提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

人教版高中政治必修3體味文化說課稿

  • 人教A版高中數(shù)學必修二直線與平面垂直教學設計

    人教A版高中數(shù)學必修二直線與平面垂直教學設計

    1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關系是什么?(2)隨著時間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠垂直,也就是AB垂直于地面上所有過點B的直線。而不過點B的直線在地面內總是能找到過點B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個平面α內所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字敘述:如果直線l與平面α內的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做交點.②圖形語言:如圖.畫直線l與平面α垂直時,通常把直線畫成與表示平面的平行四邊形的一邊垂直.

  • 人教A版高中數(shù)學必修二直線與直線垂直教學設計

    人教A版高中數(shù)學必修二直線與直線垂直教學設計

    6.例二:如圖在正方體ABCD-A’B’C’D’中,O’為底面A’B’C’D’的中心,求證:AO’⊥BD 證明:如圖,連接B’D’,∵ABCD-A’B’C’D’是正方體∴BB’//DD’,BB’=DD’∴四邊形BB’DD’是平行四邊形∴B’D’//BD∴直線AO’與B’D’所成角即為直線AO’與BD所成角連接AB’,AD’易證AB’=AD’又O’為底面A’B’C’D’的中心∴O’為B’D’的中點∴AO’⊥B’D’,AO’⊥BD7.例三如圖所示,四面體A-BCD中,E,F(xiàn)分別是AB,CD的中點.若BD,AC所成的角為60°,且BD=AC=2.求EF的長度.解:取BC中點O,連接OE,OF,如圖。∵E,F分別是AB,CD的中點,∴OE//AC且OE=1/2AC,OF//AC且OF=1/2BD,∴OE與OF所成的銳角就是AC與BD所成的角∵BD,AC所成角為60°,∴∠EOF=60°或120°∵BD=AC=2,∴OE=OF=1當∠EOF=60°時,EF=OE=OF=1,當∠EOF=120°時,取EF的中點M,連接OM,則OM⊥EF,且∠EOM=60°∴EM= ,∴EF=2EM=

  • 傳統(tǒng)文化國旗下講話:中華孝道文化的傳承與創(chuàng)新

    傳統(tǒng)文化國旗下講話:中華孝道文化的傳承與創(chuàng)新

    尊敬的各位領導,老師,親愛的同學們:大家早上好!今天由我來為大家做國旗下的演講,我演講的主題是“中華孝道文化的傳承與創(chuàng)新”。同學們應該對剛剛過去的清明節(jié)記憶猶新,也對即將到來的三月三歌圩節(jié)充滿期待吧?可,是否有同學知道,這兩個節(jié)日與中國孝道文化有著緊密的聯(lián)系呢?清明節(jié)返鄉(xiāng)祭祖表達了對已逝親人的思念與尊敬;三月三歌圩節(jié)中的師公舞蘊含著濃濃的孝道文化,無一不在說明著中國傳統(tǒng)與孝道文化的密不可分。孝道文化,即關愛父母長輩,尊老敬老的文化傳統(tǒng),是中國古代社會最基本的道德規(guī)范,也是中華民族尊奉的傳統(tǒng)美德。它強調幼敬長,下尊上,要求晚輩尊敬老人,子女孝敬父母,愛護、照顧、贍養(yǎng)老人,使老人們頤養(yǎng)天年,享受天倫之樂。孝道文化經(jīng)過千年的歷史發(fā)展,已成為中華民族繁衍生息、代代相傳的優(yōu)良傳統(tǒng)和核心價值觀。孝敬是太陽,給人溫暖;孝敬是大山,給人依靠;孝敬是水晶,是一筆寶貴的財富。俗話說,百善孝為先。古有晉人王祥臥冰求鯉,近有將軍陳毅探望病母,古今中外孝的事例可謂數(shù)不勝數(shù)。俗話說,百善孝為先。從古至今,孝順不僅是衡量個人道德水平高低的重要標準,也是社會秩序穩(wěn)定運行的重要保障。然而在今天,有多少人又把這種傳統(tǒng)的孝繼承下來呢?是否社會在不斷發(fā)展,人的物質生活水平不斷提高,那么就可以對基本的孝的美德嗤之以鼻,置之一邊呢?難道孝的故事永遠只能停留在"感動中國"的歷史中嗎?這答案顯然不是。孝道是我們每個人要秉持一生,永遠的傳承并發(fā)揚下去的。

  • 2024年度某縣文化旅游體育局上半年工作總結及下半年工作計劃

    2024年度某縣文化旅游體育局上半年工作總結及下半年工作計劃

    2.文博工作。加快*電廠、陳氏民居、姚王廟*處文保單位修繕工程進度,完成*古窯址區(qū)域調查。舉辦全縣文保員培訓會議,制作宣傳冊和文保類文創(chuàng)產(chǎn)品。開展秋季文物安全巡查,和全縣古建筑秋冬消防安全專項檢查。博物館計劃接待游客*萬余人次,舉辦專題展覽至少*個,積極申報國家三級館。3.旅游工作。一是舉辦凌家灘文化旅游節(jié)、老鵝湯美食節(jié),打響美食牌。依托“*文旅惠民消費季”和暑期、國慶等重要節(jié)點,支持鄉(xiāng)村、景區(qū)開展旅游營銷活動。強化客源地推介和惠民促銷,推動差異化營銷,利用抖音號、“樂游*”微視頻號,構建新媒體矩陣。加強對全域旅游創(chuàng)建的季度考核,指導建設*座旅游廁所。加快市、縣重點文旅項目建設,定期專班調度,加強數(shù)字創(chuàng)意產(chǎn)業(yè)項目建設,推動文旅招商,引進優(yōu)質頭部企業(yè)。組建旅游協(xié)會,加快旅游資源整合和抱團發(fā)展。開展網(wǎng)紅打卡點培育和評選工作。

  • 拋物線的簡單幾何性質(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    拋物線的簡單幾何性質(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    問題導學類比用方程研究橢圓雙曲線幾何性質的過程與方法,y2 = 2px (p>0)你認為應研究拋物線的哪些幾何性質,如何研究這些性質?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側,開口向右,這條拋物線上的任意一點M 的坐標 (x, y) 的橫坐標滿足不等式 x ≥ 0;當x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點拋物線和它軸的交點叫做拋物線的頂點.拋物線的頂點坐標是坐標原點 (0, 0) .4. 離心率拋物線上的點M 到焦點的距離和它到準線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標準方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 雙曲線的簡單幾何性質(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    雙曲線的簡單幾何性質(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標高112.5m,試建立適當?shù)淖鴺讼?,求出此雙曲線的標準方程(精確到1m)解:設雙曲線的標準方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標為塔頂直徑的一半即 ,其縱坐標為塔的總高度與喉部標高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設而不求,運用韋達定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為

  • 空間向量及其運算的坐標表示教學設計人教A版高中數(shù)學選擇性必修第一冊

    空間向量及其運算的坐標表示教學設計人教A版高中數(shù)學選擇性必修第一冊

    一、情境導學我國著名數(shù)學家吳文俊先生在《數(shù)學教育現(xiàn)代化問題》中指出:“數(shù)學研究數(shù)量關系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點是排除了數(shù)量關系,對于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學幾何的“騰飛”是“數(shù)量化”,也就是坐標系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標及其運算.二、探究新知一、空間直角坐標系與坐標表示1.空間直角坐標系在空間選定一點O和一個單位正交基底{i,j,k},以點O為原點,分別以i,j,k的方向為正方向、以它們的長為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標軸.這時我們就建立了一個空間直角坐標系Oxyz,O叫做原點,i,j,k都叫做坐標向量,通過每兩個坐標軸的平面叫做坐標平面,分別稱為Oxy平面,Oyz平面,Ozx平面.

  • 雙曲線的簡單幾何性質(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    雙曲線的簡單幾何性質(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    問題導學類比橢圓幾何性質的研究,你認為應該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質,如何研究這些性質1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點的坐標( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關于x軸、y軸和原點都是對稱。x軸、y軸是雙曲線的對稱軸,原點是對稱中心,又叫做雙曲線的中心。3、頂點(1)雙曲線與對稱軸的交點,叫做雙曲線的頂點 .頂點是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實軸,它的長為2a,a叫做實半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準確的畫出雙曲線的草圖

  • 拋物線的簡單幾何性質(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    拋物線的簡單幾何性質(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    二、直線與拋物線的位置關系設直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當Δ>0時,直線與拋物線相交,有兩個交點;當Δ=0時,直線與拋物線相切,有一個切點;當Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設拋物線的標準方程為:y2=2px(p>0).設A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,

  • 拋物線及其標準方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    拋物線及其標準方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    本節(jié)課選自《2019人教A版高中數(shù)學選擇性必修第一冊》第二章《直線和圓的方程》,本節(jié)課主要學習拋物線及其標準方程在經(jīng)歷了橢圓和雙曲線的學習后再學習拋物線,是在學生原有認知的基礎上從幾何與代數(shù)兩 個角度去認識拋物線.教材在拋物線的定義這個內容的安排上是:先從直觀上認識拋物線,再從畫法中提煉出拋物線的幾何特征,由此抽象概括出拋物線的定義,最后是拋物線定義的簡單應用.這樣的安排不僅體現(xiàn)出《課程標準》中要求通過豐富的實例展開教學的理念,而且符合學生從具體到抽象的認知規(guī)律,有利于學生對概念的學習和理解.坐標法的教學貫穿了整個“圓錐曲線方程”一章,是學生應重點掌握的基本數(shù)學方法 運動變化和對立統(tǒng)一的思想觀點在這節(jié)知識中得到了突出體現(xiàn),我們必須充分利用好這部分教材進行教學

  • 雙曲線及其標準方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    雙曲線及其標準方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    ∵在△EFP中,|EF|=2c,EF上的高為點P的縱坐標,∴S△EFP=4/3c2=12,∴c=3,即P點坐標為(5,4).由兩點間的距離公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求雙曲線的方程為x^2/5-y^2/4=1.5.求適合下列條件的雙曲線的標準方程.(1)兩個焦點的坐標分別是(-5,0),(5,0),雙曲線上的點與兩焦點的距離之差的絕對值等于8;(2)以橢圓x^2/8+y^2/5=1長軸的端點為焦點,且經(jīng)過點(3,√10);(3)a=b,經(jīng)過點(3,-1).解:(1)由雙曲線的定義知,2a=8,所以a=4,又知焦點在x軸上,且c=5,所以b2=c2-a2=25-16=9,所以雙曲線的標準方程為x^2/16-y^2/9=1.(2)由題意得,雙曲線的焦點在x軸上,且c=2√2.設雙曲線的標準方程為x^2/a^2 -y^2/b^2 =1(a>0,b>0),則有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求雙曲線的標準方程為x^2/3-y^2/5=1.(3)當焦點在x軸上時,可設雙曲線方程為x2-y2=a2,將點(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線的標準方程為x^2/8-y^2/8=1.當焦點在y軸上時,可設雙曲線方程為y2-x2=a2,將點(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點不可能在y軸上.綜上,所求雙曲線的標準方程為x^2/8-y^2/8=1.

  • 橢圓的簡單幾何性質(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    橢圓的簡單幾何性質(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標及離心率;(2)寫出橢圓C2的方程,并研究其性質.解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.

  • 橢圓的簡單幾何性質(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    橢圓的簡單幾何性質(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉橢圓面(橢圓繞其對稱軸旋轉一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經(jīng)過旋轉橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當?shù)钠矫嬷苯亲鴺讼担蠼乜贏BC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標系,設所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質求標準方程的思路1.利用橢圓的幾何性質求橢圓的標準方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設出相應橢圓的標準方程(對于焦點位置不確定的橢圓可能有兩種標準方程);(3)根據(jù)已知條件構造關于參數(shù)的關系式,利用方程(組)求參數(shù),列方程(組)時常用的關系式有b2=a2-c2等.

  • 用空間向量研究距離、夾角問題(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    用空間向量研究距離、夾角問題(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    二、探究新知一、點到直線的距離、兩條平行直線之間的距離1.點到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點,P是直線l外一點.設(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點P,則兩條平行直線間的距離就等于點P到直線m的距離.點睛:點到直線的距離,即點到直線的垂線段的長度,由于直線與直線外一點確定一個平面,所以空間點到直線的距離問題可轉化為空間某一個平面內點到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長為2,E,F分別是C1C,D1A1的中點,則點A到直線EF的距離為 . 答案: √174/6解析:如圖,以點D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),

  • 用空間向量研究直線、平面的位置關系(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    用空間向量研究直線、平面的位置關系(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    二、探究新知一、空間中點、直線和平面的向量表示1.點的位置向量在空間中,我們取一定點O作為基點,那么空間中任意一點P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設P是直線l上的任意一點,則點P在直線l上的充要條件是存在實數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點O,可以得到點P在直線l上的充要條件是存在實數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項正確.

  • 用空間向量研究直線、平面的位置關系(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    用空間向量研究直線、平面的位置關系(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    跟蹤訓練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系.設正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結論;另一種思路是建立空間直角坐標系,通過坐標運算證明(D_1 M) ?與平面EFB1內的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.

  • 必修一牛頓第一定律教案

    必修一牛頓第一定律教案

    (二)?過程與方法?  4.?觀察生活中的慣性現(xiàn)象,了解力和運動的關系?  5.?通過實驗加深對牛頓第一定律的理解?  6.?理解理想實驗是科學研究的重要方法?  (三)?情感態(tài)度與價值觀?  7.?通過伽利略和亞里士多德對力和運動關系的不同認識,了解人類認識事物本質的曲折性?  8.?感悟科學是人類進步的不竭動力

  • 在州委文化旅游工作委員會議上的講話范文

    在州委文化旅游工作委員會議上的講話范文

    第一,要搶抓文旅發(fā)展難得機遇。要搶抓有序放開跨省旅游機遇,今年*月底,國家文化和旅游部制定印發(fā)了《關于加強疫情防控科學精準實施跨省旅游“熔斷”機制的通知》,將跨省團隊旅游“熔斷”區(qū)域進一步精準到縣(區(qū))域,我們要抓住機遇,全力恢復旅行社及在線旅游企業(yè)的跨省團隊旅游及“機票+酒店”業(yè)務,促進旅游市場快速復蘇回暖。要搶抓成功舉辦旅發(fā)大會擴大影響機遇,突出抓好*條旅游精品線路、節(jié)慶活動、旅游產(chǎn)品等培育。上半年,我們推出了“*人游*”活動,全州*家景區(qū)免門票一個月,效果很好,還要繼續(xù)開展。要搶抓暑期學生旅游高峰期和全省干部職工*月份集中休年假機遇,學習借鑒其他地區(qū)的經(jīng)驗做法,研究具體“引客入州”政策措施,點燃*旅游市場?! 〉诙?,要及時兌現(xiàn)旅游紓困政策。上半年,國省州針對文旅行業(yè)恢復發(fā)展出臺了系列政策措施,今年州里已安排旅游紓困專項資金,各相關部門要認真梳理,兌現(xiàn)落實國家、省州出臺的系列幫扶政策。要加強上級專項資金申報,力爭獲得更多國省政策支持。要盤點評估現(xiàn)有政策落實情況,進一步摸排受疫情影響較大的餐飲、住宿、交通運輸、文化旅游等服務業(yè)企業(yè)名單,專項制定幫扶措施,幫助困難企業(yè)渡過難關。要強化部門聯(lián)動,結合干部聯(lián)企“送政策、解難題、優(yōu)服務”和“銀行行長進園區(qū)”活動,提高政策直達性、擴大受益面,確保惠企政策精準直達快享,助推文旅產(chǎn)業(yè)加快復蘇發(fā)展?! 〉谌珳式M織開展市場營銷。作為首屆湖南旅游發(fā)展大會的系列活動,近期,*駐華外交官“發(fā)現(xiàn)中國之旅”走進*州,*的美景和文化給他們留下了非常深刻印象,來自朝鮮、泰國等*個國家的*位駐華外交官及代表對*文旅紛紛點贊,希望以后有機會還能再來。要搶抓全省旅發(fā)大會宣傳熱度,開展好神秘*“盲盒”快閃,旅游線路評選等州旅發(fā)大會會后活動和“周游三湘 就來*”推廣活動。要組織客源市場營銷“小分隊”,在長沙、廣州等重點客源城市開展精準營銷,與重慶、湖北、廣東等地洽談合作細節(jié)。鼓勵各縣市區(qū)圍繞旅發(fā)大會、暑期旅游市場策劃各類營銷活動,辦好湖南省夏季鄉(xiāng)村旅游節(jié)、*旅拍節(jié)第節(jié)慶活動,營造濃厚宣傳營銷氛圍。要樹立全州“一盤棋”思想,強化整體形象包裝,建立健全全州旅游宣傳互推、智慧旅游、旅游通達、零客互推、利益共享等保障機制,改變過去各縣市區(qū)文旅宣傳互推“各自為政”力量分散的現(xiàn)狀,加快構建旅游聯(lián)動發(fā)展大格局。同時,要加大文化旅游資源整合,加快組建州級文化旅游投資集團公司,加大文旅龍頭企業(yè)引進和培育力度,支持文旅企業(yè)參與市場競爭、不斷做大做強。

  • 2024年一季度文化振興工作總結范文

    2024年一季度文化振興工作總結范文

    五是引導婚事新辦。**縣婚姻登記管理中心在等候廳利用電子屏每天滾動播放移風易俗宣傳標語及在醒目位置擺放“樹新風除陋習婚事新辦”倡議書。特別利用春節(jié)、2.14等特殊節(jié)日向新人們發(fā)放“移風易俗”倡議書,共發(fā)放倡議書1000余張。倡導辦事群眾婚事新辦、喪事簡辦,文明節(jié)約辦事。通過發(fā)放“移風易俗”倡議書。引導群眾特別是廣大青年樹立正確的婚姻觀和價值觀,自覺抵制奢靡之風,抵制不文明行為。六是獨立設置頒證廳。2024年婚姻登記管理中心第一季度共發(fā)放移風易俗宣傳單600余份,頒發(fā)結婚證20多對,共做婚前輔導19例。通過頒證,引導新人移風易俗,新人可以把免費的婚禮作為“正規(guī)”的婚禮,打消了擇期舉辦更隆重婚禮的念頭,抵制鋪張浪費。弘揚時代新風的婚俗禮儀入手,培養(yǎng)文明向上的現(xiàn)代婚俗文化,傳承良好家風家教。

  • 紅色文化遺址保護和利用工作調研報告

    紅色文化遺址保護和利用工作調研報告

    (一)紅色文化遺址開發(fā)難度較大。我縣紅色文化遺址分布點多線散,很不集中,大多橫跨幾個鄉(xiāng)鎮(zhèn),有些在深山老林里,集中連片開發(fā)利用難度大。(二)紅色文化資源深度挖掘不夠。紅色文化景點內部展陳都十分簡易,沒有利用現(xiàn)代化聲光電手段,講解水平普遍不高,沒有紅色精神、紅色故事、紅色歌謠等紅色文化衍生的產(chǎn)品,沒有形成紅色文化資源品牌。

上一頁123...525354555657585960616263下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!