【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過(guò)點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為_(kāi)_______.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無(wú)論k取何值,直線y-2=k(x+1)所過(guò)的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過(guò)點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).
解析:①過(guò)原點(diǎn)時(shí),直線方程為y=-34x.②直線不過(guò)原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過(guò)點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過(guò)A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過(guò)點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
在學(xué)生熱烈的討論中,理解歌詞,感悟新疆。并隨機(jī)出示課件(課題 新疆是個(gè)好地方以及天山、伊犁河、吐魯番、果子溝的圖片)教師及時(shí)小結(jié)“在新疆這片美麗的土地上,大自然也創(chuàng)作出了它的杰作,用它那神奇的力量,為新疆人民開(kāi)辟了一處圣地——天山。天山是新疆最大的一條山脈,峰頂白雪皚皚。它是新疆的象征?!痹谝I(lǐng)學(xué)生有感情的朗讀歌詞時(shí),重點(diǎn)指導(dǎo)學(xué)生“乃”字要讀輕聲才好聽(tīng)。學(xué)生按節(jié)奏讀第二段歌詞,教師告訴提醒學(xué)生注意一字多音的地方要讀正確,如“伊犁河”“果子溝的”等。再次,教師有感情地范唱。教師用語(yǔ)言調(diào)動(dòng)學(xué)生的積極性,如“大家讀的真有感情,我都忍不住要唱起來(lái)了,大家想聽(tīng)嗎?如果你覺(jué)得老師唱的好聽(tīng)就請(qǐng)拍手為我伴奏吧!”“老師唱的好聽(tīng)嗎?相信你們比老師唱的更好聽(tīng),想不想跟我比一比啊?”
3、想象歌詞意境,自配動(dòng)作,有表情地學(xué)唱歌曲。(1)引導(dǎo)學(xué)生為第一段每一句歌詞配上動(dòng)作,老師做適當(dāng)提示(可為第一句歌詞做示范)。(學(xué)生想象思考,并請(qǐng)個(gè)別學(xué)生作示范引導(dǎo)大家一起做),將第一段歌詞連起來(lái)唱一遍,用動(dòng)作加強(qiáng)音樂(lè)記憶和情感體驗(yàn)。(2)第二段歌詞的學(xué)唱采用師生“接唱”,可老師唱前一句,學(xué)生后后一句,唱一遍,然后再交換。結(jié)尾句大家一起唱。(提示放慢速度,輕輕試唱。交換唱一遍)(3)第三段歌詞學(xué)生自主學(xué)習(xí)。采用“接唱”的形式,男女生分組,或?qū)W(xué)生分成兩組,進(jìn)行接唱,情緒豪邁的部分可引導(dǎo)男生唱,柔和抒情的部分女生唱,結(jié)尾句大家一起唱。(教師引導(dǎo)學(xué)生自己思考,自己處理)4、學(xué)生小結(jié)學(xué)習(xí)經(jīng)驗(yàn),提出演唱方案,并引導(dǎo)學(xué)生找出歌曲中的音樂(lè)符號(hào)f、mp、>、漸弱,在演唱時(shí)加以運(yùn)用和注意表現(xiàn)。)最好將這些符號(hào)做成卡片!用力度變化的方法,演唱整首歌一遍,(可加動(dòng)作、接唱等)
說(shuō)明:此處進(jìn)行的是一次嘗試應(yīng)用乘方運(yùn)算來(lái)解決開(kāi)頭的問(wèn)題,互相呼應(yīng),以體現(xiàn)整節(jié)課的完整性,把學(xué)生開(kāi)始的興趣再次引向高潮。趣味探索:一張薄薄的紙對(duì)折56次后有多厚?試驗(yàn)一下你能折這么厚嗎?說(shuō)明:這個(gè)探索實(shí)際上仍是對(duì)學(xué)生應(yīng)用能力的一個(gè)檢查,紙對(duì)折56次,用什么運(yùn)算來(lái)計(jì)算比較方便,另外計(jì)算過(guò)程中可使用計(jì)算器,進(jìn)一步加深對(duì)乘方意義的理解(五)作業(yè)P56頁(yè)1、2說(shuō)明:這兩個(gè)習(xí)題是對(duì)課本上例題的簡(jiǎn)單重復(fù)和模仿,通過(guò)本節(jié)課的學(xué)習(xí),多數(shù)學(xué)生應(yīng)該可以較輕松地完成。總之,在整個(gè)教學(xué)設(shè)計(jì)中,我始終以學(xué)生為課堂主體,讓他們積極參與到教學(xué)中來(lái),不斷從舊知識(shí)中獲得新的認(rèn)識(shí),通過(guò)不斷進(jìn)行聯(lián)系比較,讓學(xué)生主動(dòng)自覺(jué)地去思考、探索、總結(jié)直至發(fā)現(xiàn)結(jié)果、發(fā)現(xiàn)"方法",進(jìn)而優(yōu)化了整個(gè)教學(xué)。
還有其他解法嗎?從中讓學(xué)生體會(huì)解一元一次方程就是根據(jù)是等式的性質(zhì)把方程變形成“x=a(a為已知數(shù))”的形式(將未知數(shù)的系數(shù)化為1),這也是解方程的基本思路。并引導(dǎo)學(xué)生回顧檢驗(yàn)的方法,鼓勵(lì)他們養(yǎng)成檢驗(yàn)的習(xí)慣)5、提出問(wèn)題:我們觀察上面方程的變形過(guò)程,從中觀察變化的項(xiàng)的規(guī)律是什么?多媒體展示上面變形的過(guò)程,讓學(xué)生觀察在變形過(guò)程中,變化的項(xiàng)的變化規(guī)律,引出新知識(shí).師提出問(wèn)題:1.上述演示中,題目中的哪些項(xiàng)改變了在原方程中的位置?怎樣變的?2.改變的項(xiàng)有什么變化?學(xué)生活動(dòng):分學(xué)習(xí)小組討論,各組把討論的結(jié)果上報(bào)教師,最好分四組,這樣節(jié)省時(shí)間.師總結(jié)學(xué)生活動(dòng)的結(jié)果:-2x改變符號(hào)后從等號(hào)的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項(xiàng)改變符號(hào)后,從方程的一邊移到另一邊的變形叫做移項(xiàng).這里應(yīng)注意移項(xiàng)要改變符號(hào).
1.上述演示中,題目中的哪些項(xiàng)改變了在原方程中的位置?怎樣變的?2.改變的項(xiàng)有什么變化?學(xué)生活動(dòng):分學(xué)習(xí)小組討論,各組把討論的結(jié)果上報(bào)教師,最好分四組,這樣節(jié)省時(shí)間.師總結(jié)學(xué)生活動(dòng)的結(jié)果:-2x改變符號(hào)后從等號(hào)的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項(xiàng)改變符號(hào)后,從方程的一邊移到另一邊的變形叫做移項(xiàng).這里應(yīng)注意移項(xiàng)要改變符號(hào).(三)理解性質(zhì),應(yīng)用鞏固師提出問(wèn)題:我們可以回過(guò)頭來(lái),想一想剛解過(guò)的方程哪個(gè)變化過(guò)程可以叫做移項(xiàng).學(xué)生活動(dòng):要求學(xué)生對(duì)課前解方程的變形能說(shuō)出哪一過(guò)程是移項(xiàng).對(duì)比練習(xí): 解方程:(1) X+4=6 (2) 3X=2X+1(3) 3-X=0 (4) 9X=8X-3學(xué)生活動(dòng):把學(xué)生分四組練習(xí)此題,一組、二組同學(xué)(1)(2)題用等式性質(zhì)解,(3)(4)題移項(xiàng)變形解;三、四組同學(xué)(1)(2)題用移項(xiàng)變形解,(3)(4)題用等式性質(zhì)解.師提出問(wèn)題:用哪種方法解方程更簡(jiǎn)便?解方程的步驟是什么?(答:移項(xiàng)法;移項(xiàng)、化簡(jiǎn)、檢驗(yàn).)
目的:進(jìn)一步理解追擊問(wèn)題的實(shí)質(zhì),與課程引入中的灰太狼追喜羊羊故事呼應(yīng),問(wèn)題得到解決。環(huán)節(jié)三、運(yùn)用鞏固活動(dòng)內(nèi)容:育紅學(xué)校七年級(jí)學(xué)生步行郊外旅行,1班的學(xué)生組成前隊(duì),步行速度為4千米/小時(shí),3班的學(xué)生組成后隊(duì),步行速度為6千米/小時(shí),1班出發(fā)一個(gè)小時(shí)后,3班才出發(fā)。請(qǐng)根據(jù)以上的事實(shí)提出問(wèn)題并嘗試回答。問(wèn)題1:3班追上1班用了多長(zhǎng)時(shí)間 ?問(wèn)題2:3班追上1班時(shí),他們離學(xué)校多遠(yuǎn)?問(wèn)題3:………………目的:給學(xué)生提供進(jìn)一步鞏固建立方程模型的基本過(guò)程和方法的熟悉機(jī)會(huì),讓學(xué)生活學(xué)活用,真正讓學(xué)生學(xué)會(huì)借線段圖分析行程問(wèn)題的方法,得出其中的等量關(guān)系,從而正確地建立方程求解問(wèn)題,同時(shí)還需注意檢驗(yàn)方程解的合理性.實(shí)際活動(dòng)效果:由于題目較簡(jiǎn)單,所以學(xué)生分析解答時(shí)很有信心,且正確率也比較高,同時(shí)也進(jìn)一步體會(huì)到了借助“線段圖”分析行程問(wèn)題的優(yōu)越性.
我們遇到的往往就是這樣的方程組,我們要想比較簡(jiǎn)捷地把它解出來(lái),就需要轉(zhuǎn)化為同一個(gè)未知數(shù)系數(shù)相同或相反的情形,從而用加減消元法,達(dá)到消元的目的.請(qǐng)大家把解答過(guò)程寫出來(lái).解:①×3,得:6936xy??,③②×2,得:3486??yx,④③-④,得:2?y.將2?y代入①,得:3?x.根據(jù)上面幾個(gè)方程組的解法,請(qǐng)同學(xué)們思考下面兩個(gè)問(wèn)題:(1)加減消元法解二元一次方程組的基本思路是什么?(2)用加減消元法解二元一次方程組的主要步驟有哪些?(由學(xué)生分組討論、總結(jié)并請(qǐng)學(xué)生代表發(fā)言)[師生共析](1)用加減消元法解二元一次方程組的基本思路仍然是“消元”.(2)用加減法解二元一次方程組的一般步驟是:①變形----找出兩個(gè)方程中同一個(gè)未知數(shù)系數(shù)的絕對(duì)值的最小公倍數(shù),然分別在兩個(gè)方程的兩邊乘以適當(dāng)?shù)臄?shù),使所找的未知數(shù)的系數(shù)相等或互為相反數(shù).②加減消元,得到一個(gè)一元一次方程.③解一元一次方程.
設(shè)計(jì)意圖:考慮學(xué)生的個(gè)別差異,分層次布置作業(yè),讓基礎(chǔ)差的學(xué)生能夠吃飽,基礎(chǔ)好的學(xué)生吃好,使每位學(xué)生都感到學(xué)有所獲。五、評(píng)價(jià)分析數(shù)學(xué)課程標(biāo)準(zhǔn)指出:學(xué)生的數(shù)學(xué)學(xué)習(xí)內(nèi)容應(yīng)當(dāng)是現(xiàn)實(shí)的、有意義的、富有挑戰(zhàn)性的,而動(dòng)手實(shí)踐、自主探究與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。本著這一理念,在本課的教學(xué)過(guò)程中,我嚴(yán)格遵循由感性到理性,將數(shù)學(xué)知識(shí)始終與現(xiàn)實(shí)生活中學(xué)生熟悉的實(shí)際問(wèn)題相結(jié)合,不斷提高他們應(yīng)用數(shù)學(xué)方法分析問(wèn)題、解決問(wèn)題的能力。在重視課本基礎(chǔ)知識(shí)的基礎(chǔ)上,適當(dāng)進(jìn)行拓展延伸,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),同時(shí)根據(jù)新課程標(biāo)準(zhǔn)的評(píng)價(jià)理念,在教學(xué)過(guò)程中,不僅注重學(xué)生的參與意識(shí),而且注重學(xué)生對(duì)待學(xué)習(xí)的態(tài)度是否積極。課堂中也盡量給學(xué)生更多的空間、更多展示自我的機(jī)會(huì),讓學(xué)生在和諧的氛圍中認(rèn)識(shí)自我、找到自信、體驗(yàn)成功的樂(lè)趣。使學(xué)生的主體地位得到充分的體現(xiàn),使教學(xué)過(guò)程成為一個(gè)在發(fā)現(xiàn)在創(chuàng)造的認(rèn)知過(guò)程。
(三)如圖, 中, ,AB=6厘米,BC=8厘米,點(diǎn) 從點(diǎn) 開(kāi)始,在 邊上以1厘米/秒的速度向 移動(dòng),點(diǎn) 從點(diǎn) 開(kāi)始,在 邊上以2厘米/秒的速度向點(diǎn) 移動(dòng).如果點(diǎn) , 分別從點(diǎn) , 同時(shí)出發(fā),經(jīng)幾秒鐘,使 的面積等于 ?拓展:如果把BC邊的長(zhǎng)度改為7cm,對(duì)本題的結(jié)果有何影響?(四)本課小結(jié)列方程解應(yīng)用題的一般步驟:1、 審題:分析相關(guān)的量2、 設(shè)元:把相關(guān)的量符號(hào)化,設(shè)定一個(gè)量為X,并用含X的代數(shù)式表示相關(guān)的量3、 列方程:把量的關(guān)系等式化4、 解方程5、 檢驗(yàn)并作答(五)布置作業(yè)1、請(qǐng)欣賞一道借用蘇軾詩(shī)詞《念奴嬌·赤壁懷古》的頭兩句改編而成的方程應(yīng)用題, 解讀詩(shī)詞(通過(guò)列方程,算出周瑜去世時(shí)的年齡)大江東去浪淘盡,千古風(fēng)流數(shù)人物,而立之年督東吳,早逝英年兩位數(shù),十位恰小個(gè)位三,個(gè)位平方與壽符,哪位學(xué)子算得快,多少年華屬周瑜?本題強(qiáng)調(diào)對(duì)古文化詩(shī)詞的閱讀理解,貫通數(shù)學(xué)的實(shí)際應(yīng)用。有兩種解題思路:枚舉法和方程法。
6、問(wèn)題的檢驗(yàn)學(xué)生提出的問(wèn)題和老師拓展的問(wèn)題在解答過(guò)程中,學(xué)生能否真正領(lǐng)會(huì),或領(lǐng)會(huì)的程度如何?這就需要檢驗(yàn)才能了解。檢驗(yàn)的方式很多,可以通過(guò)交流、調(diào)查、反思、隨堂檢測(cè)等方式進(jìn)行。我主要采用隨堂檢測(cè)的方式,把事先準(zhǔn)備好的自測(cè)題發(fā)給學(xué)生,或利用多媒體投影來(lái)進(jìn)行當(dāng)堂檢測(cè)。檢測(cè)題目不宜過(guò)多,可隨學(xué)生的課堂表現(xiàn)而有所增減,同時(shí),把拓展性的問(wèn)題作為思考題留給學(xué)生課外探索。如,這節(jié)課我是選擇了《同步作業(yè)》中的幾個(gè)具有代表性的問(wèn)題來(lái)完成檢驗(yàn)的。安排這一環(huán)節(jié)的意圖:通過(guò)把教學(xué)內(nèi)容以問(wèn)題的形式列出來(lái),用于檢驗(yàn)學(xué)生對(duì)知識(shí)點(diǎn)的掌握和教師教學(xué)效果的了解,幫助教師及時(shí)掌控課堂教學(xué)情況,調(diào)整教學(xué)思路和教學(xué)進(jìn)度。7、我的收獲和疑惑課程結(jié)束時(shí),讓學(xué)生談?wù)勛约旱氖斋@以及還有哪些問(wèn)題沒(méi)能搞明白。安排這一環(huán)節(jié)的意圖:這一環(huán)節(jié)可以促使學(xué)生對(duì)本節(jié)課的內(nèi)容進(jìn)行主動(dòng)的、深層次的的回顧與反思,從而加深學(xué)生對(duì)所學(xué)知識(shí)的整理、記憶與理解,同時(shí)也便于老師對(duì)課堂教學(xué)效果的及時(shí)掌握和調(diào)整以后的教學(xué)思路。
1.經(jīng)歷從不同方向觀察物體的活動(dòng)過(guò)程,發(fā)展空間觀念.2.在觀察的過(guò)程中,初步體會(huì)從不同方向觀察同一物體可能看到不同的形狀.3.能識(shí)別從三個(gè)方向看到的簡(jiǎn)單物體的形狀,會(huì)畫立方體及簡(jiǎn)單組合體從三個(gè)方向看到的形狀,并能根據(jù)看到的形狀描述基本幾何體或?qū)嵨镌停弧⑶榫硨?dǎo)入觀察圖中不同方向拍攝的廬山美景.你能從蘇東坡《題西林壁》詩(shī)句:“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同.不識(shí)廬山真面目,只緣身在此山中.”體驗(yàn)出其中的意境嗎?你能挖掘出其中蘊(yùn)含的數(shù)學(xué)道理嗎?讓我們一起探索新知吧!二、合作探究探究點(diǎn)一:從不同的方向看物體如圖所示的幾何體是由一些小正方體組合而成的,從上面看到的平面圖形是()解析:這個(gè)幾何體從上面看,共有2行,第一行能看到3個(gè)小正方形,第二行能看到2個(gè)小正方形.故選D.
【教學(xué)目標(biāo)】1.經(jīng)歷從不同方向觀察物體的活動(dòng)過(guò)程,發(fā)展空間觀念;能在與他人交流的過(guò)程中,合理清晰地表達(dá)自己的思維過(guò)程.2.在觀察的過(guò)程中,初步體會(huì)從不同方向觀察同一物體可能看到不同的圖形.3.能識(shí)別簡(jiǎn)單物體的三視圖,會(huì)畫立方體及其簡(jiǎn)單組合體的三視圖.【基礎(chǔ)知識(shí)精講】1.主視圖、左視圖、俯視圖的定義從不同方向觀察同一物體,從正面看到的圖叫主視圖,從左面看到的圖叫左視圖,從上面看到的圖叫做俯視圖.2.幾種幾何體的三視圖(1)正方體:三視圖都是正方形.圓錐的主視圖、左視圖都是三角形,而俯視圖的圖中有一個(gè)點(diǎn)表示圓錐的頂點(diǎn),因?yàn)閺纳贤驴磮A錐時(shí)先看到圓錐的頂點(diǎn),再看到底面的圓.3.如何畫三視圖 當(dāng)用若干個(gè)小正方體搭成新的幾何體,如何畫這個(gè)新的幾何體的三視圖?
探究點(diǎn)三:列一元一次方程解應(yīng)用題某單位計(jì)劃“五一”期間組織職工到東湖旅游,如果單獨(dú)租用40座的客車若干輛則剛好坐滿;如果租用50座的客車則可以少租一輛,并且有40個(gè)剩余座位.(1)該單位參加旅游的職工有多少人?(2)如同時(shí)租用這兩種客車若干輛,問(wèn)有無(wú)可能使每輛車剛好坐滿?如有可能,兩種車各租多少輛?(此問(wèn)可只寫結(jié)果,不寫分析過(guò)程)解析:(1)先設(shè)該單位參加旅游的職工有x人,利用人數(shù)不變,車的輛數(shù)相差1,可列出一元一次方程求解;(2)可根據(jù)租用兩種汽車時(shí),利用假設(shè)一種車的數(shù)量,進(jìn)而得出另一種車的數(shù)量求出即可.解:(1)設(shè)該單位參加旅游的職工有x人,由題意得方程x40-x+4050=1,解得x=360,答:該單位參加旅游的職工有360人;(2)有可能,因?yàn)樽庥?輛40座的客車、4輛50座的客車剛好可以坐360人,正好坐滿.方法總結(jié):解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程再求解.
先讓學(xué)生自己總結(jié),然后互相交流,得出結(jié)論。解一元一次方程,一般要通過(guò)去分母,去括號(hào),移項(xiàng),合并同類項(xiàng),未知數(shù)的系數(shù)化為1等步驟,把一個(gè)一元一次方程“轉(zhuǎn)化”成x=a的形式。解題時(shí),要靈活運(yùn)用這些步驟。板書:解一元一次方程一般步驟:1、 去分母-----等式性質(zhì)22、 去括號(hào)----去括號(hào)法則3、 移項(xiàng)----等式性質(zhì)14、 合并同類項(xiàng)----合并同類項(xiàng)法則5、 系數(shù)化為1.----等式性質(zhì)2【課堂練習(xí)】練習(xí):解下列一元一次方程解方程: (2) ;思路點(diǎn)拔:(1)去分母所選的乘數(shù)應(yīng)是所有分母的最小公倍數(shù),不應(yīng)遺漏。(2)用分母的最小公倍數(shù)去乘方程的兩邊時(shí),不要漏掉等號(hào)兩邊不含分母的項(xiàng)。(3)去掉分母后,分?jǐn)?shù)線也同時(shí)去掉,分子上的多項(xiàng)式用括號(hào)括起來(lái)?;仡櫧庖陨戏匠痰娜^(guò)程,表示了一元一次方程解法的一般步驟,通過(guò)去分母—去括號(hào)—移項(xiàng)—合并同類項(xiàng)—系數(shù)化為1等步驟,就可以使一元一次方程逐步向著 =a的形式轉(zhuǎn)化。
小明說(shuō):“我姐姐今年的年齡是我去年的年齡的2倍少6,”已知姐姐今年20歲,問(wèn)小明今年幾歲?若取小明今年為x歲,則依據(jù)下面的等量關(guān)系式列方程:姐姐今年的年齡=小明去年年齡的2倍-6.得2(x-1)-6=20.例5解方程-3(x+1)=9總結(jié):根據(jù)乘法分配律和去括號(hào)法則(括號(hào)前面是“+”號(hào),把“+”號(hào)和括號(hào)去掉,括號(hào)內(nèi)各項(xiàng)都不改變符號(hào);括號(hào)前面是“-”號(hào),把“-”號(hào)和括號(hào)去掉,括號(hào)內(nèi)各項(xiàng)都改變符號(hào))去括號(hào)時(shí)要注意:1、 不要漏乘括號(hào)內(nèi)的任何一項(xiàng);2、若括號(hào)前面是“-”號(hào),記住去括號(hào)后括號(hào)內(nèi)各項(xiàng)都變號(hào).習(xí)題訓(xùn)練:解方程,如課本P122練一練1,P113練一練2等.思維拓展,解簡(jiǎn)單的應(yīng)用題,如課本P123練一練3或補(bǔ)充一些題,如含小括號(hào)、中括號(hào)、大括號(hào)的方程(這方面課本安排幾乎沒(méi)有,只限淺顯問(wèn)題,教師不必深究)
解:設(shè)每張300元的門票買了x張,則每張400元的門票買了(8-x)張,由題意得300x+400×(8-x)=2700,解得x=5,∴買400元每張的門票張數(shù)為8-5=3(張).答:每張300元的門票買了5張,每張400元的門票買了3張.方法總結(jié):解題的關(guān)鍵是熟練掌握列方程解應(yīng)用題的一般步驟:①根據(jù)題意找出等量關(guān)系;②列出方程;③解方程;④作答.三、板書設(shè)計(jì)本節(jié)課的教學(xué)先讓學(xué)生回顧上一節(jié)所學(xué)的知識(shí),復(fù)習(xí)鞏固方程的解法,讓學(xué)生進(jìn)一步明白解方程的步驟是逐漸發(fā)展的,后面的步驟是在前面步驟的基礎(chǔ)上發(fā)展而成的.然后通過(guò)一個(gè)實(shí)際問(wèn)題,列出一個(gè)有括號(hào)的方程,大膽放手讓學(xué)生去探索、猜想各種解法,去嘗試各種解題的途徑,啟發(fā)學(xué)生在化歸思想影響下想到要去括號(hào).
1、突出問(wèn)題的應(yīng)用意識(shí).教師首先用一個(gè)學(xué)生感興趣的實(shí)際問(wèn)題引人課題,然后運(yùn)用算術(shù)的方法給出解答。在各環(huán)節(jié)的安排上都設(shè)計(jì)成一個(gè)個(gè)的問(wèn)題,使學(xué)生能圍繞問(wèn)題展開(kāi)思考、討論,進(jìn)行學(xué)習(xí).2、體現(xiàn)學(xué)生的主體意識(shí).本設(shè)計(jì)中,教師始終把學(xué)生放在主體的地位:讓學(xué)生通過(guò)對(duì)列算式與列方程的比較,分別歸納出它們的特點(diǎn),從而感受到從算術(shù)方法到代數(shù)方法是數(shù)學(xué)的進(jìn)步;讓學(xué)生通過(guò)合作與交流,得出問(wèn)題的不同解答方法;讓學(xué)生對(duì)一節(jié)課的學(xué)習(xí)內(nèi)容、方法、注意點(diǎn)等進(jìn)行歸納.3、體現(xiàn)學(xué)生思維的層次性.教師首先引導(dǎo)學(xué)生嘗試用算術(shù)方法解決間題,然后再逐步引導(dǎo)學(xué)生列出含未知數(shù)的式子,尋找相等關(guān)系列出方程.在尋找相等關(guān)系、設(shè)未知數(shù)及作業(yè)的布置等環(huán)節(jié)中,教師都注意了學(xué)生思維的層次性.4、滲透建模的思想.把實(shí)際間題中的數(shù)量關(guān)系用方程形式表示出來(lái),就是建立一種數(shù)學(xué)模型,教師有意識(shí)地按設(shè)未知數(shù)、列方程等步驟組織學(xué)生學(xué)習(xí),就是培養(yǎng)學(xué)生由實(shí)際問(wèn)題抽象出方程模型的能力.