“當(dāng)前,少數(shù)D員、干部自我革命精神淡化,安于現(xiàn)狀、得過(guò)且過(guò);有的檢視問(wèn)題能力退化,患得患失、諱疾忌醫(yī);有的批評(píng)能力弱化,明哲保身、裝聾作??;有的驕奢腐化,目中無(wú)紀(jì)甚至頂風(fēng)違紀(jì),違反D的紀(jì)律和中央八項(xiàng)規(guī)定精神問(wèn)題屢禁不止。”針對(duì)問(wèn)題,強(qiáng)調(diào)指出,要蕩滌一切附著在D肌體上的骯臟東西,非常必要,非常及時(shí),非常有針對(duì)性,有著非常重要的歷史意義。凡是過(guò)往,皆為序章。初心易得,始終難守。我們要依照所強(qiáng)調(diào)的,全D同志必須始終保持崇高的革命理想和旺盛的革命斗志,用好批評(píng)和自我批評(píng)這個(gè)銳利武器,馳而不息抓好正風(fēng)肅紀(jì)反腐,不斷增強(qiáng)D自我凈化、自我完善、自我革新、自我提高的能力,堅(jiān)決同一切可能動(dòng)搖D的根基、阻礙D的事業(yè)的現(xiàn)象作斗爭(zhēng),蕩滌一切附著在D肌體上的骯臟東西,把我們D建設(shè)得更加堅(jiān)強(qiáng)有力。不斷深化D的自我革命,持續(xù)推動(dòng)全D不忘初心、牢記使命,讓我們的D成為永遠(yuǎn)打不倒、壓不垮的馬克思主義政D。
三、嚴(yán)格執(zhí)行首診7責(zé)制,對(duì)病員要熱情接待,禮貌待人,語(yǔ)言文明,耐心解答問(wèn)題,簡(jiǎn)化手續(xù),縮短候診時(shí)間,對(duì)危重病人應(yīng)及時(shí)匯報(bào),積極搶救,急診病人優(yōu)先就診,做到有秩序,有輕重緩急?! ∷?、對(duì)病員認(rèn)真負(fù)責(zé),檢查仔細(xì)、準(zhǔn)確,門(mén)診病歷書(shū)寫(xiě)及門(mén)診日志登記清楚完整?! ∥濉?yán)格執(zhí)行衛(wèi)生消毒制度,檢查時(shí)做到一人一墊,及時(shí)更換,嚴(yán)防交叉感染。
老師在國(guó)旗下的講話:讓科技之光照亮我們的生活老師們、同學(xué)們:早上好!今天我講話的題目是《讓科技之光照亮我們的生活》??萍嫉陌l(fā)展是一個(gè)社會(huì)的標(biāo)志、一種文明的象征。蒸汽機(jī)的出現(xiàn)標(biāo)志了工業(yè)社會(huì)的到來(lái),半導(dǎo)體的出現(xiàn)又將人類(lèi)帶入了電子時(shí)代,計(jì)算機(jī)的廣泛應(yīng)用與互聯(lián)網(wǎng)的誕生更是標(biāo)志著人類(lèi)步入了一個(gè)嶄新的信息時(shí)代??萍冀o了人類(lèi)社會(huì)無(wú)比強(qiáng)大的推動(dòng)力。談到科技,人們可能首先會(huì)想到人造地球衛(wèi)星、登月宇宙飛船、原子彈等這些似乎離我們遙不可及的事物上,她往往給人以高高在上的感覺(jué),實(shí)際上,科學(xué)技術(shù)的日新月異,使得科學(xué)不只為尖端技術(shù)服務(wù),也越來(lái)越多地滲透到我們的日常生活之中,服務(wù)著也豐富著我們的生活。科技與生活是密不可分的,我們的衣、食、住、行等都離不開(kāi)科技。人靠衣裝,每個(gè)人不僅用衣服來(lái)裝扮自己,還注重它的功用性。如納米技術(shù),使衣物在美觀、舒適之外,還被賦予了殺菌、防輻射、耐磨、保溫的新功能。
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 7.1 平面向量的概念及線性運(yùn)算 *創(chuàng)設(shè)情境 興趣導(dǎo)入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車(chē),效果一樣嗎? 圖7-1 介紹 播放 課件 引導(dǎo) 分析 了解 觀看 課件 思考 自我 分析 從實(shí)例出發(fā)使學(xué)生自然的走向知識(shí)點(diǎn) 0 3*動(dòng)腦思考 探索新知 【新知識(shí)】 在數(shù)學(xué)與物理學(xué)中,有兩種量.只有大小,沒(méi)有方向的量叫做數(shù)量(標(biāo)量),例如質(zhì)量、時(shí)間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經(jīng)常用箭頭來(lái)表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來(lái)表示向量.線段箭頭的指向表示向量的方向,線段的長(zhǎng)度表示向量的大?。鐖D7-2所示,有向線段的起點(diǎn)叫做平面向量的起點(diǎn),有向線段的終點(diǎn)叫做平面向量的終點(diǎn).以A為起點(diǎn),B為終點(diǎn)的向量記作.也可以使用小寫(xiě)英文字母,印刷用黑體表示,記作a;手寫(xiě)時(shí)應(yīng)在字母上面加箭頭,記作. 圖7-2 平面內(nèi)的有向線段表示的向量稱(chēng)為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語(yǔ) 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果 10
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 7.1 平面向量的概念及線性運(yùn)算 *創(chuàng)設(shè)情境 興趣導(dǎo)入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車(chē),效果一樣嗎? 圖7-1 介紹 播放 課件 引導(dǎo) 分析 了解 觀看 課件 思考 自我 分析 從實(shí)例出發(fā)使學(xué)生自然的走向知識(shí)點(diǎn) 0 3*動(dòng)腦思考 探索新知 【新知識(shí)】 在數(shù)學(xué)與物理學(xué)中,有兩種量.只有大小,沒(méi)有方向的量叫做數(shù)量(標(biāo)量),例如質(zhì)量、時(shí)間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經(jīng)常用箭頭來(lái)表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來(lái)表示向量.線段箭頭的指向表示向量的方向,線段的長(zhǎng)度表示向量的大?。鐖D7-2所示,有向線段的起點(diǎn)叫做平面向量的起點(diǎn),有向線段的終點(diǎn)叫做平面向量的終點(diǎn).以A為起點(diǎn),B為終點(diǎn)的向量記作.也可以使用小寫(xiě)英文字母,印刷用黑體表示,記作a;手寫(xiě)時(shí)應(yīng)在字母上面加箭頭,記作. 圖7-2 平面內(nèi)的有向線段表示的向量稱(chēng)為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語(yǔ) 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果 10
一、情境導(dǎo)學(xué)我國(guó)著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問(wèn)題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡(jiǎn)單講就是形與數(shù),歐幾里得幾何體系的特點(diǎn)是排除了數(shù)量關(guān)系,對(duì)于研究空間形式,你要真正的‘騰飛’,不通過(guò)數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問(wèn)題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運(yùn)算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點(diǎn)O和一個(gè)單位正交基底{i,j,k},以點(diǎn)O為原點(diǎn),分別以i,j,k的方向?yàn)檎较?、以它們的長(zhǎng)為單位長(zhǎng)度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時(shí)我們就建立了一個(gè)空間直角坐標(biāo)系Oxyz,O叫做原點(diǎn),i,j,k都叫做坐標(biāo)向量,通過(guò)每?jī)蓚€(gè)坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱(chēng)為Oxy平面,Oyz平面,Ozx平面.
問(wèn)題導(dǎo)學(xué)類(lèi)比用方程研究橢圓雙曲線幾何性質(zhì)的過(guò)程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開(kāi)口向右,這條拋物線上的任意一點(diǎn)M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時(shí),|y| 也增大,這說(shuō)明拋物線向右上方和右下方無(wú)限延伸.拋物線是無(wú)界曲線.2. 對(duì)稱(chēng)性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對(duì)稱(chēng),我們把拋物線的對(duì)稱(chēng)軸叫做拋物線的軸.拋物線只有一條對(duì)稱(chēng)軸. 3. 頂點(diǎn)拋物線和它軸的交點(diǎn)叫做拋物線的頂點(diǎn).拋物線的頂點(diǎn)坐標(biāo)是坐標(biāo)原點(diǎn) (0, 0) .4. 離心率拋物線上的點(diǎn)M 到焦點(diǎn)的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點(diǎn) 到定點(diǎn) 的距離和它到定直線l: 的距離的比是 ,則點(diǎn) 的軌跡方程為?解:設(shè)點(diǎn) ,由題知, ,即 .整理得: .請(qǐng)你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過(guò)雙曲線 的右焦點(diǎn)F2,傾斜角為30度的直線交雙曲線于A,B兩點(diǎn),求|AB|.分析:求弦長(zhǎng)問(wèn)題有兩種方法:法一:如果交點(diǎn)坐標(biāo)易求,可直接用兩點(diǎn)間距離公式代入求弦長(zhǎng);法二:但有時(shí)為了簡(jiǎn)化計(jì)算,常設(shè)而不求,運(yùn)用韋達(dá)定理來(lái)處理.解:由雙曲線的方程得,兩焦點(diǎn)分別為F1(-3,0),F2(3,0).因?yàn)橹本€AB的傾斜角是30°,且直線經(jīng)過(guò)右焦點(diǎn)F2,所以,直線AB的方程為
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長(zhǎng)軸長(zhǎng)是a. ( )(2)若橢圓的對(duì)稱(chēng)軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個(gè)焦點(diǎn),M為其上任一點(diǎn),則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個(gè)焦點(diǎn)為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)分別相等,且橢圓C2的焦點(diǎn)在y軸上.(1)求橢圓C1的半長(zhǎng)軸長(zhǎng)、半短軸長(zhǎng)、焦點(diǎn)坐標(biāo)及離心率;(2)寫(xiě)出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長(zhǎng)軸長(zhǎng)為10,半短軸長(zhǎng)為8,焦點(diǎn)坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對(duì)稱(chēng)性:關(guān)于x軸、y軸、原點(diǎn)對(duì)稱(chēng);③頂點(diǎn):長(zhǎng)軸端點(diǎn)(0,10),(0,-10),短軸端點(diǎn)(-8,0),(8,0);④焦點(diǎn):(0,6),(0,-6);⑤離心率:e=3/5.
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對(duì)稱(chēng)軸旋轉(zhuǎn)一周形成的曲面)的一部分。過(guò)對(duì)稱(chēng)軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個(gè)焦點(diǎn)F_1上,片門(mén)位另一個(gè)焦點(diǎn)F_2上,由橢圓一個(gè)焦點(diǎn)F_1 發(fā)出的光線,經(jīng)過(guò)旋轉(zhuǎn)橢圓面反射后集中到另一個(gè)橢圓焦點(diǎn)F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時(shí),通常采用待定系數(shù)法,其步驟是:(1)確定焦點(diǎn)位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對(duì)于焦點(diǎn)位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時(shí)常用的關(guān)系式有b2=a2-c2等.
二、探究新知一、空間中點(diǎn)、直線和平面的向量表示1.點(diǎn)的位置向量在空間中,我們?nèi)∫欢c(diǎn)O作為基點(diǎn),那么空間中任意一點(diǎn)P就可以用向量(OP) ?來(lái)表示.我們把向量(OP) ?稱(chēng)為點(diǎn)P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點(diǎn),則點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點(diǎn)O,可以得到點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱(chēng)為空間直線的向量表示式.由此可知,空間任意直線由直線上一點(diǎn)及直線的方向向量唯一確定.1.下列說(shuō)法中正確的是( )A.直線的方向向量是唯一的B.與一個(gè)平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個(gè)D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項(xiàng)正確.
跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點(diǎn).求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長(zhǎng)為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點(diǎn).求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過(guò)坐標(biāo)運(yùn)算證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說(shuō)明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因?yàn)镋,F,M分別為棱AB,BC,B1B的中點(diǎn),所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因?yàn)?B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.
問(wèn)題導(dǎo)學(xué)類(lèi)比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點(diǎn)的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對(duì)稱(chēng)性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點(diǎn)都是對(duì)稱(chēng)。x軸、y軸是雙曲線的對(duì)稱(chēng)軸,原點(diǎn)是對(duì)稱(chēng)中心,又叫做雙曲線的中心。3、頂點(diǎn)(1)雙曲線與對(duì)稱(chēng)軸的交點(diǎn),叫做雙曲線的頂點(diǎn) .頂點(diǎn)是A_1 (-a,0)、A_2 (a,0),只有兩個(gè)。(2)如圖,線段A_1 A_2 叫做雙曲線的實(shí)軸,它的長(zhǎng)為2a,a叫做實(shí)半軸長(zhǎng);線段B_1 B_2 叫做雙曲線的虛軸,它的長(zhǎng)為2b,b叫做雙曲線的虛半軸長(zhǎng)。(3)實(shí)軸與虛軸等長(zhǎng)的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫(huà)出雙曲線的草圖
二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時(shí),直線與拋物線相交,有兩個(gè)交點(diǎn);當(dāng)Δ=0時(shí),直線與拋物線相切,有一個(gè)切點(diǎn);當(dāng)Δ<0時(shí),直線與拋物線相離,沒(méi)有公共點(diǎn).(2)若k=0,直線與拋物線有一個(gè)交點(diǎn),此時(shí)直線平行于拋物線的對(duì)稱(chēng)軸或與對(duì)稱(chēng)軸重合.因此直線與拋物線有一個(gè)公共點(diǎn)是直線與拋物線相切的必要不充分條件.二、典例解析例5.過(guò)拋物線焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),通過(guò)點(diǎn)A和拋物線頂點(diǎn)的直線交拋物線的準(zhǔn)線于點(diǎn)D,求證:直線DB平行于拋物線的對(duì)稱(chēng)軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
【課時(shí)安排】 1課時(shí)【教學(xué)過(guò)程】1.回顧梳理、歸納總結(jié)。師:我們學(xué)過(guò)哪些立體圖形?生:長(zhǎng)方體、正方體、圓柱體、圓錐體師:它們分別有哪些特征?師生共同總結(jié)立體圖形的特征。 課件演示:長(zhǎng)方體的特征:6個(gè)面是長(zhǎng)方形(特殊情況有兩個(gè)對(duì)面是正方形)相對(duì)的面完全相同;12條棱,相對(duì)的4條棱長(zhǎng)度相等;8個(gè)頂點(diǎn)。正方體的特征:6個(gè)面都相等,都是正方形;12條棱都相等;8個(gè)頂點(diǎn)。圓柱的特征:上下兩個(gè)面是完全相同的圓形,側(cè)面是一個(gè)曲面,沿高展開(kāi)一般是個(gè)長(zhǎng)方形。上下一樣粗;有無(wú)數(shù)條高,每條高長(zhǎng)度都相等。
2.三角形的分類(lèi)。師:你能給三角形按照不同的標(biāo)準(zhǔn)進(jìn)行分類(lèi)嗎?生用自己喜歡的方式整理分類(lèi),然后匯報(bào):生:三角形按角分為銳角三角形、直角三角形、鈍角三角形。師:什么是銳角三角形、直角三角形、鈍角三角形?生:三個(gè)角都是銳角的三角形叫做銳角三角形;有一個(gè)角是直角的三角形叫做直角三角形;有一個(gè)角是鈍角的三角形叫做鈍角三角形。生:三角形按邊分為不等邊三角形(三條邊都不相等)、等腰三角形(等邊三角形) 等腰三角形的兩條邊相等,等邊三角形的三條邊都相等。3.四邊形分類(lèi)。師:你能給四邊形分類(lèi)嗎?生:四邊形分為平行四邊形和梯形;平行四邊形包括長(zhǎng)方形和正方形,長(zhǎng)方形又包括正方形;梯形包括等腰梯形和直角梯形。4.直線、射線和線段的關(guān)系。小組內(nèi)互相交流,然后匯報(bào):
2.送信。實(shí)物投影儀演示反饋。(1)方法說(shuō)明。你是怎么想的?(2)錯(cuò)誤糾正。分層校對(duì):做完的先互相批改,然后集體先校對(duì)丁當(dāng)組題,再校對(duì)一休組題。重點(diǎn)講評(píng)一休組題目。六、總結(jié)今天你有哪些收獲?(1)退位減法要注意什么?不要忘記退位。(2)退位減法的方法。為學(xué)生提供學(xué)習(xí)材料,讓學(xué)生通過(guò)活動(dòng)聯(lián)系生活實(shí)際學(xué)習(xí)新知,讓學(xué)生感受到數(shù)學(xué)源于生活,用于生活;采用分層教學(xué),整個(gè)學(xué)習(xí)過(guò)程都是學(xué)生在小組中合作研究、探索中完成的;然后通過(guò)多種形式的練習(xí)加以鞏固;注重學(xué)習(xí)過(guò)程的開(kāi)放;通過(guò)小組合作,培養(yǎng)學(xué)生善于發(fā)表自己的觀點(diǎn),會(huì)傾聽(tīng)同學(xué)的意見(jiàn)的能力。同時(shí)也培養(yǎng)學(xué)生學(xué)會(huì)提出問(wèn)題、解決問(wèn)題的能力。
四、課堂小結(jié)今天我們一起研究了什么問(wèn)題?板書(shū)課題:求一個(gè)數(shù)比另一個(gè)數(shù)多幾的應(yīng)用題解答這樣的問(wèn)題,應(yīng)該怎樣進(jìn)行分析?在老師的提問(wèn)下,學(xué)生回憶分析思路。最后,小結(jié)上課時(shí)男女學(xué)生小旗的情況,得出數(shù)目后問(wèn):你能根據(jù)今天學(xué)習(xí)的內(nèi)容提出問(wèn)題并列式計(jì)算嗎?教學(xué)反思:求一個(gè)數(shù)比另一個(gè)數(shù)多幾的應(yīng)用題,本節(jié)課屬于計(jì)算教學(xué)。傳統(tǒng)的計(jì)算教學(xué)往往只注重算理、單一的算法及技能訓(xùn)練,比較枯燥。依據(jù)新的數(shù)學(xué)課程標(biāo)準(zhǔn),在本節(jié)課的教學(xué)設(shè)計(jì)上,創(chuàng)設(shè)生動(dòng)具體的教學(xué)情境,使學(xué)生在愉悅的情景中學(xué)習(xí)數(shù)學(xué)知識(shí)。鼓勵(lì)學(xué)生獨(dú)立思考、自主探索和合作交流。尊重學(xué)生的個(gè)體差異,滿足多樣化的學(xué)習(xí)需求。 在課堂過(guò)程中,還有小部分學(xué)生不能充分地展開(kāi)自己的思維,得到有效的學(xué)習(xí)效果,讓所有的學(xué)生基本都學(xué)會(huì)如何去展現(xiàn)自己的有效的學(xué)習(xí)方式,這是我的教學(xué)目標(biāo)。
[設(shè)計(jì)意圖:鞏固減法的意義,培養(yǎng)學(xué)生初步的思維能力。](2)組織學(xué)生自己先算一算,教師巡視,捕捉學(xué)生學(xué)習(xí)信息,糾正不良學(xué)習(xí)習(xí)慣。[設(shè)計(jì)意圖:通過(guò)巡視,及時(shí)捕捉學(xué)生的學(xué)習(xí)信息,發(fā)現(xiàn)問(wèn)題及時(shí)解決;把培養(yǎng)學(xué)生良好的計(jì)算習(xí)慣、審題習(xí)慣及檢查習(xí)慣落到實(shí)處。](3)組織學(xué)生全班交流計(jì)算方法。組織學(xué)生在全班交流解決計(jì)算“32-2=”的方法,引導(dǎo)學(xué)生理解“32是由3個(gè)十和2個(gè)一組成,從32里去掉2,就剩3個(gè)十,所以32減2等于30”。如果學(xué)生用其他的方法來(lái)計(jì)算,只要正確,也要肯定。[設(shè)計(jì)意圖:同前面一樣,鞏固數(shù)的組成,訓(xùn)練每一個(gè)學(xué)生“述說(shuō)整十?dāng)?shù)加一位數(shù)相應(yīng)減法的計(jì)算過(guò)程”,突破難點(diǎn)。]3.加減法對(duì)比組織學(xué)生比較“30+2=32”和“32-2=30”,并說(shuō)一說(shuō)有什么發(fā)現(xiàn),使學(xué)生認(rèn)識(shí)到“3個(gè)十和2個(gè)一組成32,所以30加2等于32;反過(guò)來(lái),32是由3個(gè)十和2個(gè)一組成,從32里去掉2,就剩3個(gè)十,所以32減2等于30”[設(shè)計(jì)意圖:強(qiáng)化加減法意義的聯(lián)系,培養(yǎng)學(xué)生初步的思維能力。]
一、活動(dòng)內(nèi)容分析西歐從5世紀(jì)末至9世紀(jì)歷經(jīng)四個(gè)世紀(jì)完成了由奴隸制度向封建制度的轉(zhuǎn)變,西歐中世紀(jì)即西歐的封建社會(huì),形成了與中國(guó)封建社會(huì)不同的特點(diǎn)。理解這些特點(diǎn),將有助于學(xué)生理解西歐在世界上最早進(jìn)入資本主義社會(huì)的原因。盡管神學(xué)世界觀籠罩了西方中世紀(jì),是黑暗的,但是應(yīng)看到,自古代流傳下來(lái)的政治思想傳統(tǒng)如平等、自由、民主、法制等思想史都以不同的形式保存下來(lái)。歐洲的中世紀(jì)表面上看起來(lái)是一個(gè)陰森森的一千年(五百年到一千五百年),但實(shí)際上確實(shí)孕育了西方近代文明的重要時(shí)期。從探究活動(dòng)的內(nèi)容上看與第二單元的古代希臘羅馬的政治制度及第三單元近代西方資本主義政治制度的確立與發(fā)展明確相關(guān),有承上啟下的作用。二、活動(dòng)重點(diǎn)設(shè)計(jì)理解西歐封建社會(huì)的政治特點(diǎn)及對(duì)后世的影響;正確認(rèn)識(shí)基督教文明