四、范例學習、理解領會例2 某校墻邊有甲、乙兩根木桿。已知乙木桿的高度為1.5m.(1)某一時刻甲木桿在陽光下的影子如圖5-6所示,你能畫出此時乙木桿的影子嗎?(用線段表示影子)(2)在圖中,當乙木桿移動到什么位置時,其影子剛好不落在墻上?(3)在(2)的情況下,如果測得甲、乙木桿的影子長分別為1.24m和1m,那么你能求出甲木桿的高度嗎?學生畫圖、 實驗、觀察、探索。五、隨堂練習課本隨堂練習 學生觀察、畫圖、合作交流。六、課堂總結本節(jié)課通過各種實踐活動,促進大家對內(nèi)容的理解,本課內(nèi)容,要體會物體在太陽光下形成的不同影子,在操作中觀察不 同時刻影子的方向和大小變化特征。在同一時刻,物體的影子與它們的高度成比 例.
探索1:上節(jié)我們列出了與地毯的花邊寬度有關的方程。地毯花邊的寬x(m),滿足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當堂訓練:完成課本34頁隨堂練習四、學習體會:五、課后作業(yè)
三、課堂檢測:(一)、判斷題(是一無二次方程的在括號內(nèi)劃“√”,不是一元二次方程的,在括號內(nèi)劃“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a為常數(shù)) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空題.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次項是__________,一次項是__________,常數(shù)項是__________.2.如果方程ax2+5=(x+2)(x-1)是關于x的一元二次方程,則a__________.3.關于x的方程(m-4)x2+(m+4)x+2m+3=0,當m__________時,是一元二次方程,當m__________時,是一元一次方程。四、學習體會:五、課后作業(yè)
(4)議一議:頻率與概率有什么區(qū)別和聯(lián)系?隨著重復實驗次數(shù)的不斷增加,頻率的變化趨勢如何?結論:從上面的試驗可以看到:當重復實驗的次數(shù)大量增加時,事件發(fā) 生的頻率就穩(wěn)定在相應的概率附近,因此,我們可以通過大量重復實驗,用一個事件發(fā)生的頻率來估計這一事件發(fā)生的概率。三、做一做:1.某運動員投籃5次, 投中4次,能否說該運動員投一次籃,投中的概率為4/5?為什么?2.回答下列問題:(1)抽檢1000件襯衣,其中不合格的襯衣有2件,由 此估計抽1件襯衣合格的概率是多少?(2)1998年,在美國密歇根州漢諾城市的一個農(nóng)場里出生了1頭白色的小奶牛,據(jù)統(tǒng)計,平均出生1千萬頭牛才會有1頭是白色的,由此估計出生一頭奶牛為白色的概率為多少?
教學目標:1.能利用三角函數(shù)概念推導出特殊角的三角函數(shù)值.2.在探索特殊角的三角函數(shù)值的過程中體會數(shù)形結合思想.教學重點:特殊角30°、60°、45°的三角函數(shù)值.教學難點:靈活應用特殊角的三角函數(shù)值進行計算.☆ 預習導航 ☆一、鏈接:1.如圖,用小寫字母表示下列三角函數(shù):sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三邊長有什么特殊的數(shù)量關系?如果∠A=45°,那么三邊長有什么特殊的數(shù)量關系?二、導讀:仔細閱讀課本內(nèi)容后完成下面填空:
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結:正方形被對角線分成4個等腰直角三角形,因此在正方形中解決問題時常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對角線BD上一點P,作PE⊥BC于點E,PF⊥CD于點F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結:(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對角線,這樣可以使分散的條件集中.
教學目標:1.知道二次函數(shù)與一元二次方程的聯(lián)系,提高綜合解決問題的能力.2.會求拋物線與坐標軸交點坐標,會結合函數(shù)圖象求方程的根.教學重點:二次函數(shù)與一元二次方程的聯(lián)系.預設難點:用二次函數(shù)與一元二次方程的關系綜合解題.☆ 預習導航 ☆一、鏈接:1.畫一次函數(shù)y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點坐標; (2)解方程2x-3=0(3)說出直線y=2x-3與x軸交點的橫坐標和方程根的關系2.不解方程3x2-2x+4=0,此方程有 個根。二、導讀畫二次函數(shù)y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點坐標是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點的橫坐標與一元二次方程x2-5x+4=0的解有什么關系?(3)一元二次方程ax2+bx+c=0是二次函數(shù)y=ax2+bx+c當函數(shù)值y=0時的特殊情況.二次函數(shù)y=ax2+bx+c的圖象與x軸交點的橫坐標與一元二次方程ax2+bx+c=0的根有什么關系?
二、相對論的創(chuàng)立【課件】展示下列材料艾伯特·愛因斯坦(1879——1955),1879年3月14日誕生在德國烏爾姆的一個猶太人家中。1894年舉家遷居意大利米蘭。1900年畢業(yè)于瑞士蘇黎世工業(yè)大學。愛因斯坦被認為是最富于創(chuàng)造力的科學家,他不但創(chuàng)立了相對論,還提出了光量子的概念,得出了光電效應的基本定律,并揭示了光的波粒二重性本質(zhì),為量子力學的建立奠定基礎。為此榮獲1921年度的諾貝爾物理學獎。同時,他還證明了熱的分子運動論,提出了測定分子大小的新方法?!締栴}】19世紀末20世紀初愛因斯坦對物理學的貢獻是什么?意義是什么?為什么會出現(xiàn)?1、背景:經(jīng)典物理學的危機。19世紀末三大發(fā)現(xiàn):x射線、放射性和電子,經(jīng)典力學無法解釋研究中的新問題,如:黑體輻射、光電效應等。2、相對論的提出及主要內(nèi)容:(1)“狹義相對論”和光速不變原理:1905年提出。
實驗是學習生物的手段和基礎,是培養(yǎng)學生分析問題、解決問題的能力及創(chuàng)造能力的載體。新課程倡導:強調(diào)過程,強調(diào)學生探索新知識的經(jīng)歷和獲得新知的體驗,不能在讓教學脫離學生的內(nèi)心感受,必須讓學生追求過程的體驗。并且每年高考都有對生物學實驗的考查,而且比例越來越重,而學生的失分比例大,主要在于他們沒有完整的生物實驗設計模式,考慮問題欠缺,本節(jié)安排在第二課時完整講述高中生物學實驗設計,是以學生在第一課時和前面探究實驗接觸的前提下,完整體驗生物實驗設計模式,為后面學習探究實驗打下基礎,也為培養(yǎng)學生分析問題、解決問題從一開始就打好基礎。五、說教學過程:第一課時聯(lián)系生活,導入新課,激發(fā)學生學習興趣→細胞代謝→問題探究,酶在代謝中的作用,掌握科學實驗方法→酶的本質(zhì),運用方法,自主歸納獲取新知→小結練習,突出重點易化難點
3、課堂小結,強化認識。(2—3分鐘)通過總結本課的知識,簡單的用三個概念三個關系,簡明扼要的總結出本節(jié)課的知識,突出本框題的重難點。其中重點給學生梳理一下哲學的含義,使學生在學習的最后對于哲學有一個全面而準確的理解,強化學生對于哲學的認識。4、課堂練習針對高中學生初步接觸哲學,運用哲學思維來分析哲學問題的能力還需要今后的培養(yǎng),我進行了分層的方式來設計習題,這樣設計一方面符合學生認知的能力,由簡單到困難,一步步的深入,另一方面,在練習的過程中,也可以使學生鞏固基礎知識,使學有余力的學生繼續(xù)提高,充分考慮到學生的實際情況。5、板書設計為了強化教學效果,我會在授課的過程中適時的書寫板書,我的板書設計總的來說是以簡潔明了的形式展示,便于學生一目了然的把握本節(jié)課的重難點,也可以建立知識間的聯(lián)系,便于學生形成完整的知識體系。
一、教材分析1、本框題在教材中的地位。本框題教材所處的地位及聯(lián)系:《關于世界觀的學說》是人教版2004年12月第一版教材高二政治必修4第一單元第二框題,在這之前學生已經(jīng)學習了生活處處有哲學的內(nèi)容,了解了哲學與我們的生活息息相關,這為過度到本框題的學習起到了鋪墊的作用。本框題又是學生進入哲學的入門,因而它在生活與哲學中具有不容忽視的重要地位。學好本框題,為學生從總體上對哲學的理解,為以后學好哲學做了良好的鋪墊作用。本框題是進入哲學與生活不可缺少的部分,也學生的學習生活常常遇到的問題。2、教學目標:1. 知識目標:(1)哲學的含義;(2)哲學與世界觀的關系;(3)哲學與具體科學知識的關系。2. 能力目標:(1)通過對哲學與世界觀、方法論、具體知識三對關系的分析,培養(yǎng)辯證思維的能;(2)通過對身邊生活事例、哲理故事、哲學家觀點的體悟,培養(yǎng)分析問題的能力;
(3)改造主觀世界同改造客觀世界的關系。改造客觀世界同改造主觀世界,是相互聯(lián)系、相互作用的。改造主觀世界是為了更好地改造客觀世界,人們在改造客觀世界的同時也改造著自己的主觀世界。通過自覺改造主觀世界,又能提高改造客觀世界的能力。師:人們對自己的思想道德境界的追求,是永遠止境的。讓我們共同努力,在踐行社會主義思想道德的過程中,不斷追求更高的目標,像無數(shù)先輩那樣,加入到為共產(chǎn)主義遠大理想而奮斗的行列中吧!課堂小結通過本節(jié)課學習使我們認識到面對現(xiàn)實生活中的思想道德沖突,加強知識文化修養(yǎng)和思想道德修養(yǎng),不斷追求更高的思想道德目標的必要性;把握了知識文化修養(yǎng)與思想道德修養(yǎng)的含義及其相互關系;明確了我們應該和怎樣追求更高的思想道德目標;認識到這是一個永無止境的過程。我們要腳踏實地,從現(xiàn)在做起、從點滴小事做起,不斷提高知識文化修養(yǎng)和思想道德修養(yǎng),追求更高的思想道德目標。
2、講授新課:(35分鐘)通過教材第一目的講解,讓學生明白,生活和學習中有許多蘊涵哲學道理的故事,表明哲學并不神秘總結并過渡:生活也離不開哲學,哲學可以是我正確看待自然、人生、和社會的發(fā)展,從而指導人們正確的認識和改造世界。整個過程將伴隨著多媒體影像資料和生生對話討論以提高學生的積極性。3、課堂反饋,知識遷移。最后對本科課進行小結,鞏固重點難點,將本課的哲學知識遷移到與生活相關的例子,實現(xiàn)對知識的升華以及學生的再次創(chuàng)新;可使學生更深刻地理解重點和難點,為下一框?qū)W習做好準備。4、板書設計我采用直觀板書的方法,對本課的知識網(wǎng)絡在多媒體上進行展示。盡可能的簡潔,清晰。使學生對知識框架一目了然,幫助學生構建本課的知識結構。5、布置作業(yè)我會留適當?shù)淖詼y題及教學案例讓同學們做課后練習和思考,檢驗學生對本課重點的掌握以及對難點的理解。并及時反饋。對學生在理解中仍有困難的知識點,我會在以后的教學中予以疏導。
五.說教學過程:(重點)1.課題引入:課堂探究導入新課。采用教材現(xiàn)成的探究活動導入新課,既“溫故”又“知新”,還節(jié)約了課堂有效時間。2.講授新課:(20-25分鐘)本課的重難點是關于哲學基本問題的解釋,我引用一個很著名的學生也略知一二的唯心主義觀點的例子(課堂探究1)順利進入本課重要知識點的學習,采用案例教學,激發(fā)學生的興趣以及探究問題的欲望,學習哲學基本問題的第一個方面,并用問題和練習形式鞏固知識,強化學生易錯已混知識點;課堂探究2,同樣引用哲學上的著名案例讓學生分析探究思考以及合作交流,學生趣味濃厚,主動深入學習本課知識,達到預期教學目的。此時,本課的重點知識教學完成。關于本課的第二個知識點“為什么思維和存在的關系問題是哲學的基本問題”采用學生自主閱讀、合作交流的方法,歸納總結,完成本知識目標。3.課堂反饋、知識遷移(10-15分鐘)采用學生總結、隨堂練習等形式鞏固本課知識,同時檢驗教學效果。可使學生更深刻的理解教學重點。
②關于哲學的第二個問題是——思維和存在有沒有同一性解釋同一性——就是說意識(思維)能否正確認識物質(zhì)(存在)的問題。(讓學生表達他們自己的意見)總結得出三種看法——認為意識(思維)可以正確認識物質(zhì)(存在)的,屬于可知論者;凡是認為意識(思維)不能正確認識物質(zhì)(存在),屬于不可知論者。當然也有些同學是兩者觀點都有,這種同學我們把他稱為不徹底的不可知論者。2、為什么思維和存在的關系問題是哲學的基本問題(1)它是人們在生活和實踐活動中首先遇到和無法回避的基本問題(舉例說明問題,吃飯的時候吃什么菜,學習計劃與學習的實際等等)結合教材P10探究進行講解舉例:11月31日請全班同學吃雪糕,吃完后再去肯德基大吃一頓,之后再到卡拉OK唱通宵——不切實際,因為11月并沒有31日。(2)它是一切哲學都不能回避、必須回答的問題(不同的回答,直接決定著哲學的不同發(fā)展方向。)
教學反思: 1.本課時設計的主導思想是:將數(shù)形結合的思想滲透給學生,使學生對數(shù)與形有一個初步的認識.為將來的學習打下基礎,這節(jié)課是一堂起始課,它為學生的思維開拓了一個新的天地.在傳統(tǒng)的教學安排中,這節(jié)課的地位沒有提到一定的高度,只是交給學生比較線段的方法,沒有從數(shù)形結合的高度去認識.實際上這節(jié)課大有可講,可以挖掘出較深的內(nèi)容.在教知識的同時,交給學生一種很重要的數(shù)學思想.這一點不容忽視,在日常的教學中要時時注意.2.學生在小學時只會用圓規(guī)畫圓,不會用圓規(guī)去度量線段的大小以及截取線段,通過這節(jié)課,學生對圓規(guī)的用法有一個新的認識.3.在課堂練習中安排了度量一些三角形的邊的長度,目的是想通過度量使學生對“兩點之間線段最短”這一結論有一個感性的認識,并為下面的教學做一個鋪墊.
【教學目標】1.經(jīng)歷從不同方向觀察物體的活動過程,發(fā)展空間觀念;能在與他人交流的過程中,合理清晰地表達自己的思維過程.2.在觀察的過程中,初步體會從不同方向觀察同一物體可能看到不同的圖形.3.能識別簡單物體的三視圖,會畫立方體及其簡單組合體的三視圖.【基礎知識精講】1.主視圖、左視圖、俯視圖的定義從不同方向觀察同一物體,從正面看到的圖叫主視圖,從左面看到的圖叫左視圖,從上面看到的圖叫做俯視圖.2.幾種幾何體的三視圖(1)正方體:三視圖都是正方形.圓錐的主視圖、左視圖都是三角形,而俯視圖的圖中有一個點表示圓錐的頂點,因為從上往下看圓錐時先看到圓錐的頂點,再看到底面的圓.3.如何畫三視圖 當用若干個小正方體搭成新的幾何體,如何畫這個新的幾何體的三視圖?
解 由題意可得,今年的年產(chǎn)值為a·(1+10%) 億元,于是明年的年產(chǎn)值為a·(1+10%)·(1+10%)= 1.21a(億元).若去年的年產(chǎn)值為2億元,則明年的年產(chǎn)值為1.21a =1.21×2 = 2.42(億元).答:該企業(yè)明年的年產(chǎn)值將能達到1.21a億元.由去年的年產(chǎn)值是2億元,可以預計明年的年產(chǎn)值是2.42億元.例3 當x=-3時,多項式mx3+nx-81的值是10,當x = 3時,求該代數(shù)式的值.解 當x=-3時,多項式mx3+nx-81=-27m-3n-81, 此時-27m-3n-81=10, 所以27m+3n=-91.則當x=3,mx3+nx-81 =( 27m+3n )-81=-91-81=-172.注:本題采用了一種重要的數(shù)學思想——“整體思想”.即是考慮問題時不是著眼于他的局部特征,而是把注意力和著眼點放在問題的整體結構上,把一些彼此獨立,但實質(zhì)上又相互緊密聯(lián)系著的量作為整體來處理的思想方法.
方法總結:對等式進行變形,必須在等式的兩邊同時進行,即同加或同減,同乘或同除,不能漏掉一邊,且同加或同減,同乘或同除的數(shù)必須相同.探究點二:利用等式的基本性質(zhì)解方程用等式的性質(zhì)解下列方程:(1)4x+7=3; (2)12x-13x=4.解析:(1)在等式的兩邊都減7,再在等式的兩邊都除以4,可得答案;(2)在等式的兩邊都乘以6,再合并同類項,可得答案.解:(1)方程兩邊都減7,得4x=-4.方程兩邊都除以4,得x=-1;(2)方程兩邊都乘以6,得3x-2x=24,x=24.方法總結:解方程時,一般先將方程變形為ax=b的形式,然后再變形為x=c的形式.三、板書設計教學過程中,強調(diào)學生自主探索和合作交流,通過觀察、操作、歸納等數(shù)學活動,感受數(shù)學思想的條理性和數(shù)學結論的嚴密性.
方法總結:在分辨一個圖形是否為多邊形時,一定要抓住多邊形定義中的關鍵詞語,如“線段”“首尾順次連接”“封閉”“平面圖形”等.如此,對于某些似是而非的圖形,只要根據(jù)定義進行對照和分析,即可判定.探究點二:確定多邊形的對角線一個多邊形從一個頂點最多能引出2015條對角線,這個多邊形的邊數(shù)是()A.2015 B.2016 C.2017 D.2018解析:這個多邊形的邊數(shù)為2015+3=2018.故選D.方法總結:過n邊形的一個頂點可以畫出(n-3)條對角線.本題只要逆向求解即可.探究點三:求扇形圓心角將一個圓分割成三個扇形,它們的圓心角的度數(shù)之比為2:3:4,求這三個扇形圓心角的度數(shù).解析:用扇形圓心角所對應的比去乘360°即可求出相應扇形圓心角的度數(shù).解:三個扇形的圓心角度數(shù)分別為:360°×22+3+4=80°;360°×32+3+4=120°;