課前準備:多媒體課件、投影儀、電腦教學過程:一、創(chuàng)設情境,引入新課.欣賞視頻,導入新課師:國慶六十周年大閱兵,同學們看了嗎?首先請同學們來欣賞一段視頻.(26秒.定格在胡錦濤主席乘坐紅旗轎車閱兵的一個瞬間.)師:這是新中國成立以來,規(guī)模最大、裝備最新、機械化程度最高的一次大閱兵.

  • 北師大初中七年級數(shù)學上冊數(shù)軸教案2

    北師大初中七年級數(shù)學上冊數(shù)軸教案2

    議一議數(shù)軸上的兩個點,右邊點表示的數(shù)與左邊點表示的數(shù)有怎樣的大小關系?數(shù)軸上表示的數(shù),▁▁▁邊的總比▁▁▁邊的大;正數(shù)▁▁▁0,負數(shù)▁▁▁0,正數(shù)▁▁▁負數(shù)。練習:比較大?。?3▁5; 0 ▁-4 ;-3 ▁-2.5。3、合作交流(1) 什么是數(shù)軸?怎樣畫數(shù)軸。(2) 有理數(shù)與數(shù)軸上的點之間存在怎樣的關系?(3) 什么是相反數(shù)?怎樣求一個數(shù)的相反數(shù)?(4) 如何利用數(shù)軸比較有理數(shù)的大小?5、隨堂練習:(1)下列說法正確的是( ) A、 數(shù)軸上的點只能表示有理數(shù)B、 一個數(shù)只能用數(shù)軸上的一個點表示C、 在1和3之間只有2D、 在數(shù)軸上離原點2個單位長度的點表示的數(shù)是2 (2)語句:①-5是相反數(shù)?②-5與+3互為相反數(shù)③-5是5的相反數(shù)④-5和5互為相反數(shù)⑤0的相反數(shù)是0⑥-0=0。上述說法中正確的是( )

  • 北師大初中數(shù)學八年級上冊認識無理數(shù)2教案

    北師大初中數(shù)學八年級上冊認識無理數(shù)2教案

    本節(jié)課中教師首先用拼圖游戲引發(fā)學生學習的欲望,把課程內容通過學生的生活經(jīng)驗呈現(xiàn)出來,然后進行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學生的好奇心,為獲取新知,創(chuàng)設了積極的氛圍.在教學中,不要盲目的搶時間,讓學生能夠充分的思考與操作.(二)化抽象為具體常言道:“數(shù)學是鍛煉思維的體操”,數(shù)學教師應通過一系列數(shù)學活動開啟學生的思維,因此對新數(shù)的學習不能僅僅停留于感性認識,還應要求學生充分理解,并能用恰當數(shù)學語言進行解釋.正是基于這個原因,在教學過程中,刻意安排了一些環(huán)節(jié),加深對新數(shù)的理解,充分感受新數(shù)的客觀存在,讓學生覺得新數(shù)并不抽象.(三)強化知識間聯(lián)系,注意糾錯既然稱之為“新數(shù)”,那它當然不是有理數(shù),亦即不是整數(shù),也不是分數(shù),所以“新數(shù)”不可以用分數(shù)來表示,這為進一步學習“新數(shù)”,即第二課時教學埋下了伏筆,在教學中,要著重強調這一點:“新數(shù)”不能表示成分數(shù),為無理數(shù)的教學奠好基.

  • 北師大初中七年級數(shù)學上冊第三章復習教案

    北師大初中七年級數(shù)學上冊第三章復習教案

    一.學習目的和要求:1.對本章內容的認識更全面、更系統(tǒng)化。2.進一步加深對本章基礎知識的理解以及基本技能的掌握,并能靈活運用。二.學習重點和難點:重點:本章基礎知識的歸納、總結;基礎知識的運用;整式的加減運算的靈活運用。難點:本章基礎知識的歸納、總結;基礎知識的運用;整式的加減運算的靈活運用與提高。三.學習方法:歸納,總結 交流、練習 探究 相結合 四.教學目標和教學目標解析:教學目標1 同類項 同類項:所含字母相同,并且相同字母的指數(shù)也分別相等的項,另外所有的常數(shù)項都是同類項。例如: 與 是同類項; 與 是同類項。注意:同類項與系數(shù)大小無關,與字母的排列順序無關。教學目標2 合并同類項法則 合并同類項法則:把同類項的系數(shù)相加,所得結果作為系數(shù),字母和字母的指數(shù)保持不變,如: 。

  • 北師大初中七年級數(shù)學上冊合并同類項教案2

    北師大初中七年級數(shù)學上冊合并同類項教案2

    本節(jié)課采取了開門見山的切入方法,旨在激發(fā)學生的求知欲望,在學生已有的認識基礎上,讓學生經(jīng)歷了“觀察、思考、探究、實踐”的過程。在總結出同類項定義后,沒有按通常的做法,即直接分析定義中的兩個條件,強調兩個條件缺一不可,而是通過一組練習,讓學生在具體問題中體會定義中的兩個條件缺一不可,使他們先有較強烈的感性認識,而后,分析定義中的兩個條件,這樣會給學生留下更深刻、更牢固的印象.這樣的設計既符合學生的年齡特征,也符合“從感性到理性、從具體到抽象”的認知規(guī)律。數(shù)學不應只強調抽象、嚴謹,這樣不但會更顯數(shù)學教學的枯燥,而且會使學生在學習中出現(xiàn)畏難情緒,甚至喪失學習數(shù)學的興趣。通過本節(jié)課的教學,我認為還存在一些不足,一部分學生的學習能力還有待于進一步培養(yǎng)。如:學習同類項的概念時,當把字母順序進行改變后,部分學生就認為不是同類項。

  • 北師大初中數(shù)學八年級上冊定義與命題2教案

    北師大初中數(shù)學八年級上冊定義與命題2教案

    ② 命題的含義:判斷一件事情的句子,叫做命題,如果一個句子沒有對某一件事情作出任何判斷,那么它就不是命題.活動目的:通過課后的總結,使學生對定義、命題等概念有更清楚的認識,讓學生在頭腦中對本節(jié)課進行系統(tǒng)的歸納與整理.教學效果:學生在有了前面對定義、特別是命題概念的學習后,能了解命題的結構,以及哪些是命題,使學生對命題的學習有了清楚的認識。第五環(huán)節(jié) 課后練習學習小組搜集八年級數(shù)學課本中的新學的部分定義、命題,看誰找得多.四、教學反思本節(jié)課的設計具有如下特點:(1)采用了“小品表演”的形式引入新課,意在激起學生對數(shù)學的興趣,讓學生知道,數(shù)學不是枯燥無味的。并能從表演中不同的人對“黑客”這個名詞的不同理解更好地悟出“定義”的含義。

  • 北師大初中數(shù)學八年級上冊算術平方根2教案

    北師大初中數(shù)學八年級上冊算術平方根2教案

    1.細講概念、強化訓練要想讓學生正確、牢固地樹立起算術平方根的概念,需要由淺入深、不斷深化的過程.概念是由具體到抽象、由特殊到一般,經(jīng)過分析、綜合去掉非本質特征,保持本質屬性而形成的.概念的形成過程也是思維過程,加強概念形成過程的教學,對提高學生的思維水平是很有必要的.概念教學過程中要做到:講清概念,加強訓練,逐步深化.“講清概念”就是通過具體實例揭露算術平方根的本質特征.算術平方根的本質特征就是定義中指出的:“如果一個正數(shù) 的平方等于 ,即 ,那么這個正數(shù) 就叫做 的算術平方根,”的“正數(shù) ”,即被開方數(shù)是正的,由平方的意義, 也是正數(shù),因此算術平方根也必須是正的.當然零的算術平方根是零.

上一頁456789101112131415下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。