教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 8.3 兩條直線的位置關(guān)系(二) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【問(wèn)題】 平面內(nèi)兩條既不重合又不平行的直線肯定相交.如何求交點(diǎn)的坐標(biāo)呢? 圖8-12 介紹 質(zhì)疑 引導(dǎo) 分析 了解 思考 啟發(fā) 學(xué)生思考 *動(dòng)腦思考 探索新知 如圖8-12所示,兩條相交直線的交點(diǎn),既在上,又在上.所以的坐標(biāo)是兩條直線的方程的公共解.因此解兩條直線的方程所組成的方程組,就可以得到兩條直線交點(diǎn)的坐標(biāo). 觀察圖8-13,直線、相交于點(diǎn)P,如果不研究終邊相同的角,共形成四個(gè)正角,分別為、、、,其中與,與為對(duì)頂角,而且. 圖8-13 我們把兩條直線相交所成的最小正角叫做這兩條直線的夾角,記作. 規(guī)定,當(dāng)兩條直線平行或重合時(shí),兩條直線的夾角為零角,因此,兩條直線夾角的取值范圍為. 顯然,在圖8-13中,(或)是直線、的夾角,即. 當(dāng)直線與直線的夾角為直角時(shí)稱直線與直線垂直,記做.觀察圖8-14,顯然,平行于軸的直線與平行于軸的直線垂直,即斜率為零的直線與斜率不存在的直線垂直. 圖8-14 講解 說(shuō)明 講解 說(shuō)明 引領(lǐng) 分析 仔細(xì) 分析 講解 關(guān)鍵 詞語(yǔ) 思考 思考 理解 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 在實(shí)際問(wèn)題中,經(jīng)常需要計(jì)算高度、長(zhǎng)度、距離和角的大小,這類問(wèn)題中有許多與三角形有關(guān),可以歸結(jié)為解三角形問(wèn)題. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識(shí)點(diǎn)*鞏固知識(shí) 典型例題 例6 一艘船以每小時(shí)36海里的速度向正北方向航行(如圖1-9).在A處觀察到燈塔C在船的北偏東方向,小時(shí)后船行駛到B處,此時(shí)燈塔C在船的北偏東方向,求B處和燈塔C的距離(精確到0.1海里). 圖1-9 A 解因?yàn)椤螻BC=,A=,所以.由題意知 (海里). 由正弦定理得 (海里). 答:B處離燈塔約為海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和(圖1-10),在平地上選擇適合測(cè)量的點(diǎn)C,如果,m,m,試計(jì)算隧道AB的長(zhǎng)度(精確到m). 圖1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的長(zhǎng)度約為409m. 例8 三個(gè)力作用于一點(diǎn)O(如圖1-11)并且處于平衡狀態(tài),已知的大小分別為100N,120N,的夾角是60°,求F的大小(精確到1N)和方向. 圖1-11 解 由向量加法的平行四邊形法則知,向量表示F1,F(xiàn)2的合力F合,由力的平衡原理知,F(xiàn)應(yīng)在的反向延長(zhǎng)線上,且大小與F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F(xiàn)與F1間的夾角是180°–33°=147°. 答:F約為191N,F(xiàn)與F合的方向相反,且與F1的夾角約為147°. 引領(lǐng) 講解 說(shuō)明 引領(lǐng) 觀察 思考 主動(dòng) 求解 觀察 通過(guò) 例題 進(jìn)一 步領(lǐng) 會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn)
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.2正弦型函數(shù). *創(chuàng)設(shè)情境 興趣導(dǎo)入 與正弦函數(shù)圖像的做法類似,可以用“五點(diǎn)法”作出正弦型函數(shù)的圖像.正弦型函數(shù)的圖像叫做正弦型曲線. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識(shí)點(diǎn) 0 5*鞏固知識(shí) 典型例題 例3 作出函數(shù)在一個(gè)周期內(nèi)的簡(jiǎn)圖. 分析 函數(shù)與函數(shù)的周期都是,最大值都是2,最小值都是-2. 解 為求出圖像上五個(gè)關(guān)鍵點(diǎn)的橫坐標(biāo),分別令,,,,,求出對(duì)應(yīng)的值與函數(shù)的值,列表1-1如下: 表 001000200 以表中每組的值為坐標(biāo),描出對(duì)應(yīng)五個(gè)關(guān)鍵點(diǎn)(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲線聯(lián)結(jié)各點(diǎn),得到函數(shù)在一個(gè)周期內(nèi)的圖像(如圖). 圖 引領(lǐng) 講解 說(shuō)明 引領(lǐng) 觀察 思考 主動(dòng) 求解 觀察 通過(guò) 例題 進(jìn)一 步領(lǐng) 會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn) 15
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 我們知道,在直角三角形(如圖)中,,,即 ,, 由于,所以,于是 . 圖1-6 所以 . 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識(shí)點(diǎn) 0 10*動(dòng)腦思考 探索新知 在任意三角形中,是否也存在類似的數(shù)量關(guān)系呢? c 圖1-7 當(dāng)三角形為鈍角三角形時(shí),不妨設(shè)角為鈍角,如圖所示,以為原點(diǎn),以射線的方向?yàn)檩S正方向,建立直角坐標(biāo)系,則 兩邊取與單位向量的數(shù)量積,得 由于設(shè)與角A,B,C相對(duì)應(yīng)的邊長(zhǎng)分別為a,b,c,故 即 所以 同理可得 即 當(dāng)三角形為銳角三角形時(shí),同樣可以得到這個(gè)結(jié)論.于是得到正弦定理: 在三角形中,各邊與它所對(duì)的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列問(wèn)題: (1)已知三角形的兩個(gè)角和任意一邊,求其他兩邊和一角. (2)已知三角形的兩邊和其中一邊所對(duì)角,求其他兩角和一邊. 詳細(xì)分析講解 總結(jié) 歸納 詳細(xì)分析講解 思考 理解 記憶 理解 記憶 帶領(lǐng) 學(xué)生 總結(jié) 20
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 在實(shí)際問(wèn)題中,經(jīng)常需要計(jì)算高度、長(zhǎng)度、距離和角的大小,這類問(wèn)題中有許多與三角形有關(guān),可以歸結(jié)為解三角形問(wèn)題,經(jīng)常需要應(yīng)用正弦定理或余弦定理. 介紹 播放 課件 了解 觀看 課件 學(xué)生自然的走向知識(shí)點(diǎn) 0 5*鞏固知識(shí) 典型例題 例6一艘船以每小時(shí)36海里的速度向正北方向航行(如圖1-14).在A處觀察燈塔C在船的北偏東30°,0.5小時(shí)后船行駛到B處,再觀察燈塔C在船的北偏東45°,求B處和燈塔C的距離(精確到0.1海里). 解 因?yàn)椤螻BC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B處離燈塔約為34.8海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和B(圖1-15),在平地上選擇適合測(cè)量的點(diǎn)C,如果C=60°,AB = 350m,BC = 450m,試計(jì)算隧道AB的長(zhǎng)度(精確到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的長(zhǎng)度約為409m. 圖1-15 引領(lǐng) 講解 說(shuō)明 引領(lǐng) 觀察 思考 主動(dòng) 求解 觀察 通過(guò) 例題 進(jìn)一 步領(lǐng) 會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn) 40
一、定義: ,這一公式表示的定理叫做二項(xiàng)式定理,其中公式右邊的多項(xiàng)式叫做的二項(xiàng)展開(kāi)式;上述二項(xiàng)展開(kāi)式中各項(xiàng)的系數(shù) 叫做二項(xiàng)式系數(shù),第項(xiàng)叫做二項(xiàng)展開(kāi)式的通項(xiàng),用表示;叫做二項(xiàng)展開(kāi)式的通項(xiàng)公式.二、二項(xiàng)展開(kāi)式的特點(diǎn)與功能1. 二項(xiàng)展開(kāi)式的特點(diǎn)項(xiàng)數(shù):二項(xiàng)展開(kāi)式共(二項(xiàng)式的指數(shù)+1)項(xiàng);指數(shù):二項(xiàng)展開(kāi)式各項(xiàng)的第一字母依次降冪(其冪指數(shù)等于相應(yīng)二項(xiàng)式系數(shù)的下標(biāo)與上標(biāo)的差),第二字母依次升冪(其冪指數(shù)等于二項(xiàng)式系數(shù)的上標(biāo)),并且每一項(xiàng)中兩個(gè)字母的系數(shù)之和均等于二項(xiàng)式的指數(shù);系數(shù):各項(xiàng)的二項(xiàng)式系數(shù)下標(biāo)等于二項(xiàng)式指數(shù);上標(biāo)等于該項(xiàng)的項(xiàng)數(shù)減去1(或等于第二字母的冪指數(shù);2. 二項(xiàng)展開(kāi)式的功能注意到二項(xiàng)展開(kāi)式的各項(xiàng)均含有不同的組合數(shù),若賦予a,b不同的取值,則二項(xiàng)式展開(kāi)式演變成一個(gè)組合恒等式.因此,揭示二項(xiàng)式定理的恒等式為組合恒等式的“母函數(shù)”,它是解決組合多項(xiàng)式問(wèn)題的原始依據(jù).又注意到在的二項(xiàng)展開(kāi)式中,若將各項(xiàng)中組合數(shù)以外的因子視為這一組合數(shù)的系數(shù),則易見(jiàn)展開(kāi)式中各組合數(shù)的系數(shù)依次成等比數(shù)列.因此,解決組合數(shù)的系數(shù)依次成等比數(shù)列的求值或證明問(wèn)題,二項(xiàng)式公式也是不可或缺的理論依據(jù).
重點(diǎn)分析:本節(jié)課的重點(diǎn)是離散型隨機(jī)變量的概率分布,難點(diǎn)是理解離散型隨機(jī)變量的概念. 離散型隨機(jī)變量 突破難點(diǎn)的方法: 函數(shù)的自變量 隨機(jī)變量 連續(xù)型隨機(jī)變量 函數(shù)可以列表 X123456p 2 4 6 8 10 12
授課 日期 班級(jí)16高造價(jià) 課題: §10.1 計(jì)數(shù)原理 教學(xué)目的要求: 1.掌握分類計(jì)數(shù)原理與分步計(jì)數(shù)原理的概念和區(qū)別; 2.能利用兩個(gè)原理分析和解決一些簡(jiǎn)單的應(yīng)用問(wèn)題; 3.通過(guò)對(duì)一些應(yīng)用問(wèn)題的分析,培養(yǎng)自己的歸納概括和邏輯判斷能力. 教學(xué)重點(diǎn)、難點(diǎn): 兩個(gè)原理的概念與區(qū)別 授課方法: 任務(wù)驅(qū)動(dòng)法 小組合作學(xué)習(xí)法 教學(xué)參考及教具(含多媒體教學(xué)設(shè)備): 《單招教學(xué)大綱》、課件 授課執(zhí)行情況及分析: 板書(shū)設(shè)計(jì)或授課提綱 §10.1 計(jì)數(shù)原理 1、加法原理 2、乘法原理 3、兩個(gè)原理的區(qū)別
課程課題隨機(jī)事件和概率授課教師李丹丹學(xué)時(shí)數(shù)2授課班級(jí) 授課時(shí)間 教學(xué)地點(diǎn) 背景分析正確使用兩個(gè)基本原理的前提是要學(xué)生清楚兩個(gè)基本原理使用的條件;分類用加法原理,分步用乘法原理,單純這點(diǎn)學(xué)生是容易理解的,問(wèn)題在于怎樣合理地進(jìn)行分類和分步教學(xué)中給出的練習(xí)均在課本例題的基礎(chǔ)上稍加改動(dòng)過(guò)的,目的就在于幫助學(xué)生對(duì)這一知識(shí)的理解與應(yīng)用 學(xué)習(xí)目標(biāo) 設(shè) 定知識(shí)目標(biāo)能力(技能)目標(biāo)態(tài)度與情感目標(biāo)1、理解隨機(jī)試驗(yàn)、隨機(jī)事件、必然事件、不可能事件等概念 2、理解基本事件空間、基本事件的概念,會(huì)用集合表示基本事件空間和事件 1 會(huì)用隨機(jī)試驗(yàn)、隨機(jī)事件、必然事件、不可能事件等概念 2 會(huì)用基本事件空間、基本事件的概念,會(huì)用集合表示基本事件空間和事件 3、掌握事件的基本關(guān)系與運(yùn)算 了解學(xué)習(xí)本章的意義,激發(fā)學(xué)生的興趣. 學(xué)習(xí)任務(wù) 描 述 任務(wù)一,隨機(jī)試驗(yàn)、隨機(jī)事件、必然事件、不可能事件等概念 任務(wù)二,理解基本事件空間、基本事件的概念,會(huì)用集合表示基本事件空間和事件
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 10.3總體、樣本與抽樣方法(一) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【實(shí)驗(yàn)】 商店進(jìn)了一批蘋(píng)果,小王從中任意選取了10個(gè)蘋(píng)果,編上號(hào)并稱出質(zhì)量.得到下面的數(shù)據(jù)(如表10-6所示): 蘋(píng)果編號(hào)12345678910質(zhì)量(kg)0.210.170.190.160.200.220.210.180.190.17 利用這些數(shù)據(jù),就可以估計(jì)出這批蘋(píng)果的平均質(zhì)量及蘋(píng)果的大小是否均勻. 介紹 質(zhì)疑 講解 說(shuō)明 了解 思考 啟發(fā) 學(xué)生思考 0 10*動(dòng)腦思考 探索新知 【新知識(shí)】 在統(tǒng)計(jì)中,所研究對(duì)象的全體叫做總體,組成總體的每個(gè)對(duì)象叫做個(gè)體. 上面的實(shí)驗(yàn)中,這批蘋(píng)果的質(zhì)量是研究對(duì)象的總體,每個(gè)蘋(píng)果的質(zhì)量是研究的個(gè)體. 講解 說(shuō)明 引領(lǐng) 分析 理解 記憶 帶領(lǐng) 學(xué)生 分析 20*鞏固知識(shí) 典型例題 【知識(shí)鞏固】 例1 研究某班學(xué)生上學(xué)期數(shù)學(xué)期末考試成績(jī),指出其中的總體與個(gè)體. 解 該班所有學(xué)生的數(shù)學(xué)期末考試成績(jī)是總體,每一個(gè)學(xué)生的數(shù)學(xué)期末考試成績(jī)是個(gè)體. 【試一試】 我們經(jīng)常用燈泡的使用壽命來(lái)衡量燈炮的質(zhì)量.指出在鑒定一批燈泡的質(zhì)量中的總體與個(gè)體. 說(shuō)明 強(qiáng)調(diào) 引領(lǐng) 觀察 思考 主動(dòng) 求解 通過(guò)例題進(jìn)一步領(lǐng)會(huì) 35
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 10.4 用樣本估計(jì)總體 *創(chuàng)設(shè)情境 興趣導(dǎo)入 【知識(shí)回顧】 初中我們?cè)?jīng)學(xué)習(xí)過(guò)頻數(shù)分布圖和頻數(shù)分布表,利用它們可以清楚地看到數(shù)據(jù)分布在各個(gè)組內(nèi)的個(gè)數(shù). 【知識(shí)鞏固】 例1 某工廠從去年全年生產(chǎn)某種零件的日產(chǎn)記錄(件)中隨機(jī)抽取30份,得到以下數(shù)據(jù): 346 345 347 357 349 352 341 345 358 350 354 344 346 342 345 358 348 345 346 357 350 345 352 349 346 356 351 355 352 348 列出頻率分布表. 解 分析樣本的數(shù)據(jù).其最大值是358,最小值是341,它們的差是358-341=17.取組距為3,確定分點(diǎn),將數(shù)據(jù)分為6組. 列出頻數(shù)分布表 【小提示】 設(shè)定分點(diǎn)數(shù)值時(shí)需要考慮分點(diǎn)值不要與樣本數(shù)據(jù)重合. 分 組頻 數(shù) 累 計(jì)頻 數(shù)340.5~343.5┬2343.5~346.5正 正10346.5~349.5正5349.5~352.5正  ̄6352.5~355.5┬2355.5~358.5正5合 計(jì)3030 介紹 質(zhì)疑 引領(lǐng) 分析 講解 說(shuō)明 了解 觀察 思考 解答 啟發(fā) 學(xué)生思考 0 10*動(dòng)腦思考 探索新知 【新知識(shí)】 各組內(nèi)數(shù)據(jù)的個(gè)數(shù),叫做該組的頻數(shù).每組的頻數(shù)與全體數(shù)據(jù)的個(gè)數(shù)之比叫做該組的頻率. 計(jì)算上面頻數(shù)分布表中各組的頻率,得到頻率分布表如表10-8所示. 表10-8 分 組頻 數(shù)頻 率340.5~343.520.067343.5~346.5100.333346.5~349.550.167349.5~352.560.2352.5~355.520.067355.5~358.550.166合 計(jì)301.000 根據(jù)頻率分布表,可以畫(huà)出頻率分布直方圖(如圖10-4). 圖10-4 頻率分布直方圖的橫軸表示數(shù)據(jù)分組情況,以組距為單位;縱軸表示頻率與組距之比.因此,某一組距的頻率數(shù)值上等于對(duì)應(yīng)矩形的面積. 【想一想】 各小矩形的面積之和應(yīng)該等于1.為什么呢? 【新知識(shí)】 圖10-4顯示,日產(chǎn)量為344~346件的天數(shù)最多,其頻率等于該矩形的面積,即 . 根據(jù)樣本的數(shù)據(jù),可以推測(cè),去年的生產(chǎn)這種零件情況:去年約有的天數(shù)日產(chǎn)量為344~346件. 頻率分布直方圖可以直觀地反映樣本數(shù)據(jù)的分布情況.由此可以推斷和估計(jì)總體中某事件發(fā)生的概率.樣本選擇得恰當(dāng),這種估計(jì)是比較可信的. 如上所述,用樣本的頻率分布估計(jì)總體的步驟為: (1) 選擇恰當(dāng)?shù)某闃臃椒ǖ玫綐颖緮?shù)據(jù); (2) 計(jì)算數(shù)據(jù)最大值和最小值、確定組距和組數(shù),確定分點(diǎn)并列出頻率分布表; (3) 繪制頻率分布直方圖; (4) 觀察頻率分布表與頻率分布直方圖,根據(jù)樣本的頻率分布,估計(jì)總體中某事件發(fā)生的概率. 【軟件鏈接】 利用與教材配套的軟件(也可以使用其他軟件),可以方便的繪制樣本數(shù)據(jù)的頻率分布直方圖,如圖10-5所示. 圖10?5 講解 說(shuō)明 引領(lǐng) 分析 仔細(xì) 分析 關(guān)鍵 語(yǔ)句 觀察 理解 記憶 帶領(lǐng) 學(xué)生 分析 25
【課堂小結(jié)】本課主要講述俄國(guó)十月革命后進(jìn)行經(jīng)濟(jì)建設(shè),并在建設(shè)中進(jìn)行社會(huì)主義探索,期間先后出現(xiàn)了戰(zhàn)時(shí)共產(chǎn)主義政策、新經(jīng)濟(jì)政策和斯大林模式,這些政策和體制的產(chǎn)生都是歷史和當(dāng)時(shí)現(xiàn)實(shí)有關(guān),但也反映出在建設(shè)社會(huì)主義中既有成功的也由重大失誤,主要在于缺乏現(xiàn)成的政策和模式可供借鑒,更在于理論上的缺乏。斯大林模式的形成同蘇聯(lián)當(dāng)時(shí)社會(huì)生產(chǎn)力的發(fā)展水平相適應(yīng),它在初期和戰(zhàn)爭(zhēng)時(shí)期曾發(fā)揮了巨大作用,使蘇聯(lián)成為強(qiáng)大的社會(huì)主義國(guó)家。它建立的高度集中的計(jì)劃經(jīng)濟(jì)體制和新型的工業(yè)化模式是蘇聯(lián)進(jìn)行社會(huì)主義建設(shè)中的探索和創(chuàng)新,對(duì)二戰(zhàn)后社會(huì)主義國(guó)家產(chǎn)生了深刻影響,促進(jìn)這些國(guó)家國(guó)民經(jīng)濟(jì)的恢復(fù)和發(fā)展,形成了足以同資本主義相抗衡的社會(huì)主義陣營(yíng)。但是,它沒(méi)有解決社會(huì)主義民主政治建設(shè)和經(jīng)濟(jì)運(yùn)行的一系列根本問(wèn)題,違背了列寧關(guān)于把文化經(jīng)濟(jì)建設(shè)當(dāng)作工作重心的指示,仍把政治斗爭(zhēng)放在第一位。
5、弊端:(1)經(jīng)濟(jì)發(fā)展不均衡,片面發(fā)展重工業(yè),使輕工業(yè)和農(nóng)業(yè)長(zhǎng)期處于落后狀態(tài);(2)對(duì)農(nóng)民的剝奪太重,挫傷了農(nóng)民的生產(chǎn)積極性;(3)長(zhǎng)期執(zhí)行指令性計(jì)劃嚴(yán)重削弱了企業(yè)的生產(chǎn)自主權(quán),不利于發(fā)揮企業(yè)的生產(chǎn)積極性,制約了蘇聯(lián)經(jīng)濟(jì)的可持續(xù)發(fā)展。(4)計(jì)劃經(jīng)濟(jì)體制確立后,沒(méi)有隨著社會(huì)的變化進(jìn)行調(diào)整,二戰(zhàn)后逐漸僵化,喪失了自我完善的功能,成為蘇聯(lián)解體的重要因素?!竞献魈骄俊克勾罅帜J降脑u(píng)價(jià)及經(jīng)驗(yàn)教訓(xùn):積極:①使蘇聯(lián)迅速實(shí)現(xiàn)了 工業(yè)化②蘇聯(lián)經(jīng)濟(jì)實(shí)力的迅速增長(zhǎng),為反法西斯戰(zhàn)爭(zhēng)的勝利奠定了 物質(zhì)基礎(chǔ) 。消極:①政治:高度集權(quán),破壞了 民主與法制 ; ②經(jīng)濟(jì):優(yōu)先發(fā)展重工業(yè)使 農(nóng)業(yè)和輕工業(yè)長(zhǎng)期處于落后狀態(tài),農(nóng)民生產(chǎn)積極性不高;計(jì)劃指令,壓制了地方和企業(yè)的積極性,阻礙蘇聯(lián)經(jīng)濟(jì)的發(fā)展高度集中的計(jì)劃經(jīng)濟(jì)體制,成為東歐劇變和蘇聯(lián)解體的重要原因。
二、流動(dòng)鑲嵌模型的基本內(nèi)容1、膜的成分2、膜的基本支架3、膜的結(jié)構(gòu)特點(diǎn)4、膜的功能特性設(shè)計(jì)意圖:我根據(jù)板書(shū)的“規(guī)范、工整和美觀”的要求,結(jié)合所教的內(nèi)容,設(shè)計(jì)了如圖所示的板書(shū),使學(xué)生對(duì)本節(jié)課有一個(gè)整體的思路。八、教學(xué)反思:本節(jié)課我創(chuàng)設(shè)了問(wèn)題情境來(lái)引導(dǎo)學(xué)生主動(dòng)學(xué)習(xí),利用了多媒體信息技術(shù)激發(fā)學(xué)生的學(xué)習(xí)熱情,調(diào)動(dòng)了學(xué)生的積極性,成功實(shí)現(xiàn)預(yù)期的教學(xué)目標(biāo)。體現(xiàn)了學(xué)生為主體地位的新課程理念。啟發(fā)式、探究式的教學(xué)方法以及由教師指導(dǎo)下的學(xué)生自主閱讀、合作交流的學(xué)習(xí)方法把學(xué)生從死記知識(shí)的苦海中解救出來(lái)。初次的嘗試還存在一定的缺陷,學(xué)生不能夠很好的把知識(shí)和習(xí)題聯(lián)系,只是把他所知道的知識(shí)簡(jiǎn)單羅列,不能夠體現(xiàn)出能力的訓(xùn)練。在上課中發(fā)現(xiàn)學(xué)生比較靦腆或拘束,聲音比較小,表達(dá)不能到位。盡管本節(jié)課存在諸多不足之處,但是也讓我看到了閃光點(diǎn):學(xué)生比較歡迎這樣一堂自己是主角的課堂。
本節(jié)通過(guò)一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過(guò)程和方法,體會(huì)函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進(jìn)一步認(rèn)識(shí)到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運(yùn)用函數(shù)思想解決一些生活中的簡(jiǎn)單問(wèn)題。課程目標(biāo)1.能利用已知函數(shù)模型求解實(shí)際問(wèn)題.2.能自建確定性函數(shù)模型解決實(shí)際問(wèn)題.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:建立函數(shù)模型,把實(shí)際應(yīng)用問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題;2.邏輯推理:通過(guò)數(shù)據(jù)分析,確定合適的函數(shù)模型;3.數(shù)學(xué)運(yùn)算:解答數(shù)學(xué)問(wèn)題,求得結(jié)果;4.數(shù)據(jù)分析:把數(shù)學(xué)結(jié)果轉(zhuǎn)譯成具體問(wèn)題的結(jié)論,做出解答;5.數(shù)學(xué)建模:借助函數(shù)模型,利用函數(shù)的思想解決現(xiàn)實(shí)生活中的實(shí)際問(wèn)題.重點(diǎn):利用函數(shù)模型解決實(shí)際問(wèn)題;難點(diǎn):數(shù)模型的構(gòu)造與對(duì)數(shù)據(jù)的處理.
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)必修1本(A版)》的第五章的4.5.3函數(shù)模型的應(yīng)用。函數(shù)模型及其應(yīng)用是中學(xué)重要內(nèi)容之一,又是數(shù)學(xué)與生活實(shí)踐相互銜接的樞紐,特別在應(yīng)用意識(shí)日益加深的今天,函數(shù)模型的應(yīng)用實(shí)質(zhì)是揭示了客觀世界中量的相互依存有互有制約的關(guān)系,因而函數(shù)模型的應(yīng)用舉例有著不可替代的重要位置,又有重要的現(xiàn)實(shí)意義。本節(jié)課要求學(xué)生利用給定的函數(shù)模型或建立函數(shù)模型解決實(shí)際問(wèn)題,并對(duì)給定的函數(shù)模型進(jìn)行簡(jiǎn)單的分析評(píng)價(jià),發(fā)展學(xué)生數(shù)學(xué)建模、數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理的核心素養(yǎng)。1. 能建立函數(shù)模型解決實(shí)際問(wèn)題.2.了解擬合函數(shù)模型并解決實(shí)際問(wèn)題.3.通過(guò)本節(jié)內(nèi)容的學(xué)習(xí),使學(xué)生認(rèn)識(shí)函數(shù)模型的作用,提高學(xué)生數(shù)學(xué)建模,數(shù)據(jù)分析的能力. a.數(shù)學(xué)抽象:由實(shí)際問(wèn)題建立函數(shù)模型;b.邏輯推理:選擇合適的函數(shù)模型;c.數(shù)學(xué)運(yùn)算:運(yùn)用函數(shù)模型解決實(shí)際問(wèn)題;
1.確定研究對(duì)象,明確哪個(gè)是解釋變量,哪個(gè)是響應(yīng)變量;2.由經(jīng)驗(yàn)確定非線性經(jīng)驗(yàn)回歸方程的模型;3.通過(guò)變換,將非線性經(jīng)驗(yàn)回歸模型轉(zhuǎn)化為線性經(jīng)驗(yàn)回歸模型;4.按照公式計(jì)算經(jīng)驗(yàn)回歸方程中的參數(shù),得到經(jīng)驗(yàn)回歸方程;5.消去新元,得到非線性經(jīng)驗(yàn)回歸方程;6.得出結(jié)果后分析殘差圖是否有異常 .跟蹤訓(xùn)練1.一只藥用昆蟲(chóng)的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān),現(xiàn)收集了6組觀測(cè)數(shù)據(jù)列于表中: 經(jīng)計(jì)算得: 線性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀測(cè)數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1,2,3,4,5,6.(1)若用線性回歸模型擬合,求y關(guān)于x的回歸方程 (精確到0.1);(2)若用非線性回歸模型擬合,求得y關(guān)于x回歸方程為 且相關(guān)指數(shù)R2=0.9522. ①試與(1)中的線性回歸模型相比較,用R2說(shuō)明哪種模型的擬合效果更好 ?②用擬合效果好的模型預(yù)測(cè)溫度為35℃時(shí)該種藥用昆蟲(chóng)的產(chǎn)卵數(shù).(結(jié)果取整數(shù)).
二、工作任務(wù)1、負(fù)責(zé)牌號(hào)為:的汽車(chē)駕駛工作。2、乙方應(yīng)愛(ài)惜公司的車(chē)輛,注意車(chē)輛的平時(shí)保養(yǎng),經(jīng)常檢查車(chē)輛的主要機(jī)件。每周實(shí)施定期檢查及保養(yǎng),以維護(hù)機(jī)件的壽命,確保行車(chē)安全。3、乙方應(yīng)每天清理所駕車(chē)輛,以保持車(chē)輛的清潔(包括車(chē)內(nèi)、車(chē)外和引擎的清潔)。4、出車(chē)前,要例行檢查車(chē)輛的水、電、油、車(chē)燈、剎車(chē)系統(tǒng)、輪胎及其它部件的性能是否正常;發(fā)現(xiàn)不正常時(shí),要立即加補(bǔ)或維修。出車(chē)回來(lái),要檢查存油量,發(fā)現(xiàn)存油不足一格時(shí),應(yīng)立即加油。
第一條乙方自愿受聘,甲方同意錄用,本合同自雙方簽字之日起生效。第二條試用期:乙方被甲方錄用后,要經(jīng)過(guò)3個(gè)月的試用期。在試用期間,任何一方有權(quán)提前7天通知對(duì)方終止合同。如果甲方提出終止合同,須付給乙方半個(gè)月的平均工資作為辭退補(bǔ)償金。但因乙方嚴(yán)重違反合同規(guī)定而被辭退,甲方不發(fā)給補(bǔ)償金。在試用期間,如發(fā)現(xiàn)隱瞞過(guò)去的不良行為或患有不適合在大廈工作之疾病及犯有重大過(guò)失,嚴(yán)重違反合同者,甲方有權(quán)隨時(shí)解除合同。
一、合同期限及類型1、本合同期限類型為有固定期限勞動(dòng)合同。2、本合同有限期限為_(kāi)_______年,自________年______月______日起至________年________月________日止。3、其中試用期自________年________月________日起,至________年________月________日止。二、保險(xiǎn)福利待遇4、甲方按國(guó)家規(guī)定按時(shí)為乙方繳納社會(huì)保險(xiǎn)基金,乙方應(yīng)繳納部分由甲方從工資中代扣代繳。雙方解除、終止勞動(dòng)合同后,各類社會(huì)保險(xiǎn)手續(xù)按有關(guān)規(guī)定轉(zhuǎn)移。5、乙方在甲方工作期間,患病、因工傷殘或者患職業(yè)病以及生育,其相關(guān)的病假工資。疾病救濟(jì)費(fèi)、醫(yī)療待遇和保險(xiǎn)福利按照國(guó)家和______市及甲方有關(guān)規(guī)定執(zhí)行。