老師們,同學(xué)們:早上好!很高興今天有機(jī)會(huì)和大家一起交流。今天,我和大家交流的題目是《閱讀與思考》。聯(lián)合國(guó)教科文組織國(guó)際二十一世紀(jì)教育委員會(huì)報(bào)告《教育:財(cái)富蘊(yùn)藏其中》提出了教育的四大支柱:學(xué)會(huì)求知、學(xué)會(huì)做事、學(xué)會(huì)共同生活、學(xué)會(huì)生存。同學(xué)們,你們知道該如何學(xué)會(huì)求知嗎?對(duì)于你們小學(xué)生而言,學(xué)會(huì)求知,不僅包括學(xué)會(huì)很多知識(shí),還包含著一系列掌握知識(shí)有關(guān)的能力,如:閱讀能力、書(shū)寫(xiě)能力、觀察能力、思考能力、表達(dá)能力,等等。而這些能力就好比是工具,沒(méi)有這些工具,要掌握知識(shí)是不可能的?!督逃贺?cái)富蘊(yùn)藏其中》在“學(xué)會(huì)求知”中也提到:這種學(xué)習(xí)更多的是為了掌握認(rèn)識(shí)的手段,而不是獲得經(jīng)過(guò)分類(lèi)的系統(tǒng)化知識(shí)。而很多學(xué)生把學(xué)習(xí)僅僅歸結(jié)為不斷地積累知識(shí)、訓(xùn)練記憶和死記硬背。所以就出現(xiàn)了這樣的現(xiàn)象:有些學(xué)生在小學(xué)低年級(jí)的時(shí)候勤學(xué)好問(wèn),聰明伶俐,理解力也很強(qiáng),而到了中高年級(jí)就對(duì)變得對(duì)知識(shí)很冷漠,頭腦也不再靈活了。在中高年級(jí)的課堂上經(jīng)常是老師與極少數(shù)的學(xué)生的對(duì)話交流,其他學(xué)生成為了課堂冷漠的旁觀者。就都是因?yàn)槟銈冊(cè)趯W(xué)習(xí)中不會(huì)思考。而那些在課堂上善于思考,積極參與教師提問(wèn)的學(xué)生,在家庭作業(yè)上下的功夫也不大,但他們的學(xué)業(yè)成績(jī)卻不差。
老師們、同學(xué)們:大家好! 今年是羊年,動(dòng)畫(huà)片“喜羊羊與灰太狼”中的小羊們成為新年問(wèn)候中的一個(gè)高頻詞,人們通過(guò)這種獨(dú)特的祝福方式表達(dá)對(duì)新年生活的愿望與向往。開(kāi)學(xué)第一一個(gè)周會(huì),作為校長(zhǎng),我也想借用“這部動(dòng)畫(huà)片”,向全體師生送上我衷心的祝愿?! ∈紫?,祝愿大家暖羊羊。上周同學(xué)們走進(jìn)校園,許多同學(xué)們都精神飽滿,滿臉愉悅,見(jiàn)到教師都送上了祝福,讓我們收獲了溫暖和愛(ài)意。愛(ài)是需要表達(dá)的,也是需要傳遞的。記得去年,我校中層8位領(lǐng)導(dǎo)慷慨解囊,資助我校品學(xué)兼優(yōu),但在生活中有困難的6名同學(xué),每人XXX元。就是種下了一顆顆溫暖的種子,希望他們能夠開(kāi)出燦爛的花朵,來(lái)完成自己的學(xué)業(yè),實(shí)現(xiàn)自己的抱負(fù),回報(bào)母校一個(gè)微笑。也是去年,期末表彰會(huì)上,同學(xué)們?cè)谂_(tái)上大聲喊出自己的夢(mèng)想,伸開(kāi)雙臂擁抱老師的場(chǎng)景,我相信,每個(gè)人身上都流淌著熱血,溫暖在彼此間傳遞。我希望,在初三的歲月里,同學(xué)們不僅要在文化知識(shí)方面有所成長(zhǎng),更希望同學(xué)們學(xué)會(huì)感恩,敞開(kāi)心扉多一些真實(shí)的情感流露,讓我們彼此暖羊羊。這樣我們的生活才充滿陽(yáng)光。
尊敬的各位老師,親愛(ài)的同學(xué)們:大家早上好。我今天和大家分享的話題是《讓你我都是三月的春風(fēng)》。三月的一切都是美好的,嫩黃的葉芽,婀娜的枝條,在空中飄舞的曼妙的身姿,這是濯纓池畔的柳樹(shù);滿樹(shù)的花苞,怒放的花朵,沁人心脾的嬌美的花影,是真三樓前的桃樹(shù)和杏樹(shù);美好的三月,既是一切花草樹(shù)木萌發(fā)綻放的季節(jié),更屬于我們?nèi)鹬袑W(xué)子快樂(lè)生長(zhǎng),蓬勃發(fā)展的時(shí)期?;ú萑f(wàn)物的萌動(dòng)綻放,是因?yàn)橛写猴L(fēng)春雨的鼓動(dòng),愛(ài)撫和滋潤(rùn);少年學(xué)子的快樂(lè)成長(zhǎng)、蓬勃發(fā)展,同樣需要師長(zhǎng)和他人的鼓動(dòng),愛(ài)撫和滋潤(rùn)。作為青年的我們,不僅僅需要他人的鼓動(dòng)、關(guān)愛(ài)和幫助,我們也可以做他人的春風(fēng)春雨。XX校長(zhǎng)在本學(xué)期第二周的升旗儀式上作了《建設(shè)美好而松弛的教育關(guān)系》的講話。今天,我就如何確立自己和外界的關(guān)系和大家作以交流探討。
冪函數(shù)是在繼一次函數(shù)、反比例函數(shù)、二次函數(shù)之后,又學(xué)習(xí)了單調(diào)性、最值、奇偶性的基礎(chǔ)上,借助實(shí)例,總結(jié)出冪函數(shù)的概念,再借助圖像研究?jī)绾瘮?shù)的性質(zhì).課程目標(biāo)1、理解冪函數(shù)的概念,會(huì)畫(huà)冪函數(shù)y=x,y=x2,y=x3,y=x-1,y=x 的圖象;2、結(jié)合這幾個(gè)冪函數(shù)的圖象,理解冪函數(shù)圖象的變化情況和性質(zhì);3、通過(guò)觀察、總結(jié)冪函數(shù)的性質(zhì),培養(yǎng)學(xué)生概括抽象和識(shí)圖能力.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:用數(shù)學(xué)語(yǔ)言表示函數(shù)冪函數(shù);2.邏輯推理:常見(jiàn)冪函數(shù)的性質(zhì);3.數(shù)學(xué)運(yùn)算:利用冪函數(shù)的概念求參數(shù);4.數(shù)據(jù)分析:比較冪函數(shù)大??;5.數(shù)學(xué)建模:在具體問(wèn)題情境中,運(yùn)用數(shù)形結(jié)合思想,利用冪函數(shù)性質(zhì)、圖像特點(diǎn)解決實(shí)際問(wèn)題。重點(diǎn):常見(jiàn)冪函數(shù)的概念、圖象和性質(zhì);難點(diǎn):冪函數(shù)的單調(diào)性及比較兩個(gè)冪值的大?。?/p>
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)必修1第四章第4.3.2節(jié)《對(duì)數(shù)的運(yùn)算》。其核心是弄清楚對(duì)數(shù)的定義,掌握對(duì)數(shù)的運(yùn)算性質(zhì),理解它的關(guān)鍵就是通過(guò)實(shí)例使學(xué)生認(rèn)識(shí)對(duì)數(shù)式與指數(shù)式的關(guān)系,分析得出對(duì)數(shù)的概念及對(duì)數(shù)式與指數(shù)式的 互化,通過(guò)實(shí)例推導(dǎo)對(duì)數(shù)的運(yùn)算性質(zhì)。由于它還與后續(xù)很多內(nèi)容,比如對(duì)數(shù)函數(shù)及其性質(zhì),這也是高考必考內(nèi)容之一,所以在本學(xué)科有著很重要的地位。解決重點(diǎn)的關(guān)鍵是抓住對(duì)數(shù)的概念、并讓學(xué)生掌握對(duì)數(shù)式與指數(shù)式的互化;通過(guò)實(shí)例推導(dǎo)對(duì)數(shù)的運(yùn)算性質(zhì),讓學(xué)生準(zhǔn)確地運(yùn)用對(duì)數(shù)運(yùn)算性質(zhì)進(jìn)行運(yùn)算,學(xué)會(huì)運(yùn)用換底公式。培養(yǎng)學(xué)生數(shù)學(xué)運(yùn)算、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1、理解對(duì)數(shù)的概念,能進(jìn)行指數(shù)式與對(duì)數(shù)式的互化;2、了解常用對(duì)數(shù)與自然對(duì)數(shù)的意義,理解對(duì)數(shù)恒等式并能運(yùn)用于有關(guān)對(duì)數(shù)計(jì)算。
學(xué)生已經(jīng)學(xué)習(xí)了指數(shù)運(yùn)算性質(zhì),有了這些知識(shí)作儲(chǔ)備,教科書(shū)通過(guò)利用指數(shù)運(yùn)算性質(zhì),推導(dǎo)對(duì)數(shù)的運(yùn)算性質(zhì),再學(xué)習(xí)利用對(duì)數(shù)的運(yùn)算性質(zhì)化簡(jiǎn)求值。課程目標(biāo)1、通過(guò)具體實(shí)例引入,推導(dǎo)對(duì)數(shù)的運(yùn)算性質(zhì);2、熟練掌握對(duì)數(shù)的運(yùn)算性質(zhì),學(xué)會(huì)化簡(jiǎn),計(jì)算.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:對(duì)數(shù)的運(yùn)算性質(zhì);2.邏輯推理:換底公式的推導(dǎo);3.數(shù)學(xué)運(yùn)算:對(duì)數(shù)運(yùn)算性質(zhì)的應(yīng)用;4.數(shù)學(xué)建模:在熟悉的實(shí)際情景中,模仿學(xué)過(guò)的數(shù)學(xué)建模過(guò)程解決問(wèn)題.重點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì),換底公式,對(duì)數(shù)恒等式及其應(yīng)用;難點(diǎn):正確使用對(duì)數(shù)的運(yùn)算性質(zhì)和換底公式.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入回顧指數(shù)性質(zhì):(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么對(duì)數(shù)有哪些性質(zhì)?如 要求:讓學(xué)生自由發(fā)言,教師不做判斷。而是引導(dǎo)學(xué)生進(jìn)一步觀察.研探.
對(duì)數(shù)與指數(shù)是相通的,本節(jié)在已經(jīng)學(xué)習(xí)指數(shù)的基礎(chǔ)上通過(guò)實(shí)例總結(jié)歸納對(duì)數(shù)的概念,通過(guò)對(duì)數(shù)的性質(zhì)和恒等式解決一些與對(duì)數(shù)有關(guān)的問(wèn)題.課程目標(biāo)1、理解對(duì)數(shù)的概念以及對(duì)數(shù)的基本性質(zhì);2、掌握對(duì)數(shù)式與指數(shù)式的相互轉(zhuǎn)化;數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:對(duì)數(shù)的概念;2.邏輯推理:推導(dǎo)對(duì)數(shù)性質(zhì);3.數(shù)學(xué)運(yùn)算:用對(duì)數(shù)的基本性質(zhì)與對(duì)數(shù)恒等式求值;4.數(shù)學(xué)建模:通過(guò)與指數(shù)式的比較,引出對(duì)數(shù)定義與性質(zhì).重點(diǎn):對(duì)數(shù)式與指數(shù)式的互化以及對(duì)數(shù)性質(zhì);難點(diǎn):推導(dǎo)對(duì)數(shù)性質(zhì).教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入已知中國(guó)的人口數(shù)y和年頭x滿足關(guān)系 中,若知年頭數(shù)則能算出相應(yīng)的人口總數(shù)。反之,如果問(wèn)“哪一年的人口數(shù)可達(dá)到18億,20億,30億......”,該如何解決?要求:讓學(xué)生自由發(fā)言,教師不做判斷。而是引導(dǎo)學(xué)生進(jìn)一步觀察.研探.
函數(shù)在高中數(shù)學(xué)中占有很重要的比重,因而作為函數(shù)的第一節(jié)內(nèi)容,主要從三個(gè)實(shí)例出發(fā),引出函數(shù)的概念.從而就函數(shù)概念的分析判斷函數(shù),求定義域和函數(shù)值,再結(jié)合三要素判斷函數(shù)相等.課程目標(biāo)1.理解函數(shù)的定義、函數(shù)的定義域、值域及對(duì)應(yīng)法則。2.掌握判定函數(shù)和函數(shù)相等的方法。3.學(xué)會(huì)求函數(shù)的定義域與函數(shù)值。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:通過(guò)教材中四個(gè)實(shí)例總結(jié)函數(shù)定義;2.邏輯推理:相等函數(shù)的判斷;3.數(shù)學(xué)運(yùn)算:求函數(shù)定義域和求函數(shù)值;4.數(shù)據(jù)分析:運(yùn)用分離常數(shù)法和換元法求值域;5.數(shù)學(xué)建模:通過(guò)從實(shí)際問(wèn)題中抽象概括出函數(shù)概念的活動(dòng),培養(yǎng)學(xué)生從“特殊到一般”的分析問(wèn)題的能力,提高學(xué)生的抽象概括能力。重點(diǎn):函數(shù)的概念,函數(shù)的三要素。難點(diǎn):函數(shù)概念及符號(hào)y=f(x)的理解。
《基本不等式》在人教A版高中數(shù)學(xué)第一冊(cè)第二章第2節(jié),本節(jié)課的內(nèi)容是基本不等式的形式以及推導(dǎo)和證明過(guò)程。本章一直在研究不等式的相關(guān)問(wèn)題,對(duì)于本節(jié)課的知識(shí)點(diǎn)有了很好的鋪墊作用。同時(shí)本節(jié)課的內(nèi)容也是之后基本不等式應(yīng)用的必要基礎(chǔ)。課程目標(biāo)1.掌握基本不等式的形式以及推導(dǎo)過(guò)程,會(huì)用基本不等式解決簡(jiǎn)單問(wèn)題。2.經(jīng)歷基本不等式的推導(dǎo)與證明過(guò)程,提升邏輯推理能力。3.在猜想論證的過(guò)程中,體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn)性。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:基本不等式的形式以及推導(dǎo)過(guò)程;2.邏輯推理:基本不等式的證明;3.數(shù)學(xué)運(yùn)算:利用基本不等式求最值;4.數(shù)據(jù)分析:利用基本不等式解決實(shí)際問(wèn)題;5.數(shù)學(xué)建模:利用函數(shù)的思想和基本不等式解決實(shí)際問(wèn)題,提升學(xué)生的邏輯推理能力。重點(diǎn):基本不等式的形成以及推導(dǎo)過(guò)程和利用基本不等式求最值;難點(diǎn):基本不等式的推導(dǎo)以及證明過(guò)程.
例7 用描述法表示拋物線y=x2+1上的點(diǎn)構(gòu)成的集合.【答案】見(jiàn)解析 【解析】 拋物線y=x2+1上的點(diǎn)構(gòu)成的集合可表示為:{(x,y)|y=x2+1}.變式1.[變條件,變?cè)O(shè)問(wèn)]本題中點(diǎn)的集合若改為“{x|y=x2+1}”,則集合中的元素是什么?【答案】見(jiàn)解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全體實(shí)數(shù).變式2.[變條件,變?cè)O(shè)問(wèn)]本題中點(diǎn)的集合若改為“{y|y=x2+1}”,則集合中的元素是什么?【答案】見(jiàn)解析 【解析】集合{ y| y=x2+1}的代表元素是y,滿足條件y=x2+1的y的取值范圍是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全體實(shí)數(shù).解題技巧(認(rèn)識(shí)集合含義的2個(gè)步驟)一看代表元素,是數(shù)集還是點(diǎn)集,二看元素滿足什么條件即有什么公共特性。
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書(shū)-必修一》(人 教A版)第五章《三角函數(shù)》,本節(jié)課是第1課時(shí),本節(jié)主要介紹推廣角的概念,引入正角、負(fù)角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹(shù)立運(yùn)動(dòng)變化的觀點(diǎn),并由此進(jìn)一步理解推廣后的角的概念。教學(xué)方法可以選用討論法,通過(guò)實(shí)際問(wèn)題,如時(shí)針與分針、體操等等都能形成角的流念,給學(xué)生以直觀的印象,形成正角、負(fù)角、零角的概念,明確規(guī)定角的概念,通過(guò)具體問(wèn)題讓學(xué)生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負(fù)角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會(huì)判斷角所在的象限。 1.數(shù)學(xué)抽象:角的概念;2.邏輯推理:象限角的表示;3.數(shù)學(xué)運(yùn)算:判斷角所在象限;4.直觀想象:從特殊到一般的數(shù)學(xué)思想方法;
學(xué)生在初中學(xué)習(xí)了 ~ ,但是現(xiàn)實(shí)生活中隨處可見(jiàn)超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動(dòng)輪和被動(dòng)輪的旋轉(zhuǎn)方向不一致.因此為了準(zhǔn)確描述這些現(xiàn)象,本節(jié)課主要就旋轉(zhuǎn)度數(shù)和旋轉(zhuǎn)方向?qū)堑母拍钸M(jìn)行推廣.課程目標(biāo)1.了解任意角的概念.2.理解象限角的概念及終邊相同的角的含義.3.掌握判斷象限角及表示終邊相同的角的方法.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解任意角的概念,能區(qū)分各類(lèi)角;2.邏輯推理:求區(qū)域角;3.數(shù)學(xué)運(yùn)算:會(huì)判斷象限角及終邊相同的角.重點(diǎn):理解象限角的概念及終邊相同的角的含義;難點(diǎn):掌握判斷象限角及表示終邊相同的角的方法.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入初中對(duì)角的定義是:射線OA繞端點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)一周回到起始位置,在這個(gè)過(guò)程中可以得到 ~ 范圍內(nèi)的角.但是現(xiàn)實(shí)生活中隨處可見(jiàn)超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動(dòng)輪和被動(dòng)輪的旋轉(zhuǎn)方向不一致.
知識(shí)探究(一):普查與抽查像人口普查這樣,對(duì)每一個(gè)調(diào)查調(diào)查對(duì)象都進(jìn)行調(diào)查的方法,稱(chēng)為全面調(diào)查(又稱(chēng)普查)。 在一個(gè)調(diào)查中,我們把調(diào)查對(duì)象的全體稱(chēng)為總體,組成總體的每一個(gè)調(diào)查對(duì)象稱(chēng)為個(gè)體。為了強(qiáng)調(diào)調(diào)查目的,也可以把調(diào)查對(duì)象的某些指標(biāo)的全體作為總體,每一個(gè)調(diào)查對(duì)象的相應(yīng)指標(biāo)作為個(gè)體。問(wèn)題二:除了普查,還有其他的調(diào)查方法嗎?由于人口普查需要花費(fèi)巨大的財(cái)力、物力,因而不宜經(jīng)常進(jìn)行。為了及時(shí)掌握全國(guó)人口變動(dòng)狀況,我國(guó)每年還會(huì)進(jìn)行一次人口變動(dòng)情況的調(diào)查,根據(jù)抽取的居民情況來(lái)推斷總體的人口變動(dòng)情況。像這樣,根據(jù)一定目的,從總體中抽取一部分個(gè)體進(jìn)行調(diào)查,并以此為依據(jù)對(duì)總體的情況作出估計(jì)和判斷的方法,稱(chēng)為抽樣調(diào)查(或稱(chēng)抽查)。我們把從總體中抽取的那部分個(gè)體稱(chēng)為樣本,樣本中包含的個(gè)體數(shù)稱(chēng)為樣本量。
本節(jié)主要內(nèi)容是三角函數(shù)的誘導(dǎo)公式中的公式二至公式六,其推導(dǎo)過(guò)程中涉及到對(duì)稱(chēng)變換,充分體現(xiàn)對(duì)稱(chēng)變換思想在數(shù)學(xué)中的應(yīng)用,在練習(xí)中加以應(yīng)用,讓學(xué)生進(jìn)一步體會(huì) 的任意性;綜合六組誘導(dǎo)公式總結(jié)出記憶誘導(dǎo)公式的口訣:“奇變偶不變,符號(hào)看象限”,了解從特殊到一般的數(shù)學(xué)思想的探究過(guò)程,培養(yǎng)學(xué)生用聯(lián)系、變化的辯證唯物主義觀點(diǎn)去分析問(wèn)題的能力。誘導(dǎo)公式在三角函數(shù)化簡(jiǎn)、求值中具有非常重要的工具作用,要求學(xué)生能熟練的掌握和應(yīng)用。課程目標(biāo)1.借助單位圓,推導(dǎo)出正弦、余弦第二、三、四、五、六組的誘導(dǎo)公式,能正確運(yùn)用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角的三角函數(shù),并解決有關(guān)三角函數(shù)求值、化簡(jiǎn)和恒等式證明問(wèn)題2.通過(guò)公式的應(yīng)用,了解未知到已知、復(fù)雜到簡(jiǎn)單的轉(zhuǎn)化過(guò)程,培養(yǎng)學(xué)生的化歸思想,以及信息加工能力、運(yùn)算推理能力、分析問(wèn)題和解決問(wèn)題的能力。
4.有8種不同的菜種,任選4種種在不同土質(zhì)的4塊地里,有 種不同的種法. 解析:將4塊不同土質(zhì)的地看作4個(gè)不同的位置,從8種不同的菜種中任選4種種在4塊不同土質(zhì)的地里,則本題即為從8個(gè)不同元素中任選4個(gè)元素的排列問(wèn)題,所以不同的種法共有A_8^4 =8×7×6×5=1 680(種).答案:1 6805.用1、2、3、4、5、6、7這7個(gè)數(shù)字組成沒(méi)有重復(fù)數(shù)字的四位數(shù).(1)這些四位數(shù)中偶數(shù)有多少個(gè)?能被5整除的有多少個(gè)?(2)這些四位數(shù)中大于6 500的有多少個(gè)?解:(1)偶數(shù)的個(gè)位數(shù)只能是2、4、6,有A_3^1種排法,其他位上有A_6^3種排法,由分步乘法計(jì)數(shù)原理,知共有四位偶數(shù)A_3^1·A_6^3=360(個(gè));能被5整除的數(shù)個(gè)位必須是5,故有A_6^3=120(個(gè)).(2)最高位上是7時(shí)大于6 500,有A_6^3種,最高位上是6時(shí),百位上只能是7或5,故有2×A_5^2種.由分類(lèi)加法計(jì)數(shù)原理知,這些四位數(shù)中大于6 500的共有A_6^3+2×A_5^2=160(個(gè)).
探究新知問(wèn)題1:已知100件產(chǎn)品中有8件次品,現(xiàn)從中采用有放回方式隨機(jī)抽取4件.設(shè)抽取的4件產(chǎn)品中次品數(shù)為X,求隨機(jī)變量X的分布列.(1):采用有放回抽樣,隨機(jī)變量X服從二項(xiàng)分布嗎?采用有放回抽樣,則每次抽到次品的概率為0.08,且各次抽樣的結(jié)果相互獨(dú)立,此時(shí)X服從二項(xiàng)分布,即X~B(4,0.08).(2):如果采用不放回抽樣,抽取的4件產(chǎn)品中次品數(shù)X服從二項(xiàng)分布嗎?若不服從,那么X的分布列是什么?不服從,根據(jù)古典概型求X的分布列.解:從100件產(chǎn)品中任取4件有 C_100^4 種不同的取法,從100件產(chǎn)品中任取4件,次品數(shù)X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)種.一般地,假設(shè)一批產(chǎn)品共有N件,其中有M件次品.從N件產(chǎn)品中隨機(jī)抽取n件(不放回),用X表示抽取的n件產(chǎn)品中的次品數(shù),則X的分布列為P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},則稱(chēng)隨機(jī)變量X服從超幾何分布.
二項(xiàng)式定理形式上的特點(diǎn)(1)二項(xiàng)展開(kāi)式有n+1項(xiàng),而不是n項(xiàng).(2)二項(xiàng)式系數(shù)都是C_n^k(k=0,1,2,…,n),它與二項(xiàng)展開(kāi)式中某一項(xiàng)的系數(shù)不一定相等.(3)二項(xiàng)展開(kāi)式中的二項(xiàng)式系數(shù)的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降冪排列,從第一項(xiàng)起,次數(shù)由n次逐項(xiàng)減少1次直到0次,同時(shí)字母b按升冪排列,次數(shù)由0次逐項(xiàng)增加1次直到n次.1.判斷(正確的打“√”,錯(cuò)誤的打“×”)(1)(a+b)n展開(kāi)式中共有n項(xiàng). ( )(2)在公式中,交換a,b的順序?qū)Ω黜?xiàng)沒(méi)有影響. ( )(3)Cknan-kbk是(a+b)n展開(kāi)式中的第k項(xiàng). ( )(4)(a-b)n與(a+b)n的二項(xiàng)式展開(kāi)式的二項(xiàng)式系數(shù)相同. ( )[解析] (1)× 因?yàn)?a+b)n展開(kāi)式中共有n+1項(xiàng).(2)× 因?yàn)槎?xiàng)式的第k+1項(xiàng)Cknan-kbk和(b+a)n的展開(kāi)式的第k+1項(xiàng)Cknbn-kak是不同的,其中的a,b是不能隨便交換的.(3)× 因?yàn)镃knan-kbk是(a+b)n展開(kāi)式中的第k+1項(xiàng).(4)√ 因?yàn)?a-b)n與(a+b)n的二項(xiàng)式展開(kāi)式的二項(xiàng)式系數(shù)都是Crn.[答案] (1)× (2)× (3)× (4)√
2.某小組有20名射手,其中1,2,3,4級(jí)射手分別為2,6,9,3名.又若選1,2,3,4級(jí)射手參加比賽,則在比賽中射中目標(biāo)的概率分別為0.85,0.64,0.45,0.32,今隨機(jī)選一人參加比賽,則該小組比賽中射中目標(biāo)的概率為_(kāi)_______. 【解析】設(shè)B表示“該小組比賽中射中目標(biāo)”,Ai(i=1,2,3,4)表示“選i級(jí)射手參加比賽”,則P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.兩批相同的產(chǎn)品各有12件和10件,每批產(chǎn)品中各有1件廢品,現(xiàn)在先從第1批產(chǎn)品中任取1件放入第2批中,然后從第2批中任取1件,則取到廢品的概率為_(kāi)_______. 【解析】設(shè)A表示“取到廢品”,B表示“從第1批中取到廢品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型號(hào)的產(chǎn)品,已知其中由一廠生產(chǎn)的占 30%, 二廠生產(chǎn)的占 50% , 三廠生產(chǎn)的占 20%, 又知這三個(gè)廠的產(chǎn)品次品率分別為2% , 1%, 1%,問(wèn)從這批產(chǎn)品中任取一件是次品的概率是多少?
(2)方法一:第一次取到一件不合格品,還剩下99件產(chǎn)品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率為4/99,由于這是一個(gè)條件概率,所以P(B|A)=4/99.方法二:根據(jù)條件概率的定義,先求出事件A,B同時(shí)發(fā)生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考試中,要從20道題中隨機(jī)地抽出6道題,若考生至少答對(duì)其中的4道題即可通過(guò);若至少答對(duì)其中5道題就獲得優(yōu)秀.已知某考生能答對(duì)其中10道題,并且知道他在這次考試中已經(jīng)通過(guò),求他獲得優(yōu)秀成績(jī)的概率.解:設(shè)事件A為“該考生6道題全答對(duì)”,事件B為“該考生答對(duì)了其中5道題而另一道答錯(cuò)”,事件C為“該考生答對(duì)了其中4道題而另2道題答錯(cuò)”,事件D為“該考生在這次考試中通過(guò)”,事件E為“該考生在這次考試中獲得優(yōu)秀”,則A,B,C兩兩互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率為13/58.
3.某縣農(nóng)民月均收入服從N(500,202)的正態(tài)分布,則此縣農(nóng)民月均收入在500元到520元間人數(shù)的百分比約為 . 解析:因?yàn)樵率杖敕恼龖B(tài)分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范圍內(nèi)的概率為0.683.由圖像的對(duì)稱(chēng)性可知,此縣農(nóng)民月均收入在500到520元間人數(shù)的百分比約為34.15%.答案:34.15%4.某種零件的尺寸ξ(單位:cm)服從正態(tài)分布N(3,12),則不屬于區(qū)間[1,5]這個(gè)尺寸范圍的零件數(shù)約占總數(shù)的 . 解析:零件尺寸屬于區(qū)間[μ-2σ,μ+2σ],即零件尺寸在[1,5]內(nèi)取值的概率約為95.4%,故零件尺寸不屬于區(qū)間[1,5]內(nèi)的概率為1-95.4%=4.6%.答案:4.6%5. 設(shè)在一次數(shù)學(xué)考試中,某班學(xué)生的分?jǐn)?shù)X~N(110,202),且知試卷滿分150分,這個(gè)班的學(xué)生共54人,求這個(gè)班在這次數(shù)學(xué)考試中及格(即90分及90分以上)的人數(shù)和130分以上的人數(shù).解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人數(shù)約為9人.