地球一小時(Earth Hour)是世界自然基金會(WWF)應對全球氣候變化所提出的一項倡議,希望家庭及商界用戶關上不必要的電燈及耗電產(chǎn)品一小時。來表明他們對應對氣候變化行動的支持。過量二氧化碳排放導致的氣候變化目前已經(jīng)極大地威脅到地球上人類的生存。公眾只有通過改變全球民眾對于二氧化碳排放的態(tài)度,才能減輕這一威脅對世界造成的影響。地球一小時在3月的最后一個星期六20:30~21:30期間熄燈?;顒佑蓙恚骸暗厍?小時”也稱“關燈一小時”,是世界自然基金會在2007年向全球發(fā)出的一項倡議:呼吁個人、社區(qū)、企業(yè)和政府在每年三月最后一個星期六20:30~21:30期間熄燈1小時,以此來激發(fā)人們對保護地球的責任感,以及對氣候變化等環(huán)境問題的思考,表明對全球共同抵御氣候變暖行動的支持。這是一項全球性的活動,世界自然基金會于2007年首次在悉尼倡導之后,以驚人的速度席卷全球,大家都來參加這個活動。[1] “地球1小時”活動首次于2007年3月31日在澳大利亞的悉尼展開,一下子吸引了超過220萬悉尼家庭和企業(yè)參加;隨后,該活動以驚人的速度迅速席卷全球。在2008年,WWF(中國)對外聯(lián)絡處透露,全球已經(jīng)有超過80個國家、大約1000座城市加入活動。2013年,包括悉尼歌劇院、帝國大廈、東京塔、迪拜塔、白金漢宮在內的各國標志性建筑也在當?shù)貢r間晚八點半熄燈一小時。[2] ,其中包括巴勒斯坦、法屬圭亞那、加拉帕戈斯群島、盧旺達、圣赫勒那島、蘇里南、突尼斯等首次參與“地球一小時”的國家和地區(qū)。在中國,北京鳥巢、水立方、世貿天階等標志性建筑同時熄燈,同一時段,從上海東方明珠到武漢黃鶴樓,從臺北101到香港天際100觀景臺,中國各地多個標志性建筑均熄燈一小時,全國共有127個城市加入“地球一小時”活動。
1、使學生了解學習本單元的意義,歌頌愛心,培育愛心。 2、能自主學唱歌曲并設計歌曲的演唱情緒,力度等;合唱時聲部和諧、聲音優(yōu)美。 3、能注意歌曲中段落的劃分,并通過歌聲表達出來。 【教學過程】 導入 1987 年的中央電視臺春節(jié)聯(lián)歡晚會上來了兩位客人,一位是善良的家庭女主人,一位是身患白血病的小保姆,姑娘在女主人和鄰里的關懷、幫助下戰(zhàn)勝了病魔,他們共同述說著這一動人的故事,隨即《愛的奉獻》歌聲響起,感動了在場的觀眾和所有的電視觀眾,歌曲中的"只要你獻出一點愛,世界將變成美好的人間"早已唱遍了了全國。
一、結合生活情境與操作活動,初步認識角,知道角各部分的名稱,初步學會用尺畫角?! ?.讓學生結合熟悉的生活情景圖,并從其中的實物圖中抽象出角,親歷操作活動來認識角,知道角的各部分的名稱,知道一個角由一個頂點和兩條邊組成,初步學會用尺畫角的方法?! ?.通過折疊、拼擺、制作等實際操作活動,幫助學生建立對角的感性認識,知道什么樣的圖形是角?! ?.讓學生知道畫一個角的方法:從一個點起,用尺子向不同的方向畫兩條直直的線,就畫成一個角?! ?.知道角的大小與角的兩邊的長短沒有關系,與兩邊叉開的大小有關。 5.通過觀察實物并從中抽象出角,經(jīng)歷數(shù)學知識抽象的過程,感受到數(shù)學知識的現(xiàn)實性,學會從數(shù)學的角度去觀察、分析現(xiàn)實問題,從而激發(fā)學生探索數(shù)學的興趣。 二、在課程教學中,要注重挖掘角在生活中的“原型”。學生對此有一定的生活積累,但學生理解來自于他們作用于的物體的活動。因此只有親自操作,獲得直接的經(jīng)驗,才便于在此基礎上進行正確的抽象和概括,形成較系統(tǒng)的概念和數(shù)學模型。1.教師應提供恰當?shù)?、精心選擇的生活情景圖,讓學生找生活中的角,并將這種角與數(shù)學意義的上角加以區(qū)分、對比觀察,加深對數(shù)學意義上角的感知,從而引領學生從數(shù)學角度認識角,建立角的正確表象。
2、利用已有知識,引導學生自主探索求積、商近似值的方法。在學生想出6.7美元折成人民幣時要用乘法計算時,引導學生獨立計算得出結果后發(fā)現(xiàn)問題并嘗試獨立解決。使學生認識到積的近似值可以用四舍五入的方法求近似值。接著出示第二個情境“媽媽用600元人民幣到銀行可兌換多少美元?”由學生獨立完成,在學生交流的基礎上進一步總結求積、商的近似值的方法:積取近似值是先精確計算,在根據(jù)題目的要求取近似值;商取近似值是直接根據(jù)要求多除一位,然后取近似值。3、鞏固練習在學生初步掌握求積、商的近似值的方法后,我安排了教材67頁的試一試,讓學生體會如何按要求取近似值;教材68頁的練一練,涉及到了多個國家的貨幣與人民幣的兌換使學生進一步感受到數(shù)學與日常生活的密切聯(lián)系
【說課內容】《國土面積》這課是北師大版小學數(shù)學第七冊第一單元第6——7頁的內容?!窘滩姆治觥俊度丝谄詹椤肥堑谝粏卧罢J識更大的數(shù)”的第三節(jié)課,根據(jù)學生思維發(fā)展特點,二年級下冊已經(jīng)學過萬以內的數(shù)位順序表,理解萬以內數(shù)的意義,以及萬以內數(shù)的讀寫方法。本單元學習的內容是學習萬以上的大數(shù)。《人口普查》是在認識計數(shù)單位“十萬”、數(shù)位順序表及更大的數(shù)的基礎上學習大數(shù)的讀寫。本課教學的重點是:對多位數(shù)進行估計,發(fā)展估計意識?!窘虒W目標】知識與技能:結合具體情境,借助數(shù)位順序表,掌握大數(shù)的讀、寫方法,能正確的讀寫大數(shù),同時培養(yǎng)認真讀寫書的良好習慣。情感與態(tài)度:經(jīng)歷自主探索大叔的讀、寫方法的過程,提升歸納與概括的思維的能力。
六、說學法本節(jié)課的學法主要是自主探究法、合作交流法。教法和學法是和諧統(tǒng)一的,相互聯(lián)系,密不可分。教學中要注意發(fā)揮學生的主體地位,充分調動學生的各種感官參與學習,誘發(fā)其內在的潛力,獨立主動的探索,使他們不僅學會,而且會學。學生通過小組合作的方式,自主探究設計出秋游方案,然后每個小組間進行交流,最后推選出最合理可行的方案。學生通過解決生活中的實際問題,從中發(fā)現(xiàn)與數(shù)學之間的聯(lián)系。并通過同伴間的交流、討論等多種方法制定出解決方案,他們從生活中抽象,在實踐中體驗,最后在討論中明理,從而得出了最佳的方案。七、說教學過程為了能很好地化解重點、突破難點達到預期的教學目標,我設計了三個教學環(huán)節(jié),下面,我就從這三個環(huán)節(jié)一一進行闡述。(一)創(chuàng)設情境、激發(fā)興趣
煤的價格為400元/噸,生產(chǎn)1噸甲產(chǎn)品除需原料費用外,還需其他費用400元,甲產(chǎn)品每噸售價4600元;生產(chǎn)1噸乙產(chǎn)品除原料費用外,還需其他費用500元,乙產(chǎn)品每噸售價5500元.現(xiàn)將該礦石原料全部用完,設生產(chǎn)甲產(chǎn)品x噸,乙產(chǎn)品m噸,公司獲得的總利潤為y元.(1)寫出m與x的關系式;(2)寫出y與x的函數(shù)關系式.(不要求寫自變量的取值范圍)解析:(1)因為礦石的總量一定,當生產(chǎn)的甲產(chǎn)品的數(shù)量x變化時,那么乙產(chǎn)品的產(chǎn)量m將隨之變化,m和x是動態(tài)變化的兩個量;(2)題目中的等量關系為總利潤y=甲產(chǎn)品的利潤+乙產(chǎn)品的利潤.解:(1)因為4m+10x=300,所以m=150-5x2.(2)生產(chǎn)1噸甲產(chǎn)品獲利為4600-10×200-4×400-400=600(元);生產(chǎn)1噸乙產(chǎn)品獲利為5500-4×200-8×400-500=1000(元).所以y=600x+1000m.將m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法總結:根據(jù)條件求一次函數(shù)的關系式時,要找準題中所給的等量關系,然后求解.
學習目標1.掌握兩個一次函數(shù)圖像的應用;(重點)2.能利用函數(shù)圖象解決實際問題。(難點)教學過程一、情景導入在一次蠟燭燃燒實驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(厘米)與燃燒時間x(小時)之間的關系如圖所示.請你根據(jù)圖象所提供的信息回答下列問題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點燃到燃盡所用的時間分別是 小時、 小時.你會解答上面的問題嗎?學完本解知識,相信你能很快得出答案。二、 合作探究探究點一:兩個一次函數(shù)的應用(2015?日照模擬)自來水公司有甲、乙兩個蓄水池,現(xiàn)將甲池的中水勻速注入乙池,甲、乙兩個蓄水池中水的深度y(米)與注水時間x(時)之間的函數(shù)圖象如下所示,結合圖象回答下列問題.(1)分別求出甲、乙兩個蓄水池中水的深度y與注水時間x之間的函數(shù)表達式;(2)求注入多長時間甲、乙兩個蓄水池水的深度相同;(3)求注入多長時間甲、乙兩個蓄水的池蓄水量相同;
(1)用簡潔明快的語言概括大意,不能超過200字;(2)圖表中能確定的數(shù)值,在故事敘述中不得少于3個,且要分別涉及時間、路和速度這三個量.意圖:旨在檢測學生的識圖能力,可根據(jù)學生情況和上課情況適當調整。說明:練習注意了問題的梯度,由淺入深,一步步引導學生從不同的圖象中獲取信息,對同學的回答,教師給予點評,對回答問題暫時有困難的同學,教師應幫助他們樹立信心。第四環(huán)節(jié):課時小結內容:本節(jié)課我們學習了一次函數(shù)圖象的應用,在運用一次函數(shù)解決實際問題時,可以直接從函數(shù)圖象上獲取信息解決問題,當然也可以設法得出各自對應的函數(shù)關系式,然后借助關系式完全通過計算解決問題。通過列出關系式解決問題時,一般首先判斷關系式的特征,如兩個變量之間是不是一次函數(shù)關系?當確定是一次函數(shù)關系時,可求出函數(shù)解析式,并運用一次函數(shù)的圖象和性質進一步求得我們所需要的結果.
解:∵y=23x+a與y=-12x+b的圖象都過點A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結:解此類題要先求得頂點的坐標,即兩個一次函數(shù)的交點和它們分別與x軸、y軸交點的坐標.三、板書設計兩個一次函數(shù)的應用實際生活中的問題幾何問題進一步訓練學生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實際問題,在函數(shù)圖象信息獲取過程中,進一步培養(yǎng)學生的數(shù)形結合意識,發(fā)展形象思維.在解決實際問題的過程中,進一步發(fā)展學生的分析問題、解決問題的能力和數(shù)學應用意識.
解:設正比例函數(shù)的表達式為y1=k1x,一次函數(shù)的表達式為y2=k2x+b.∵點A(4,3)是它們的交點,∴代入上述表達式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數(shù)的表達式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點B在y軸的負半軸上,∴B點的坐標為(0,-52).又∵點B在一次函數(shù)y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數(shù)的表達式為y2=118x-52.方法總結:根據(jù)圖象確定一次函數(shù)的表達式的方法:從圖象上選取兩個已知點的坐標,然后運用待定系數(shù)法將兩點的橫、縱坐標代入所設表達式中求出待定系數(shù),從而求出函數(shù)的表達式.【類型三】 根據(jù)實際問題確定一次函數(shù)的表達式某商店售貨時,在進價的基礎上加一定利潤,其數(shù)量x與售價y的關系如下表所示,請你根據(jù)表中所提供的信息,列出售價y(元)與數(shù)量x(千克)的函數(shù)關系式,并求出當數(shù)量是2.5千克時的售價.
四個不同類型的問題由淺入深,學生能從不同角度掌握求一次函數(shù)的方法.對于問題4,教師可引導學生分析,并教學生要學會畫圖,利用圖象分析問題,體會數(shù)形結合方法的重要性.學生若出現(xiàn)解題格式不規(guī)范的情況,教師應糾正并給予示范,訓練學生規(guī)范答題的習慣.第五環(huán)節(jié)課時小結內容:總結本課知識與方法1.本節(jié)課主要學習了怎樣確定一次函數(shù)的表達式,在確定一次函數(shù)的表達式時可以用待定系數(shù)法,即先設出解析式,再根據(jù)題目條件(根據(jù)圖象、表格或具體問題)求出 , 的值,從而確定函數(shù)解析式。其步驟如下:(1)設函數(shù)表達式;(2)根據(jù)已知條件列出有關k,b的方程;(3)解方程,求k,b;4.把k,b代回表達式中,寫出表達式.2.本節(jié)課用到的主要的數(shù)學思想方法:數(shù)形結合、方程的思想.目的:引導學生小結本課的知識及數(shù)學方法,使知識系統(tǒng)化.第六環(huán)節(jié)作業(yè)布置習題4.5:1,2,3,4目的:進一步鞏固當天所學知識。教師也可根據(jù)學生情況適當增減,但難度不應過大.
2、猜想 一元二次方程的兩個根 的和與積和原來的方程有什么聯(lián)系?小組交流。3、一般地,對于關于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R應用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 ?!練w納小結】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;
方法總結:要認真觀察圖象,結合題意,弄清各點所表示的意義.探究點二:一次函數(shù)與一元一次方程一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象如圖所示,根據(jù)圖象信息可求得關于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數(shù)經(jīng)過點(0,1)可得b=1,再將點(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數(shù)的表達式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結:此題主要考查了一次函數(shù)與一元一次方程的關系,關鍵是正確利用待定系數(shù)法求出一次函數(shù)的關系式.三、板書設計一次函數(shù)的應用單個一次函數(shù)圖象的應用一次函數(shù)與一元一次方程的關系探究的過程由淺入深,并利用了豐富的實際情景,增加了學生的學習興趣.教學中要注意層層遞進,逐步讓學生掌握求一次函數(shù)與一元一次方程的關系.教學中還應注意尊重學生的個體差異,使每個學生都學有所獲.
方程有兩個不相等的實數(shù)根.綜上所述,m=3.易錯提醒:本題由根與系數(shù)的關系求出字母m的值,但一定要代入判別式驗算,字母m的取值必須使判別式大于0,這一點很容易被忽略.三、板書設計一元二次方程的根與系數(shù)的關系關系:如果方程ax2+bx+c=0(a≠0) 有兩個實數(shù)根x1,x2,那么x1+x2 =-ba,x1x2=ca應用利用根與系數(shù)的關系求代數(shù)式的值已知方程一根,利用根與系數(shù)的關系求方程的另一根判別式及根與系數(shù)的關系的綜合應用讓學生經(jīng)歷探索,嘗試發(fā)現(xiàn)韋達定理,感受不完全的歸納驗證以及演繹證明.通過觀察、實踐、討論等活動,經(jīng)歷發(fā)現(xiàn)問題、發(fā)現(xiàn)關系的過程,養(yǎng)成獨立思考的習慣,培養(yǎng)學生觀察、分析和綜合判斷的能力,激發(fā)學生發(fā)現(xiàn)規(guī)律的積極性,激勵學生勇于探索的精神.通過交流互動,逐步養(yǎng)成合作的意識及嚴謹?shù)闹螌W精神.
3、一般地,對于關于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致。【知識應用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 ?!練w納小結】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;
[例3]、用一個平面去截一個幾何體,截面形狀有圓、三角形,那么這個幾何體可能是_________。四、鞏固強化:1、一個正方體的截面不可能是( )A、三角形 B、梯形 C、五邊形 D、七邊形2、用一個平面去截五棱柱,邊數(shù)最多的截面是_______形.3*、用一個平面去截幾何體,若截面是三角形,這個幾何體可能是__________________________________________________.4*、用一個平面截一個幾何體,如果截面是圓,你能想象出原來的幾何體可能是什么嗎?如虹截面是三角形呢?5*、如果用一個平面截一個正方體的一個角,剩下的幾何體有幾個頂點、幾條棱、幾個面?6*、幾何體中的圓臺、棱錐都是課外介紹的,所以我們就在這個欄目里繼續(xù)為大家介紹這兩種幾何體的截面.(1)圓臺用平面截圓臺,截面形狀會有_____和_______這兩種較特殊圖形,截法如下:
小劉同學用10元錢購買兩種不同的賀卡共8張,單價分別是1元與2元.設1元的賀卡為x張,2元的賀卡為y張,那么x,y所適合的一個方程組是()A.x+y2=10,x+y=8 B.x2+y10=8,x+2y=10C.x+y=10,x+2y=8 D.x+y=8,x+2y=10解析:根據(jù)題意可得到兩個相等關系:(1)1元賀卡張數(shù)+2元賀卡張數(shù)=8(張);(2)1元賀卡錢數(shù)+2元賀卡錢數(shù)=10(元).設1元的賀卡為x張,2元的賀卡為y張,可列方程組為x+y=8,x+2y=10.故選D.方法總結:要判斷哪個方程組符合題意,可從題目中找出兩個相等關系,然后代入未知數(shù),即可得到方程組,進而得到正確答案.三、板書設計二元一次方程組二元一次方程及其解的定義二元一次方程組及其解的定義列二元一次方程組通過自主探究和合作交流,建立二元一次方程的數(shù)學模型,學會逐步掌握基本的數(shù)學知識和方法,形成良好的數(shù)學思維習慣和應用意識,提高解決問題的能力,感受數(shù)學創(chuàng)造的樂趣,增進學好數(shù)學的信心,增加對數(shù)學較全面的體驗和理解.
解:設甲班的人數(shù)為x人,乙班的人數(shù)為y人,根據(jù)題意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人數(shù)為48人,乙班的人數(shù)為45人.方法總結:設未知數(shù)時,一般是求什么,設什么,并且所列方程的個數(shù)與未知數(shù)的個數(shù)相等.解這類問題的應用題,要抓住題中反映數(shù)量關系的關鍵字:和、差、倍、幾分之幾、比、大、小、多、少、增加、減少等,明確各種反映數(shù)量關系的關鍵字的含義.三、板書設計列方程組,解決問題)一般步驟:審、設、列、解、驗、答關鍵:找等量關系通過“雞兔同籠”,把同學們帶入古代的數(shù)學問題情景,學生體會到數(shù)學中的“趣”;進一步強調數(shù)學與生活的聯(lián)系,突出顯示數(shù)學教學的實際價值,培養(yǎng)學生的人文精神;進一步豐富學生數(shù)學學習的成功體驗,激發(fā)學生對數(shù)學學習的好奇心,進一步形成積極參與數(shù)學活動、主動與他人合作交流的意識.
方法總結:(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進一步在這個范圍內取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設計一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復雜的方程時應用廣泛.在本節(jié)課中讓學生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學設計上,強調自主學習,注重合作交流,在探究過程中獲得數(shù)學活動的經(jīng)驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.