提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

大班科學教案:親近泥土

  • 人教版高中語文《離騷》教案

    人教版高中語文《離騷》教案

    2.亦余心之所善兮。雖九死其猶未悔評析:這一句表明屈原志向不改,堅貞不屈。真可說是一條鐵骨錚錚的漢子。屈原最不能容忍的是那群無恥小人對他的惡毒誣蔑,一會說他穿著奇裝異服,一會又說他面容姣好,肯定是個善淫之輩。這群人追名逐利,篡改法令,歪曲是非,混淆黑白,競相諂媚,把朝廷弄得烏煙瘴氣。屈原下決心絕對不和他們合流,他自比不合群的鷙鳥,孤傲、矯健,“自前世而固然”,他不想改變,也無法改變,這就像方圓不能周,異道不相安一樣。在這里,屈原清楚地預感到了自己的結局,但他并不后悔自己的選擇。句中“雖九死其猶未悔”和同出自于《離騷》的“路曼曼其修遠兮,吾將上下而求索”詩句是后人引以自勉和共勉最多的句子。運用:(翻譯)只要是我心中所向往喜歡的,即使死去九次也不會后悔。3.民生各有所樂兮,余獨好修以為常。雖體解吾猶未變兮,豈余心之可懲。

  • 人教版高中語文《師說》教案

    人教版高中語文《師說》教案

    【教學目標】1.了解韓愈關于尊師重道的論述和本文的思想意義。2.學習借鑒本文正反對比的論證方法。3.積累文言知識,掌握實詞“傳、師、從”,虛詞“以、也、則、于、乎、所以”等詞語的意義和用法,區(qū)別古今異義詞語。4.樹立尊師重教的思想,培養(yǎng)謙虛好學的風氣?!窘虒W重點和難點】1.了解文章的整體思路。2.學習本文正反對比論證的方法?!窘虒W方法】教師講授;學生自主探究;多媒體輔助?!菊n時分配】兩課時。【教學過程】第一課時一、導入并解題初中時我們學過一篇課文叫《馬說》,《馬說》實際上是“說馬”,今天,我們來學習一篇“說老師”,說“從師風尚”的文章,叫《師說》?!罢f”是一種文體,偏重于議論,可先敘后議,也可夾敘夾議。

  • 人教版高中語文《沁園春》教案

    人教版高中語文《沁園春》教案

    【重點、難點及解決辦法】1.以樂景寫哀,景中寓情,情中顯志。從詞中可以感受到詞人的心情是惆悵的,寫的又是寒秋景物,卻毫無過去一般舊詩詞里的那種肅殺、感傷的“悲秋”情調,詞人筆下的秋景是活潑、美好的。原因在于越寫山河的壯麗,就越使人感到人民不能主宰大地的可悲,越感到革命的必要。詞人正是在這不一致中突出了強烈的革命精神。當然,這里面也含有熱愛祖國壯麗河山的感情。2.對比手法的運用。詞中含有多種對比,使描繪的形象鮮明,如“萬山紅遍”與“漫江碧透”主要是顏色的對比;“鷹擊長空”與“魚翔淺底”、“指點江山”與“激揚文字”主要是動作的對比;“同學少年”與“萬戶侯”是明比;“萬類霜天競自由”與人民的被壓迫(未在詞中點明)是暗含的對比。

  • 人教版高中語文《詩經》教案

    人教版高中語文《詩經》教案

    《詩經》的重章疊唱及表現手法《詩經》善于運用重章疊唱來表達思想感情,即重復的幾章間,意義和字面都只有少量改變,造成一唱三嘆的效果。增強了詩歌的音樂性和節(jié)奏感,更充分的抒發(fā)了情懷?!对娊洝防锎罅窟\用了賦、比、興的表現手法,加強了作品的形象性,獲得了良好的藝術效果。所謂“賦”是“敷陳其事而直言之”。這包括一般陳述和鋪排陳述兩種情況?!氨取笔恰耙员宋锉却宋铩?,也就是比喻之意。而“興”則是《詩經》乃至中國詩歌中比較獨特的手法?!芭d”字的本義是“起”?!对娊洝分械摹芭d”是“先言他物以引起所詠之辭”,也就是借助其他事物為所詠之內容作鋪墊。它往往用于一首詩或一章詩的開頭。大約最原始的“興”,只是一種發(fā)端,同下文并無意義上的關系,表現出思緒無端地飄移聯想。

  • 人教版高中語文《祝?!方贪?></a><h4><a href=人教版高中語文《祝?!方贪?/a>

    C.人們的態(tài)度:“大家仍然叫她祥林嫂”,稱呼依舊。這一淡淡的似乎不經意的過渡語,在具體語境中卻隱含著深刻的蘊涵,反映出魯四一家對祥林嫂的第二次婚姻冷酷而堅決地不予承認的態(tài)度?!叭匀唤兴榱稚?,而不是“賀六嫂”,絕不是習慣使然,而是反映了封建禮教觀念對寡婦再嫁的完全否定。人們叫她的“聲調和先前很不同”;“也還和她講話,但笑容卻冷冷的了”。整個魯鎮(zhèn)社會在倫理觀念上與魯四仿佛是形成了共識的,音調的變化,笑容的冷冷,反映出人物關系的變化,充分表現出社會環(huán)境與祥林嫂的嚴重對立。77人們很少同情和憐憫她,對她講述的“阿毛的故事”很快就厭倦了,并把她作為取笑的對象。人們對祥林嫂的態(tài)度,使她感到痛苦與迷惑。她不時地向人們訴說著自己不幸的遭遇,她的精神卻慘遭蹂躪。而柳媽的說鬼又給祥林嫂新的打擊。D.柳媽說鬼:柳媽是一個怎樣的人?祥林嫂為什么要化那么大的代價去捐門檻?捐門檻后祥林嫂有哪些變化?

  • 關于小學教師個人教學心得體會優(yōu)選八篇

    關于小學教師個人教學心得體會優(yōu)選八篇

    作為一一名任課教師,我們或許都有過這樣的體驗,每當上完一節(jié)好課,會讓你有意猶未盡之感,全身都會感到舒爽之至。而往往公開課更容易達到這樣的境界。想想為什么,一個很重要的原因就是我們無形中做到了“懂”、“透”、“化”?! 】傊?,我們在處理教材上真正做到“懂”、“透”、“化”,真正做到“鉆進去,走出來”,就會達到創(chuàng)設教材研究的理想境界。

  • 【高教版】中職數學拓展模塊:2.3《拋物線》教學設計

    【高教版】中職數學拓展模塊:2.3《拋物線》教學設計

    一、教學目標(一)知識教育點使學生掌握拋物線的定義、拋物線的標準方程及其推導過程.(二)能力訓練點要求學生進一步熟練掌握解析幾何的基本思想方法,提高分析、對比、概括、轉化等方面的能力.(三)學科滲透點通過一個簡單實驗引入拋物線的定義,可以對學生進行理論來源于實踐的辯證唯物主義思想教育.二、教材分析1.重點:拋物線的定義和標準方程.2.難點:拋物線的標準方程的推導.三、活動設計提問、回顧、實驗、講解、板演、歸納表格.四、教學過程(一)導出課題我們已學習了圓、橢圓、雙曲線三種圓錐曲線.今天我們將學習第四種圓錐曲線——拋物線,以及它的定義和標準方程.課題是“拋物線及其標準方程”.首先,利用籃球和排球的運動軌跡給出拋物線的實際意義,再利用太陽灶和拋物線型的橋說明拋物線的實際用途。

  • 【高教版】中職數學拓展模塊:3.5《正態(tài)分布》教學設計

    【高教版】中職數學拓展模塊:3.5《正態(tài)分布》教學設計

    教學目的:理解并熟練掌握正態(tài)分布的密度函數、分布函數、數字特征及線性性質。教學重點:正態(tài)分布的密度函數和分布函數。教學難點:正態(tài)分布密度曲線的特征及正態(tài)分布的線性性質。教學學時:2學時教學過程:第四章 正態(tài)分布§4.1 正態(tài)分布的概率密度與分布函數在討論正態(tài)分布之前,我們先計算積分。首先計算。因為(利用極坐標計算)所以。記,則利用定積分的換元法有因為,所以它可以作為某個連續(xù)隨機變量的概率密度函數。定義 如果連續(xù)隨機變量的概率密度為則稱隨機變量服從正態(tài)分布,記作,其中是正態(tài)分布的參數。正態(tài)分布也稱為高斯(Gauss)分布。

  • 【高教版】中職數學拓展模塊:2.2《雙曲線》教學設計

    【高教版】中職數學拓展模塊:2.2《雙曲線》教學設計

    教學準備 1. 教學目標 知識與技能掌握雙曲線的定義,掌握雙曲線的四種標準方程形式及其對應的焦點、準線.過程與方法掌握對雙曲線標準方程的推導,進一步理解求曲線方程的方法——坐標法.通過本節(jié)課的學習,提高學生觀察、類比、分析和概括的能力.情感、態(tài)度與價值觀通過本節(jié)的學習,體驗研究解析幾何的基本思想,感受圓錐曲線在刻畫現實和解決實際問題中的作用,進一步體會數形結合的思想.2. 教學重點/難點 教學重點雙曲線的定義及焦點及雙曲線標準方程.教學難點在推導雙曲線標準方程的過程中,如何選擇適當的坐標系. 3. 教學用具 多媒體4. 標簽

  • 高教版中職數學基礎模塊下冊:8.4《圓》教學設計

    高教版中職數學基礎模塊下冊:8.4《圓》教學設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 8.4 圓(二) *創(chuàng)設情境 興趣導入 【知識回顧】 我們知道,平面內直線與圓的位置關系有三種(如圖8-21): (1)相離:無交點; (2)相切:僅有一個交點; (3)相交:有兩個交點. 并且知道,直線與圓的位置關系,可以由圓心到直線的距離d與半徑r的關系來判別(如圖8-22): (1):直線與圓相離; (2):直線與圓相切; (3):直線與圓相交. 介紹 講解 說明 質疑 引導 分析 了解 思考 思考 帶領 學生 分析 啟發(fā) 學生思考 0 15*動腦思考 探索新知 【新知識】 設圓的標準方程為 , 則圓心C(a,b)到直線的距離為 . 比較d與r的大小,就可以判斷直線與圓的位置關系. 講解 說明 引領 分析 思考 理解 帶領 學生 分析 30*鞏固知識 典型例題 【知識鞏固】 例6 判斷下列各直線與圓的位置關系: ⑴直線, 圓; ⑵直線,圓. 解?、?由方程知,圓C的半徑,圓心為. 圓心C到直線的距離為 , 由于,故直線與圓相交. ⑵ 將方程化成圓的標準方程,得 . 因此,圓心為,半徑.圓心C到直線的距離為 , 即由于,所以直線與圓相交. 【想一想】 你是否可以找到判斷直線與圓的位置關系的其他方法? *例7 過點作圓的切線,試求切線方程. 分析 求切線方程的關鍵是求出切線的斜率.可以利用原點到切線的距離等于半徑的條件來確定. 解 設所求切線的斜率為,則切線方程為 , 即 . 圓的標準方程為 , 所以圓心,半徑. 圖8-23 圓心到切線的距離為 , 由于圓心到切線的距離與半徑相等,所以 , 解得 . 故所求切線方程(如圖8-23)為 , 即 或. 說明 例題7中所使用的方法是待定系數法,在利用代數方法研究幾何問題中有著廣泛的應用. 【想一想】 能否利用“切線垂直于過切點的半徑”的幾何性質求出切線方程? 說明 強調 引領 講解 說明 引領 講解 說明 觀察 思考 主動 求解 思考 主動 求解 通過例題進一步領會 注意 觀察 學生 是否 理解 知識 點 50

  • 【高教版】中職數學拓展模塊:2.1《橢圓》優(yōu)秀教學設計

    【高教版】中職數學拓展模塊:2.1《橢圓》優(yōu)秀教學設計

    本人所教的兩個班級學生普遍存在著數學科基礎知識較為薄弱,計算能力較差,綜合能力不強,對數學學習有一定的困難。在課堂上的主體作用的體現不是太充分,但是他們能意識到自己的不足,對數學課的學習興趣高,積極性強。 學生在學習交往上表現為個別化學習,課堂上較為依賴老師的引導。學生的群體性小組交流能力與協同討論學習的能力不強,對學習資源和知識信息的獲取、加工、處理和綜合的能力較低。在教學中盡量分析細致,減少跨度較大的環(huán)節(jié),對重要的推導過程采用板書方式逐步進行,力求讓絕大多數學生接受。 1.理解橢圓標準方程的推導;掌握橢圓的標準方程;會根據條件求橢圓的標準方程,會根據橢圓的標準方程求焦點坐標. 2.通過橢圓圖形的研究和標準方程的討論,使學生掌握橢圓的幾何性質,能正確地畫出橢圓的圖形,并了解橢圓的一些實際應用。 1.讓學生經歷橢圓標準方程的推導過程,進一步掌握求曲線方程的一般方法,體會數形結合等數學思想;培養(yǎng)學生運用類比、聯想等方法提出問題. 2.培養(yǎng)學生運用數形結合的思想,進一步掌握利用方程研究曲線的基本方法,通過與橢圓幾何性質的對比來提高學生聯想、類比、歸納的能力,解決一些實際問題。 1.通過具體的情境感知研究橢圓標準方程的必要性和實際意義;體會數學的對稱美、簡潔美,培養(yǎng)學生的審美情趣,形成學習數學知識的積極態(tài)度. 2.進一步理解并掌握代數知識在解析幾何運算中的作用,提高解方程組和計算能力,通過“數”研究“形”,說明“數”與“形”存在矛盾的統一體中,通過“數”的變化研究“形”的本質。幫助學生建立勇于探索創(chuàng)新的精神和克服困難的信心。

  • 人教版高中數學選修3排列與排列數教學設計

    人教版高中數學選修3排列與排列數教學設計

    4.有8種不同的菜種,任選4種種在不同土質的4塊地里,有 種不同的種法. 解析:將4塊不同土質的地看作4個不同的位置,從8種不同的菜種中任選4種種在4塊不同土質的地里,則本題即為從8個不同元素中任選4個元素的排列問題,所以不同的種法共有A_8^4 =8×7×6×5=1 680(種).答案:1 6805.用1、2、3、4、5、6、7這7個數字組成沒有重復數字的四位數.(1)這些四位數中偶數有多少個?能被5整除的有多少個?(2)這些四位數中大于6 500的有多少個?解:(1)偶數的個位數只能是2、4、6,有A_3^1種排法,其他位上有A_6^3種排法,由分步乘法計數原理,知共有四位偶數A_3^1·A_6^3=360(個);能被5整除的數個位必須是5,故有A_6^3=120(個).(2)最高位上是7時大于6 500,有A_6^3種,最高位上是6時,百位上只能是7或5,故有2×A_5^2種.由分類加法計數原理知,這些四位數中大于6 500的共有A_6^3+2×A_5^2=160(個).

  • 人教版高中數學選修3超幾何分布教學設計

    人教版高中數學選修3超幾何分布教學設計

    探究新知問題1:已知100件產品中有8件次品,現從中采用有放回方式隨機抽取4件.設抽取的4件產品中次品數為X,求隨機變量X的分布列.(1):采用有放回抽樣,隨機變量X服從二項分布嗎?采用有放回抽樣,則每次抽到次品的概率為0.08,且各次抽樣的結果相互獨立,此時X服從二項分布,即X~B(4,0.08).(2):如果采用不放回抽樣,抽取的4件產品中次品數X服從二項分布嗎?若不服從,那么X的分布列是什么?不服從,根據古典概型求X的分布列.解:從100件產品中任取4件有 C_100^4 種不同的取法,從100件產品中任取4件,次品數X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)種.一般地,假設一批產品共有N件,其中有M件次品.從N件產品中隨機抽取n件(不放回),用X表示抽取的n件產品中的次品數,則X的分布列為P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},則稱隨機變量X服從超幾何分布.

  • 人教版高中數學選修3二項式定理教學設計

    人教版高中數學選修3二項式定理教學設計

    二項式定理形式上的特點(1)二項展開式有n+1項,而不是n項.(2)二項式系數都是C_n^k(k=0,1,2,…,n),它與二項展開式中某一項的系數不一定相等.(3)二項展開式中的二項式系數的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降冪排列,從第一項起,次數由n次逐項減少1次直到0次,同時字母b按升冪排列,次數由0次逐項增加1次直到n次.1.判斷(正確的打“√”,錯誤的打“×”)(1)(a+b)n展開式中共有n項. ( )(2)在公式中,交換a,b的順序對各項沒有影響. ( )(3)Cknan-kbk是(a+b)n展開式中的第k項. ( )(4)(a-b)n與(a+b)n的二項式展開式的二項式系數相同. ( )[解析] (1)× 因為(a+b)n展開式中共有n+1項.(2)× 因為二項式的第k+1項Cknan-kbk和(b+a)n的展開式的第k+1項Cknbn-kak是不同的,其中的a,b是不能隨便交換的.(3)× 因為Cknan-kbk是(a+b)n展開式中的第k+1項.(4)√ 因為(a-b)n與(a+b)n的二項式展開式的二項式系數都是Crn.[答案] (1)× (2)× (3)× (4)√

  • 人教版高中數學選修3全概率公式教學設計

    人教版高中數學選修3全概率公式教學設計

    2.某小組有20名射手,其中1,2,3,4級射手分別為2,6,9,3名.又若選1,2,3,4級射手參加比賽,則在比賽中射中目標的概率分別為0.85,0.64,0.45,0.32,今隨機選一人參加比賽,則該小組比賽中射中目標的概率為________. 【解析】設B表示“該小組比賽中射中目標”,Ai(i=1,2,3,4)表示“選i級射手參加比賽”,則P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.兩批相同的產品各有12件和10件,每批產品中各有1件廢品,現在先從第1批產品中任取1件放入第2批中,然后從第2批中任取1件,則取到廢品的概率為________. 【解析】設A表示“取到廢品”,B表示“從第1批中取到廢品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型號的產品,已知其中由一廠生產的占 30%, 二廠生產的占 50% , 三廠生產的占 20%, 又知這三個廠的產品次品率分別為2% , 1%, 1%,問從這批產品中任取一件是次品的概率是多少?

  • 人教版高中數學選修3條件概率教學設計

    人教版高中數學選修3條件概率教學設計

    (2)方法一:第一次取到一件不合格品,還剩下99件產品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率為4/99,由于這是一個條件概率,所以P(B|A)=4/99.方法二:根據條件概率的定義,先求出事件A,B同時發(fā)生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考試中,要從20道題中隨機地抽出6道題,若考生至少答對其中的4道題即可通過;若至少答對其中5道題就獲得優(yōu)秀.已知某考生能答對其中10道題,并且知道他在這次考試中已經通過,求他獲得優(yōu)秀成績的概率.解:設事件A為“該考生6道題全答對”,事件B為“該考生答對了其中5道題而另一道答錯”,事件C為“該考生答對了其中4道題而另2道題答錯”,事件D為“該考生在這次考試中通過”,事件E為“該考生在這次考試中獲得優(yōu)秀”,則A,B,C兩兩互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率為13/58.

  • 人教版高中數學選修3正態(tài)分布教學設計

    人教版高中數學選修3正態(tài)分布教學設計

    3.某縣農民月均收入服從N(500,202)的正態(tài)分布,則此縣農民月均收入在500元到520元間人數的百分比約為 . 解析:因為月收入服從正態(tài)分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范圍內的概率為0.683.由圖像的對稱性可知,此縣農民月均收入在500到520元間人數的百分比約為34.15%.答案:34.15%4.某種零件的尺寸ξ(單位:cm)服從正態(tài)分布N(3,12),則不屬于區(qū)間[1,5]這個尺寸范圍的零件數約占總數的 . 解析:零件尺寸屬于區(qū)間[μ-2σ,μ+2σ],即零件尺寸在[1,5]內取值的概率約為95.4%,故零件尺寸不屬于區(qū)間[1,5]內的概率為1-95.4%=4.6%.答案:4.6%5. 設在一次數學考試中,某班學生的分數X~N(110,202),且知試卷滿分150分,這個班的學生共54人,求這個班在這次數學考試中及格(即90分及90分以上)的人數和130分以上的人數.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人數約為9人.

  • 人教版高中數學選修3組合與組合數教學設計

    人教版高中數學選修3組合與組合數教學設計

    解析:因為減法和除法運算中交換兩個數的位置對計算結果有影響,所以屬于組合的有2個.答案:B2.若A_n^2=3C_(n"-" 1)^2,則n的值為( )A.4 B.5 C.6 D.7 解析:因為A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故選C.答案:C 3.若集合A={a1,a2,a3,a4,a5},則集合A的子集中含有4個元素的子集共有 個. 解析:滿足要求的子集中含有4個元素,由集合中元素的無序性,知其子集個數為C_5^4=5.答案:54.平面內有12個點,其中有4個點共線,此外再無任何3點共線,以這些點為頂點,可得多少個不同的三角形?解:(方法一)我們把從共線的4個點中取點的多少作為分類的標準:第1類,共線的4個點中有2個點作為三角形的頂點,共有C_4^2·C_8^1=48(個)不同的三角形;第2類,共線的4個點中有1個點作為三角形的頂點,共有C_4^1·C_8^2=112(個)不同的三角形;第3類,共線的4個點中沒有點作為三角形的頂點,共有C_8^3=56(個)不同的三角形.由分類加法計數原理,不同的三角形共有48+112+56=216(個).(方法二 間接法)C_12^3-C_4^3=220-4=216(個).

  • 淡綠色英語外教幼兒班實習教師簡歷

    淡綠色英語外教幼兒班實習教師簡歷

    XXX軟件有限公司 20xx.01 – 20xx.01幼兒班教師負責與班級外教、助教協調好班級各項工作,定期召開班務會,做好總結,同時傳達好工作安排,負責開展組織家長會,家長開放日,親子活動,組織大大小小的活動幾十場,策劃活動方案、擔任活動的主持人工作。XXX軟件有限公司 20xx.01 – 20xx.01幼兒班教師擔任校內助理實習生,在校實習期間,曾協助完成 30 余人外賓的來訪接待和研討會議的組織執(zhí)行,受到外賓和領導的高度肯定。實習結束后獲得公司上級與同事一致認可,榮獲最佳新人獎

  • 在“用心耕耘才會有更大收獲”主題教育上的講話

    在“用心耕耘才會有更大收獲”主題教育上的講話

    有的人面子思想嚴重,工作不夠大膽,但只要用心在工作、生活中去克服,去鍛煉,我們以后處事就會坦然很多。有的人天生個性較強、性格急躁,不利于工作,但只要用心去磨礪,我們就會更好地適應團隊、適應社會。也許我們的工作條件和工作環(huán)境還不盡如人意,但只要我們用心去爭取領導的支持、爭取同事的幫助、爭取社會的認同,那樣,我們的條件和環(huán)境就會很快得到改善。

上一頁123...209210211212213214215216217218219220下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!