教法分析:在新課程的教學中教師要向學生提供從事數(shù)學活動的機會,倡導讓學生親身經(jīng)歷數(shù)學知識的形成與應用過程,鼓勵學生自主探索與合作交流,讓學生在實踐中體驗、學習。因此,本節(jié)課我采用了多媒體輔助教學與學生動手操作、觀察、討論的方式,一方面能夠直觀、生動地反映各種圖形的特征,增加課堂的容量,吸引學生注意力,激發(fā)學生的學習興趣;另一方面也有利于突出重點、突破難點,更好地提高課堂效率。學法分析:初二年級學習對新事物比較敏感,通過新課程教學的實施,學生已具有一定探索學習與合作交流的習慣。但是一下子要學生從直觀的圖形去概括出抽象圖形全等的概念這是比較困難的。因此,我指導學生:一要善于觀察發(fā)現(xiàn);二要勇于探索、動手實驗;三要把自己的所思所想大膽地進行交流,從而得出正確的結論,并掌握知識。
本節(jié)的內容主要是反比例函數(shù)的概念教學.反比例函數(shù)概念的建立,不能從形式上進行簡單的抽象與概括,而是對這些實例從不同角度抽象出本質屬性后,再進行概括。教材設計的基本思路是從現(xiàn)實生活中大量的反比例關系中抽象出反比例函數(shù)概念,讓學生進一步感受函數(shù)是反映現(xiàn)實世界中變量關系的一種有效數(shù)學模型,逐步從對具體反比例函數(shù)的感性認識上升到對抽象的反比例函數(shù)概念的理性認識. 同時本節(jié)的學習內容,直接關系到本章后續(xù)內容的學習,也是繼續(xù)學習其它各類函數(shù)的基礎,其中蘊涵的類比、歸納、對應和函數(shù)的數(shù)學思想方法,對學生今后研究問題、解決問題以及終身的發(fā)展都是非常有益的.基于以上分析,本節(jié)教學設計是建立在一個個數(shù)學活動的基礎上,經(jīng)過對情境理解、本質抽象的積累而形成的.讓學生對一類問題情境中兩個變量間的關系,在充分經(jīng)歷寫表達式,計算函數(shù)值和觀察函數(shù)值隨自變量變化規(guī)律的過程中,逐步概括形成反比例函數(shù)的概念.針對教學實際,我選取了貼學生現(xiàn)實的,有價值的實例“文具店里買學習用品”和“剪面積為定值的長方形紙片”等作為問題情境.
教師活動 學生活動設計意圖 情境導入:教師配樂敘述詩歌創(chuàng)作背景投入傾聽 盡可能調動學生情緒誦讀入境:“讀李詩者于雄快之中得其深遠宕逸之神,才是謫仙人面目”(投影展示)教師范讀,醞釀情感(播放配樂)1、學生自讀感知詩韻 2、學生齊讀進入詩境 調動學生積極性,誦讀時用自己的情緒感染學生精讀涵詠:教師就詩歌內容進行提問,李白怎樣喝酒,勸朋友喝酒的方式、原因,他有那些愁并說明理由,并按照自己的理解誦讀。教師必要時給出相應的提示。投影展示:人生苦短 懷才不遇 交流研討誦讀 引導學生從詩句入手,疏通詩意,把握情感
(一)知識與能力 1、指導學生基本掌握誦讀本詩的要領,培養(yǎng)學生聲情并茂、準確傳達情感的誦讀能力. 2、幫助學生初步了解“初讀—精讀—悟讀—美讀”的詩歌鑒賞方法,培養(yǎng)學生鑒賞古典詩歌的能力。(二)、情感態(tài)度與價值觀 1、走近李白的激情、浪漫、詩性和放達,感受全詩恢宏的氣魄。 2、激發(fā)學生與文本、文人和文化的親近之情
《錦瑟》的主旨頗多,悼亡、戀情、自傷身世,每一種都有其支持者的長篇論述,但其首聯(lián)中“一弦一柱思華年。”從這個角度來看,似乎將主題定調為對“華年”的追思,似乎更為妥帖。當我們有了一個明確的基調之后,后面幾聯(lián)在解讀時就有了一個準確的方向。
2學情分析一年級學生對美術的興趣很高,對五顏六色的物體特別感興趣,孩子們課前做的準備很好。3重點難點1.節(jié)日里煙花的畫法。2.油畫棒和水彩顏料相結合的涂色技巧。教學活動活動1【活動】教案第5課五彩的煙花
(2)平均數(shù)受數(shù)據(jù)中的極端值(2個95)影響較大,使平均數(shù)在估計總體時可靠性降低,10天的用水量有8天都在平均值以下。故用中位數(shù)來估計每天的用水量更合適。1、樣本的數(shù)字特征:眾數(shù)、中位數(shù)和平均數(shù);2、用樣本頻率分布直方圖估計樣本的眾數(shù)、中位數(shù)、平均數(shù)。(1)眾數(shù)規(guī)定為頻率分布直方圖中最高矩形下端的中點;(2)中位數(shù)兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個小矩形的面積與小矩形底邊中點的橫坐標之積相加,就是樣本數(shù)據(jù)的估值平均數(shù)。學生回顧本節(jié)課知識點,教師補充。 讓學生掌握本節(jié)課知識點,并能夠靈活運用。
問題二:上述問題中,甲、乙的平均數(shù)、中位數(shù)、眾數(shù)相同,但二者的射擊成績存在差異,那么,如何度量這種差異呢?我們可以利用極差進行度量。根據(jù)上述數(shù)據(jù)計算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫了數(shù)據(jù)的離散程度。由極差發(fā)現(xiàn)甲的成績波動范圍比乙的大。但由于極差只使用了數(shù)據(jù)中最大、最小兩個值的信息,所含的信息量很少。也就是說,極差度量出的差異誤差較大。問題三:你還能想出其他刻畫數(shù)據(jù)離散程度的辦法嗎?我們知道,如果射擊的成績很穩(wěn)定,那么大多數(shù)的射擊成績離平均成績不會太遠;相反,如果射擊的成績波動幅度很大,那么大多數(shù)的射擊成績離平均成績會比較遠。因此,我們可以通過這兩組射擊成績與它們的平均成績的“平均距離”來度量成績的波動幅度。
可以通過下面的步驟計算一組n個數(shù)據(jù)的第p百分位數(shù):第一步:按從小到大排列原始數(shù)據(jù);第二步:計算i=n×p%;第三步:若i不是整數(shù),而大于i的比鄰整數(shù)位j,則第p百分位數(shù)為第j項數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項與第i+1項的平均數(shù)。我們在初中學過的中位數(shù),相當于是第50百分位數(shù)。在實際應用中,除了中位數(shù)外,常用的分位數(shù)還有第25百分位數(shù),第75百分位數(shù)。這三個分位數(shù)把一組由小到大排列后的數(shù)據(jù)分成四等份,因此稱為四分位數(shù)。其中第25百分位數(shù)也稱為第一四分位數(shù)或下四分位數(shù)等,第75百分位數(shù)也稱為第三四分位數(shù)或上四分位數(shù)等。另外,像第1百分位數(shù),第5百分位數(shù),第95百分位數(shù),和第99百分位數(shù)在統(tǒng)計中也經(jīng)常被使用。例2、根據(jù)下列樣本數(shù)據(jù),估計樹人中學高一年級女生第25,50,75百分位數(shù)。
《小蝌蚪找媽媽》是統(tǒng)編版二年級上冊第一單元的一篇寓水的知識于趣味故事中的科學童話。課文采用擬人手法,以第一人稱“我”的敘述方式,生動形象地介紹了自然界中水的變化及其利與害。課文用詞準確、語言優(yōu)美、想象豐富,把知識性、科學性融于趣味性之中,文中多處運用短長句的方式寫出了語言的節(jié)奏感,擬人化的詞句增強了畫面感,充滿情趣。比如“有時候……有時候……”“落”“打”“飄”體現(xiàn)了用詞準確、嚴謹?shù)奶攸c。教學時以學生為主體,讓每個人有嘗試的機會和自主選擇的權利。力求采用自主、合作的學習方式探究問題,解決問題,使學生在生生互動、師生互動中,相互啟發(fā),拓展思路,分享學習之樂。讓學生在開放而有活力的課堂氛圍中始終處于積極主動的學習狀態(tài),變“被動地學”為“主動地學”。 ·教學目標· 1.認識“曬、極”等15個生字,會寫“變、極”等10個生字,讀準多音字“沒”。掌握“天空、傍晚”等詞語。2.能正確、流利、有感情地朗讀課文,簡單說說水的變化過程。3.了解氣候常識,知道汽、云、雨、冰雹和雪都是水的不同形態(tài)。知道水的利與害。4.通過學習,讓學生知道只有合理地利用水資源才能造福人類的道理,樹立環(huán)保意識,激發(fā)學生探究科學的興趣。 ·教學重難點· 1.教學重點:能正確、流利地朗讀課文。簡單說出水的變化過程,體會“落、打、飄”用詞的準確,并能仿照說句子。2.教學難點:了解氣候常識,知道汽、云、雨、冰雹和雪都是水的不同形態(tài)。知道水的利與害。
《樹之歌》是統(tǒng)編版二年級上冊第二單元的一篇識字課文。介紹樹木特征的歸類識字歌,描寫了楊樹、榕樹、梧桐樹……等11種樹木,表現(xiàn)了大自然樹木種類的豐富。課文安排了一組“木”字旁歸類識字。把樹木的名稱集中在一首詩歌中,讓學生在感受美麗景色、感受美好生活的同時,認識事物,認識表示樹木的漢字,感知不同樹木的名稱。教學的過程中可引導學生在誦讀文本的同時,體現(xiàn)多樣的識字形式,要將識字教學與閱讀文本有機融合, 在反復的讀書體會中,引導學生發(fā)現(xiàn)漢字規(guī)律,運用形聲字形旁表義、聲旁表音的特點歸類識字,并鼓勵學生運用已經(jīng)掌握的方法自主識字。 1.認識“梧、桐”等15個生字,會寫“楊、壯”等10個生字。學會運用形聲字的特點自主識字。2.正確、流利地朗讀兒歌,并背誦全文。3.通過看圖和讀兒歌,初步了解11種樹木的基本特點。積累與樹木有關的語句。4.引導學生學會觀察身邊的事物,樹立愛護花草樹木的意識。 1.教學重點:學會本課生字,利用形聲字特點掌握木字旁的8個生字。朗讀課文,背誦課文。了解不同樹木的特點。2.教學難點:能按掌握形聲字的構字特點,了解11種樹木的基本特點。積累與樹木有關的語句。能背誦課文。 2課時
《函數(shù)的單調性與最大(?。┲祡》系人教A版高中數(shù)學必修第一冊第三章第二節(jié)的內容,本節(jié)包括函數(shù)的單調性的定義與判斷及其證明、函數(shù)最大(?。┲档那蠓āT诔踔袑W習函數(shù)時,借助圖像的直觀性研究了一些函數(shù)的增減性,這節(jié)內容是初中有關內容的深化、延伸和提高函數(shù)的單調性是函數(shù)眾多性質中的重要性質之一,函數(shù)的單調性一節(jié)中的知識是前一節(jié)內容函數(shù)的概念和圖像知識的延續(xù),它和后面的函數(shù)奇偶性,合稱為函數(shù)的簡單性質,是今后研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)及其他函數(shù)單調性的理論基礎;在解決函數(shù)值域、定義域、不等式、比較兩數(shù)大小等具體問需用到函數(shù)的單調性;同時在這一節(jié)中利用函數(shù)圖象來研究函數(shù)性質的救開結合思想將貫穿于我們整個高中數(shù)學教學。
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.4.3節(jié)《不同增長函數(shù)的差異》 是在學習了指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)之后的對函數(shù)學習的一次梳理和總結。本節(jié)提出函數(shù)增長快慢的問題,通過函數(shù)圖像及三個函數(shù)的性質,完成函數(shù)增長快慢的認識。既是對三種函數(shù)學習的總結,也為后續(xù)導數(shù)的學習做了鋪墊。培養(yǎng)和發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理和數(shù)學建模的核心素養(yǎng)。1.了解指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù) (一次函數(shù)) 的增長差異.2、經(jīng)過探究對函數(shù)的圖像觀察,理解對數(shù)增長、直線上升、指數(shù)爆炸。培養(yǎng)學生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學交流能力;3、在認識函數(shù)增長差異的過程中,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)數(shù)學應用的意識,探索數(shù)學。 a.數(shù)學抽象:函數(shù)增長快慢的認識;b.邏輯推理:由特殊到一般的推理;
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.5.1節(jié)《函數(shù)零點與方程的解》,由于學生已經(jīng)學過一元二次方程與二次函數(shù)的關系,本節(jié)課的內容就是在此基礎上的推廣。從而建立一般的函數(shù)的零點概念,進一步理解零點判定定理及其應用。培養(yǎng)和發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理和數(shù)學建模的核心素養(yǎng)。1、了解函數(shù)(結合二次函數(shù))零點的概念;2、理 解函數(shù)零點與方程的根以及函數(shù)圖象與x軸交點的關系,掌握零點存在性定理的運用;3、在認識函數(shù)零點的過程中,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)數(shù)學數(shù)形結合及函數(shù)思想; a.數(shù)學抽象:函數(shù)零點的概念;b.邏輯推理:零點判定定理;c.數(shù)學運算:運用零點判定定理確定零點范圍;d.直觀想象:運用圖形判定零點;e.數(shù)學建模:運用函數(shù)的觀點方程的根;
本節(jié)課選自《普通高中課程標準實驗教科書數(shù)學必修1本(A版)》的第五章的4.5.3函數(shù)模型的應用。函數(shù)模型及其應用是中學重要內容之一,又是數(shù)學與生活實踐相互銜接的樞紐,特別在應用意識日益加深的今天,函數(shù)模型的應用實質是揭示了客觀世界中量的相互依存有互有制約的關系,因而函數(shù)模型的應用舉例有著不可替代的重要位置,又有重要的現(xiàn)實意義。本節(jié)課要求學生利用給定的函數(shù)模型或建立函數(shù)模型解決實際問題,并對給定的函數(shù)模型進行簡單的分析評價,發(fā)展學生數(shù)學建模、數(shù)學直觀、數(shù)學抽象、邏輯推理的核心素養(yǎng)。1. 能建立函數(shù)模型解決實際問題.2.了解擬合函數(shù)模型并解決實際問題.3.通過本節(jié)內容的學習,使學生認識函數(shù)模型的作用,提高學生數(shù)學建模,數(shù)據(jù)分析的能力. a.數(shù)學抽象:由實際問題建立函數(shù)模型;b.邏輯推理:選擇合適的函數(shù)模型;c.數(shù)學運算:運用函數(shù)模型解決實際問題;
《數(shù)學1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本節(jié)課要求學生根據(jù)具體的函數(shù)圖象能夠借助計算機或信息技術工具計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法,從中體會函數(shù)與方程之間的聯(lián)系;它既是本冊書中的重點內容,又是對函數(shù)知識的拓展,既體現(xiàn)了函數(shù)在解方程中的重要應用,同時又為高中數(shù)學中函數(shù)與方程思想、數(shù)形結合思想、二分法的算法思想打下了基礎,因此決定了它的重要地位.發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理和數(shù)學建模的核心素養(yǎng)。課程目標 學科素養(yǎng)1.通過具體實例理解二分法的概念及其使用條件.2.了解二分法是求方程近似解的常用方法,能借助計算器用二分法求方程的近似解.3.會用二分法求一個函數(shù)在給定區(qū)間內的零點,從而求得方程的近似解. a.數(shù)學抽象:二分法的概念;b.邏輯推理:運用二分法求近似解的原理;
本節(jié)內容是復數(shù)的三角表示,是復數(shù)與三角函數(shù)的結合,是對復數(shù)的拓展延伸,這樣更有利于我們對復數(shù)的研究。1.數(shù)學抽象:利用復數(shù)的三角形式解決實際問題;2.邏輯推理:通過課堂探究逐步培養(yǎng)學生的邏輯思維能力;3.數(shù)學建模:掌握復數(shù)的三角形式;4.直觀想象:利用復數(shù)三角形式解決一系列實際問題;5.數(shù)學運算:能夠正確運用復數(shù)三角形式計算復數(shù)的乘法、除法;6.數(shù)據(jù)分析:通過經(jīng)歷提出問題—推導過程—得出結論—例題講解—練習鞏固的過程,讓學生認識到數(shù)學知識的邏輯性和嚴密性。復數(shù)的三角形式、復數(shù)三角形式乘法、除法法則及其幾何意義舊知導入:問題一:你還記得復數(shù)的幾何意義嗎?問題二:我們知道,向量也可以由它的大小和方向唯一確定,那么能否借助向量的大小和方向這兩個要素來表示復數(shù)呢?如何表示?
6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點,且PA=AC,求二面角P-BC-A的大?。?解:由已知PA⊥平面ABC,BC在平面ABC內∴PA⊥BC∵AB是⊙O的直徑,且點C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內,∴BC⊥平面PAC又PC在平面PAC內,∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個平面相交,如果它們所成的二面角是直二面角,就說這兩個平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時,常用鉛錘來檢測所砌的墻面與地面是否垂直,如果系有鉛錘的細繩緊貼墻面,工人師傅被認為墻面垂直于地面,否則他就認為墻面不垂直于地面,這種方法說明了什么道理?
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.4.1節(jié)《對數(shù)函數(shù)的概念》。對數(shù)函數(shù)是高中數(shù)學在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質,都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨特的美感。學習中讓學生體會在類比推理,感受圖像的變化,認識變化的規(guī)律,這是提高學生直觀想象能力的一個重要的過程。為之后學習數(shù)學提供了更多角度的分析方法。培養(yǎng)學生邏輯推理、數(shù)學直觀、數(shù)學抽象、和數(shù)學建模的核心素養(yǎng)。1、理解對數(shù)函數(shù)的定義,會求對數(shù)函數(shù)的定義域;2、了解對數(shù)函數(shù)與指數(shù)函數(shù)之間的聯(lián)系,培養(yǎng)學生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學交流能力;滲透類比等基本數(shù)學思想方法。3、在學習對數(shù)函數(shù)過程中,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)數(shù)學應用的意識,感受數(shù)學、理解數(shù)學、探索數(shù)學,提高學習數(shù)學的興趣。
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.4.2節(jié)《對數(shù)函數(shù)的圖像和性質》 是高中數(shù)學在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質,都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨特的美感。在類比推理的過程中,感受圖像的變化,認識變化的規(guī)律,這是提高學生直觀想象能力的一個重要的過程。為之后學習數(shù)學提供了更多角度的分析方法。培養(yǎng)和發(fā)展學生邏輯推理、數(shù)學直觀、數(shù)學抽象、和數(shù)學建模的核心素養(yǎng)。1、掌握對數(shù)函數(shù)的圖像和性質;能利用對數(shù)函數(shù)的圖像與性質來解決簡單問題;2、經(jīng)過探究對數(shù)函數(shù)的圖像和性質,對數(shù)函數(shù)與指數(shù)函數(shù)圖像之間的聯(lián)系,對數(shù)函數(shù)內部的的聯(lián)系。培養(yǎng)學生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學交流能力;滲透類比等基本數(shù)學思想方法。