5. 作業(yè): 作業(yè)我同樣選取不同題型的五個(gè)計(jì)算題,目的是想查看學(xué)生學(xué)的效果如何,是否對(duì)哪類題型還留有疑問(wèn)。 6. 自我評(píng)價(jià): 這堂課我覺(jué)得滿意的,是能夠利用短暫的45分鐘把要學(xué)的知識(shí)穿插在學(xué)與練當(dāng)中,充分地利用了課堂有限的時(shí)間,并且能讓學(xué)生邊學(xué)邊練,及時(shí)鞏固。 當(dāng)然這堂課也有很多不足之處,我覺(jué)得自己對(duì)于課堂上學(xué)生做練習(xí)時(shí)出現(xiàn)的一些小問(wèn)題處理還沒(méi)有能夠處理得很好,我應(yīng)該吸取經(jīng)驗(yàn)教訓(xùn),再以后的教學(xué)中加以改進(jìn)。 另外對(duì)于多個(gè)有理數(shù)相乘時(shí)的符號(hào)問(wèn)題,我覺(jué)得自己歸納得還不是很到位,我想解決的辦法是在以后的練習(xí)中再做些補(bǔ)充,讓學(xué)生加深理解。從中我也得到一個(gè)教訓(xùn),再以后的教學(xué)工作中,我還應(yīng)該多學(xué)習(xí)教學(xué)方法,多思考如何歸納知識(shí)點(diǎn),才能更好地幫學(xué)生形成一個(gè)系統(tǒng)的知識(shí)系統(tǒng)!
五、兩點(diǎn)說(shuō)明。(一)、板書(shū)設(shè)計(jì)這節(jié)課的板書(shū)我是這樣設(shè)計(jì)的,在黑板的正上方中間處寫(xiě)明課題,然后把板書(shū)分為左右兩部分,左邊是有理數(shù)除法的法則,為了培養(yǎng)學(xué)生把文字語(yǔ)言轉(zhuǎn)化成符號(hào)語(yǔ)言的能力,板書(shū)中只出現(xiàn)兩種法則的符號(hào)表示,從而加深他們對(duì)法則的理解,板書(shū)右邊是學(xué)生的板演,以便于比較他們做題中出現(xiàn)的問(wèn)題。板書(shū)下方是課堂小結(jié),重點(diǎn)寫(xiě)出:有理數(shù)的除法可以轉(zhuǎn)化成有理數(shù)的乘法,以體現(xiàn)本節(jié)課中的重要的數(shù)學(xué)思想方法。有理數(shù)的除法板演練習(xí):有理數(shù)除法的法則:a÷b=a×1/b(b≠0) 1a>0,b>0,a/b>0;a0; 2a>0,b0,a/b<0. 3課堂小結(jié):有理數(shù)的除法 有理數(shù)的乘法轉(zhuǎn)化(二)、時(shí)間分配:教學(xué)過(guò)程中的八個(gè)環(huán)節(jié)所需的時(shí)間分別為:1分鐘、2分鐘、5分鐘、8分鐘、8分鐘、16分鐘、2分鐘、1分鐘。
5、總結(jié)學(xué)生解題過(guò)程中存在的問(wèn)題,并指導(dǎo)并糾正、分析根本原因。6、通過(guò)演示法給學(xué)生演示完整、詳細(xì)和規(guī)范的解題過(guò)程。7、總結(jié)有理數(shù)的運(yùn)算順序和方法。先讓學(xué)生自己總結(jié)運(yùn)算順序,培養(yǎng)學(xué)生自己思考的能力,然后教師進(jìn)行糾正。等這個(gè)過(guò)程結(jié)束之后,再給出完整的運(yùn)算順序和方法。8、出示練習(xí)題,鞏固所學(xué)知識(shí),教師及時(shí)指正。9、最后布置課后作業(yè)題。四、教學(xué)評(píng)價(jià)本節(jié)課我注重體現(xiàn)“以教師為主導(dǎo)、學(xué)生為主體、以學(xué)生發(fā)展為本的教學(xué)思想”。1、通過(guò)具體的題目引入,讓學(xué)生先以自己的知識(shí)體系解決問(wèn)題,在這過(guò)程中發(fā)現(xiàn)問(wèn)題、歸納總結(jié)原因,并予以解決。一方面復(fù)習(xí)前面所學(xué)的基本運(yùn)算,另一方面完善學(xué)生的知識(shí)體系。2、培養(yǎng)學(xué)生自主學(xué)習(xí)與探究的能力、分析與解決問(wèn)題的能力。
“數(shù)的運(yùn)算”是“數(shù)與代數(shù)”學(xué)習(xí)領(lǐng)域的重要內(nèi)容,減法是其中的一種基本運(yùn)算.本課的學(xué)習(xí)遠(yuǎn)接小學(xué)階段關(guān)于整數(shù)、分?jǐn)?shù)(包括小數(shù))的減法運(yùn)算,近承第四節(jié)有理數(shù)的加法運(yùn)算.通過(guò)對(duì)有理數(shù)的減法運(yùn)算的學(xué)習(xí),學(xué)生將對(duì)減法運(yùn)算有進(jìn)一步的認(rèn)識(shí)和理解,為后繼諸如實(shí)數(shù)、復(fù)數(shù)的減法運(yùn)算的學(xué)習(xí)奠定了堅(jiān)實(shí)的基礎(chǔ).鑒于以上對(duì)教學(xué)內(nèi)容在教材體系中的位置及地位的認(rèn)識(shí)和理解,確定本節(jié)課的教學(xué)目標(biāo)如下:1、知識(shí)目標(biāo):經(jīng)歷探索有理數(shù)的減法法則的過(guò)程,理解有理數(shù)的減法法則,并能熟練運(yùn)用法則進(jìn)行有理數(shù)的減法運(yùn)算.2、能力目標(biāo):經(jīng)歷由特例歸納出一般規(guī)律的過(guò)程,培養(yǎng)學(xué)生的抽象概括能力及表達(dá)能力;通過(guò)減法到加法的轉(zhuǎn)化,讓學(xué)生初步體會(huì)轉(zhuǎn)化、化歸的數(shù)學(xué)思想.3、情感目標(biāo):
問(wèn)題6:觀察剛才所畫(huà)的圖象我們發(fā)現(xiàn)反比例函數(shù)的圖象有兩個(gè)分支,那么它的分布情況又是怎么樣的呢?在這一環(huán)節(jié)中的設(shè)計(jì):(1) 引導(dǎo)學(xué)生對(duì)比正比例函數(shù)圖象的分布,啟發(fā)他們主動(dòng)探索反比例函數(shù)的分布情況,給學(xué)生充分考慮的時(shí)間;(2) 充分運(yùn)用多媒體的優(yōu)勢(shì)進(jìn)行教學(xué),使用函數(shù)圖象的課件試著任意輸入幾個(gè)k的值,觀察函數(shù)圖象的不同分布,觀察函數(shù)圖象的動(dòng)態(tài)演變過(guò)程。把不同的函數(shù)圖象集中到一個(gè)屏幕中,便于學(xué)生對(duì)比和探究。學(xué)生通過(guò)觀察及對(duì)比,對(duì)反比例函數(shù)圖象的分布與k的關(guān)系有一個(gè)直觀的了解;(3) 組織小組討論來(lái)歸納出反比例函數(shù)的一條性質(zhì):當(dāng)k>0時(shí),函數(shù)圖象的兩支分別在第一、三象限內(nèi);當(dāng)k<0時(shí),函數(shù)圖象的兩支分別在第二、四象限內(nèi)。
教學(xué)媒體設(shè)計(jì)充分利用多媒體教學(xué),將powerpoint、《幾何畫(huà)板》兩種軟件結(jié)合起來(lái)制作上課課件。制作的課件,不僅課堂所授容量大,而且,利用作二次函數(shù)圖像的動(dòng)畫(huà)性,更加形象的反映出作圖的過(guò)程,增加數(shù)學(xué)的美感,激發(fā)學(xué)生作圖的興趣。教學(xué)評(píng)價(jià)設(shè)計(jì)本節(jié)課,我合理、充分利用了多媒體教學(xué)的手段,利用powerpoint,《幾何畫(huà)板》這兩種軟件制作了課件,特別是《幾何畫(huà)板》軟件的應(yīng)用,畫(huà)出了標(biāo)準(zhǔn)、動(dòng)畫(huà)形式的二次函數(shù)的圖像,讓抽象思維不強(qiáng)的學(xué)生,更加形象的結(jié)合圖形,分析說(shuō)出二次函數(shù)y=ax2的有關(guān)性質(zhì),充分體現(xiàn)了“數(shù)形結(jié)合”的數(shù)學(xué)思想。為了突出重點(diǎn),攻破難點(diǎn),我要求學(xué)生“先觀察后思考”、“先做后說(shuō)”、“先討論后總結(jié)”,“師生共做”充分體現(xiàn)了教學(xué)過(guò)程中以學(xué)生為主體,老師起主導(dǎo)作用的教學(xué)原則。本節(jié)課,讓學(xué)生有觀察,有思考,有討論,有練習(xí),充分調(diào)動(dòng)了學(xué)生的學(xué)習(xí)興趣,從而為高效率、高質(zhì)量地上好這一堂課作好了充分的準(zhǔn)備。
1、圓的半徑是 ,假設(shè)半徑增加 時(shí),圓的面積增加 。(1)寫(xiě)出 與 之間的關(guān)系表達(dá)式;(2)當(dāng)圓的半徑分別增加 , , 時(shí),圓的面積增加多少。【設(shè)計(jì)意圖】此題由具體數(shù)據(jù)逐步過(guò)渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過(guò)程,從而降低學(xué)生學(xué)習(xí)的難度。2、籬笆墻長(zhǎng) ,靠墻圍成一個(gè)矩形花壇,寫(xiě)出花壇面積 與長(zhǎng) 之間的函數(shù)關(guān)系式,并指出自變量的取值范圍。【設(shè)計(jì)意圖】此題稍微復(fù)雜些,旨在讓學(xué)生能夠開(kāi)動(dòng)腦筋,積極思考,讓學(xué)生能夠“跳一跳,夠得到”。(六) 小結(jié)思考本節(jié)課你有哪些收獲?還有什么不清楚的地方?【設(shè)計(jì)意圖】讓學(xué)生來(lái)談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識(shí)進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補(bǔ)充。(七)布置作業(yè),提高升華必做題:課本P39-40隨堂練習(xí)第1題,習(xí)題2.1第1題;
教學(xué)過(guò)程我主要分為六部分:一、新課引入,二、探究新知 ,三、鞏固新知,四、感悟收獲,五、布置作業(yè),六、板書(shū)設(shè)計(jì) (一)、新課引入教師提問(wèn):一個(gè)直角三角形中,一個(gè)銳角正弦、余弦、正切值是怎么定義的? sinA如圖在 Rt△ABC中,∠C=90°。(1)a、b、c三者之間的關(guān)系是 ,∠A+∠B= 。 (2)sinA=sinB= , cosB= ,tanB= 。 (3)若A=30°,則B(4)sinA和cosB有什么關(guān)系?____________________;【設(shè)計(jì)意圖】回顧上節(jié)課所學(xué)的內(nèi)容,便于后面教學(xué)的開(kāi)展。 (二)、探究新知活動(dòng)一、探索特殊角的三角函數(shù),并填寫(xiě)課本表格[問(wèn)題] 1、觀察一副三角尺,其中有幾個(gè)銳角?它們分別等于多少度? [問(wèn)題] 2、sin30°等于多少呢?你是怎樣得到的?與同伴交流. [問(wèn)題] 3、cos30°等于多少?tan30°呢? [問(wèn)題] 4、我們求出了30°角的三個(gè)三角函數(shù)值,還有兩個(gè)特殊角——45°、60°,它們的三角函數(shù)值分別是多少?你是如何得到的? 1、特殊角的三角函數(shù)值表:
設(shè)計(jì)意圖:知識(shí)的掌握需要由淺到深,由易到難.我所設(shè)計(jì)的三個(gè)例題難度依次上升,根據(jù)由簡(jiǎn)到難的原則,先讓學(xué)生學(xué)會(huì)熟悉選用公式,再進(jìn)一步到公式的變形應(yīng)用,鞏固知識(shí).特別是第三題特別強(qiáng)調(diào)了運(yùn)用法則的前提:必需要底數(shù)相同.為加深學(xué)生對(duì)法則的理解記憶,形成“學(xué)以致用”的思想.同時(shí)為了調(diào)動(dòng)學(xué)生思考,接下來(lái)讓學(xué)生進(jìn)入反饋練習(xí)階段,進(jìn)一步鞏固記憶.4、知識(shí)反饋,提高反思練習(xí)1(1)口答設(shè)計(jì)意圖:根據(jù)夸美紐斯的教學(xué)鞏固性原則,為了培養(yǎng)學(xué)生獨(dú)立解決問(wèn)題的能力,在例題講解后,通過(guò)讓個(gè)別同學(xué)上黑板演演,其余同學(xué)在草稿本上完成練習(xí)的方式來(lái)掌握學(xué)生的學(xué)習(xí)情況,從而對(duì)講解內(nèi)容作適當(dāng)?shù)难a(bǔ)充提醒.同時(shí),在活動(dòng)中引起學(xué)生的好奇心和強(qiáng)烈的求知欲,在獲得經(jīng)驗(yàn)和策略的同時(shí),獲得良好的情感體驗(yàn).
說(shuō)明:此處進(jìn)行的是一次嘗試應(yīng)用乘方運(yùn)算來(lái)解決開(kāi)頭的問(wèn)題,互相呼應(yīng),以體現(xiàn)整節(jié)課的完整性,把學(xué)生開(kāi)始的興趣再次引向高潮。趣味探索:一張薄薄的紙對(duì)折56次后有多厚?試驗(yàn)一下你能折這么厚嗎?說(shuō)明:這個(gè)探索實(shí)際上仍是對(duì)學(xué)生應(yīng)用能力的一個(gè)檢查,紙對(duì)折56次,用什么運(yùn)算來(lái)計(jì)算比較方便,另外計(jì)算過(guò)程中可使用計(jì)算器,進(jìn)一步加深對(duì)乘方意義的理解(五)作業(yè)P56頁(yè)1、2說(shuō)明:這兩個(gè)習(xí)題是對(duì)課本上例題的簡(jiǎn)單重復(fù)和模仿,通過(guò)本節(jié)課的學(xué)習(xí),多數(shù)學(xué)生應(yīng)該可以較輕松地完成??傊谡麄€(gè)教學(xué)設(shè)計(jì)中,我始終以學(xué)生為課堂主體,讓他們積極參與到教學(xué)中來(lái),不斷從舊知識(shí)中獲得新的認(rèn)識(shí),通過(guò)不斷進(jìn)行聯(lián)系比較,讓學(xué)生主動(dòng)自覺(jué)地去思考、探索、總結(jié)直至發(fā)現(xiàn)結(jié)果、發(fā)現(xiàn)"方法",進(jìn)而優(yōu)化了整個(gè)教學(xué)。
一、教材分析(一)教材的地位和作用:本節(jié)課是北師大七年級(jí)(上)義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材第2章第6節(jié)第一課時(shí)的內(nèi)容。它是學(xué)生在已經(jīng)掌握有理數(shù)加法、減法、乘法、除法、乘方以后進(jìn)行學(xué)習(xí)的。它是建立在有理數(shù)的有關(guān)概念和各種運(yùn)算的意義及法則的基礎(chǔ)上進(jìn)行的綜合性運(yùn)算。它是本章的重點(diǎn)之一,是以上各種運(yùn)算的繼續(xù)和發(fā)展,對(duì)學(xué)生運(yùn)算能力和數(shù)學(xué)學(xué)習(xí)能力的培養(yǎng),有著十分重要的意義,同時(shí)也是初中數(shù)學(xué)運(yùn)算的重要內(nèi)容之一,是后續(xù)學(xué)習(xí)的基礎(chǔ)。(二)教學(xué)目標(biāo)的確立:參照義務(wù)教育階段《數(shù)學(xué)課程標(biāo)準(zhǔn)》的要求,確定本節(jié)課的教學(xué)目標(biāo)如下:1、知識(shí)技能目標(biāo):(1)掌握有理數(shù)的混合運(yùn)算法則及運(yùn)算順序。(2)熟練的進(jìn)行有理數(shù)的混合運(yùn)算。2、能力目標(biāo):培養(yǎng)學(xué)生的觀察能力和運(yùn)算能力。3、情感與態(tài)度目標(biāo):(1)培養(yǎng)學(xué)生在計(jì)算前認(rèn)真審題,確定運(yùn)算順序,計(jì)算中按步驟審慎進(jìn)行,并養(yǎng)成驗(yàn)算的良好的學(xué)習(xí)習(xí)慣。
在答案的匯總過(guò)程中,要肯定學(xué)生的探索,愛(ài)護(hù)學(xué)生的學(xué)習(xí)興趣和探索欲.讓學(xué)生作課堂的主人,陳述自己的結(jié)果.對(duì)學(xué)生的不完整或不準(zhǔn)確回答,教師適當(dāng)延遲評(píng)價(jià);要鼓勵(lì)學(xué)生創(chuàng)造性思維,教師要及時(shí)抓住學(xué)生智慧的火花的閃現(xiàn),這一瞬間的心理激勵(lì),是培養(yǎng)學(xué)生創(chuàng)造力、充分挖掘潛能的有效途徑.預(yù)先設(shè)想學(xué)生思路,可能從以下方面分類歸納,探索規(guī)律:① 從加數(shù)的不同符號(hào)情況(可遇見(jiàn)情況:正數(shù)+正數(shù);負(fù)數(shù)+負(fù)數(shù);正數(shù)+負(fù)數(shù);數(shù)+0)② 從加數(shù)的不同數(shù)值情況(加數(shù)為整數(shù);加數(shù)為小數(shù))③ 從有理數(shù)加法法則的分類(同號(hào)兩數(shù)相加;異號(hào)兩數(shù)相加;同0相加)④ 從向量的迭加性方面(加數(shù)的絕對(duì)值相加;加數(shù)的絕對(duì)值相減)⑤ 從和的符號(hào)確定方面(同號(hào)兩數(shù)相加符號(hào)的確定;異號(hào)兩數(shù)相加符號(hào)的確定)教學(xué)中要避免課堂熱熱鬧鬧,卻陷入數(shù)學(xué)教學(xué)的淺薄與貧乏.
[互動(dòng)2]師:請(qǐng)大家從上面的解題經(jīng)歷中,總結(jié)一下如果已知函數(shù)的圖象,怎樣求函數(shù)的表達(dá)式?小組討論之后再發(fā)表意見(jiàn)。生:第一步根據(jù)圖象,確定這個(gè)函數(shù)是正比例函數(shù)或是一次函數(shù);第二步設(shè)函數(shù)表達(dá)式;第三步:根據(jù)表達(dá)式列等式,若是正比例函數(shù),只要找圖象上一個(gè)點(diǎn)的坐標(biāo)就可以了;若是一次函數(shù),則需要找到圖象上兩個(gè)點(diǎn)的坐標(biāo),然后把點(diǎn)的坐標(biāo)分別代入所設(shè)的解析式中,組成關(guān)于R、b的一個(gè)或兩個(gè)方程。第四步:求出R、b的值第五步:把R、b的值代回到表達(dá)式中就可以了。師:分析得太好了。那么,大家說(shuō)一說(shuō),確定正比例函數(shù)的表達(dá)式需要幾個(gè)條件?確定一次函數(shù)的表達(dá)式呢?要說(shuō)明理由。生:確定正比例函數(shù)需要一個(gè)條件,而確定一次函數(shù)需要兩個(gè)條件。原因是正比例函數(shù)的表達(dá)式:y=Rx(R≠0)中,只有一個(gè)系數(shù)R,而一次函數(shù)的表達(dá)式y(tǒng)=Rx+b(R≠0)中,有兩個(gè)系數(shù)(待定)R和b。
(2)請(qǐng)你思考:師:這樣就需要設(shè)計(jì)一張其他面值的郵票,如果最高的資費(fèi)是6元,那么用3張郵票來(lái)支付時(shí),面值對(duì)大的郵票是幾元?可增加什么面值的郵票?(學(xué)生分組討論設(shè)計(jì)思考)生:6元除以3元就是2元,可增加的郵票面值可為2.0元,2.4元或4.0元。(3)小結(jié):雖然滿足條件的郵票組合很多,但郵政部門(mén)在發(fā)行郵票時(shí),還要從經(jīng)濟(jì)、合理等角度考慮?!驹O(shè)計(jì)意圖:大膽放手,讓學(xué)生參與數(shù)學(xué)活動(dòng)。讓學(xué)生成為課堂的主體,讓他們?cè)趧?dòng)手、動(dòng)腦、動(dòng)口的過(guò)程中學(xué)到知識(shí)和思維的方法,知識(shí)的獲得和學(xué)習(xí)方法的形成都是在學(xué)生“做”的過(guò)程中形成的?!克摹㈧柟躺罨?、如果小明的爸爸要給小明回一封不足20g的信,他該貼多少錢(qián)的郵票?2、如果小明的好朋友要寄一封39g的信,他該貼多少錢(qián)的郵票?五、課后實(shí)踐:課后給你的親戚或者好朋友寄封信。
(三)實(shí)踐活動(dòng)(運(yùn)用)接著,我設(shè)計(jì)了實(shí)踐活動(dòng),讓學(xué)生走出教室,在校園找到不同型號(hào)的自行車(chē)有四輛我把學(xué)生分成四組,并且分工合作,每組5個(gè)人,有3 個(gè)人負(fù)責(zé)采集數(shù)據(jù),有兩個(gè)人負(fù)責(zé)計(jì)算出結(jié)果。教師還要在旁邊指導(dǎo)測(cè)量的方法,讓學(xué)生學(xué)會(huì)收集數(shù)據(jù)。培養(yǎng)學(xué)生學(xué)會(huì)用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)生活,從中發(fā)現(xiàn)問(wèn)題,提出問(wèn)題,解決問(wèn)題,體會(huì)數(shù)學(xué)的廣泛應(yīng)用與實(shí)際價(jià)值,獲得良好的情感體驗(yàn)。數(shù)學(xué)模型方法的教學(xué),還要培養(yǎng)學(xué)生運(yùn)用模型解決現(xiàn)實(shí)問(wèn)題的能力。因此,在學(xué)生理解模型之后,老師提供各種各樣的現(xiàn)實(shí)問(wèn)題,引導(dǎo)學(xué)生運(yùn)用所得的數(shù)學(xué)模型去解決。在這個(gè)過(guò)程中,教師的指導(dǎo)非常重要,教師要指導(dǎo)學(xué)生把現(xiàn)實(shí)問(wèn)題的元素與數(shù)學(xué)模型中的元素建立丐聯(lián)系,還要指導(dǎo)學(xué)生如何運(yùn)用已經(jīng)建構(gòu)的數(shù)學(xué)模型來(lái)分析和處理問(wèn)題。學(xué)生經(jīng)歷了這樣的學(xué)習(xí)過(guò)程,他們才會(huì)感受到數(shù)學(xué)模型的力量,才會(huì)感受到數(shù)學(xué)學(xué)習(xí)的樂(lè)趣。
課程分析中專數(shù)學(xué)課程教學(xué)是專業(yè)建設(shè)與專業(yè)課程體系改革的一部分,應(yīng)與專業(yè)課教學(xué)融為一體,立足于為專業(yè)課服務(wù),解決實(shí)際生活中常見(jiàn)問(wèn)題,結(jié)合中專學(xué)生的實(shí)際,強(qiáng)調(diào)數(shù)學(xué)的應(yīng)用性,以滿足學(xué)生在今后的工作崗位上的實(shí)際應(yīng)用為主,這也體現(xiàn)了新課標(biāo)中突出應(yīng)用性的理念。分段函數(shù)的實(shí)際應(yīng)用在本課程中的地位:(1) 函數(shù)是中專數(shù)學(xué)學(xué)習(xí)的重點(diǎn)和難點(diǎn),函數(shù)的思想貫穿于整個(gè)中專數(shù)學(xué)之中,分段函數(shù)在科技和生活的各個(gè)領(lǐng)域有著十分廣泛的應(yīng)用。(2) 本節(jié)所探討學(xué)習(xí)分段函數(shù)在生活生產(chǎn)中的實(shí)際問(wèn)題上應(yīng)用,培養(yǎng)學(xué)生分析與解決問(wèn)題的能力,養(yǎng)成正確的數(shù)學(xué)化理性思維的同時(shí),形成一種意識(shí),即數(shù)學(xué)“源于生活、寓于生活、用于生活”。教材分析 教材使用的是中等職業(yè)教育課程改革國(guó)家規(guī)劃教材,依照13級(jí)教學(xué)計(jì)劃,函數(shù)的實(shí)際應(yīng)用舉例內(nèi)容安排在第三章函數(shù)的最后一部分講解。本節(jié)內(nèi)容是在學(xué)生熟知函數(shù)的概念,表示方法和對(duì)函數(shù)性質(zhì)有一定了解的基礎(chǔ)上研究分段函數(shù),同時(shí)深化學(xué)生對(duì)函數(shù)概念的理解和認(rèn)識(shí),也為接下來(lái)學(xué)習(xí)指數(shù)函數(shù)和對(duì)數(shù)函數(shù)作了良好鋪墊。根據(jù)13級(jí)學(xué)生實(shí)際情況,由生活生產(chǎn)中的實(shí)際問(wèn)題入手,求得分段函數(shù)此部分知識(shí)以學(xué)生生活常識(shí)為背景,可以引導(dǎo)學(xué)生分析得出。
新知探究我們知道,等差數(shù)列的特征是“從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù)” 。類比等差數(shù)列的研究思路和方法,從運(yùn)算的角度出發(fā),你覺(jué)得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時(shí)期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬(wàn)世不竭.”如果把“一尺之錘”的長(zhǎng)度看成單位“1”,那么從第1天開(kāi)始,每天得到的“錘”的長(zhǎng)度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營(yíng)養(yǎng)和生存空間沒(méi)有限制的情況下,某種細(xì)菌每20 min 就通過(guò)分裂繁殖一代,那么一個(gè)這種細(xì)菌從第1次分裂開(kāi)始,各次分裂產(chǎn)生的后代個(gè)數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復(fù)利,他5年內(nèi)每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥
高斯(Gauss,1777-1855),德國(guó)數(shù)學(xué)家,近代數(shù)學(xué)的奠基者之一. 他在天文學(xué)、大地測(cè)量學(xué)、磁學(xué)、光學(xué)等領(lǐng)域都做出過(guò)杰出貢獻(xiàn). 問(wèn)題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實(shí)際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項(xiàng)的和問(wèn)題.等差數(shù)列中,下標(biāo)和相等的兩項(xiàng)和相等.設(shè) an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問(wèn)題2: 你能用上述方法計(jì)算1+2+3+… +101嗎?問(wèn)題3: 你能計(jì)算1+2+3+… +n嗎?需要對(duì)項(xiàng)數(shù)的奇偶進(jìn)行分類討論.當(dāng)n為偶數(shù)時(shí), S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當(dāng)n為奇數(shù)數(shù)時(shí), n-1為偶數(shù)
求函數(shù)的導(dǎo)數(shù)的策略(1)先區(qū)分函數(shù)的運(yùn)算特點(diǎn),即函數(shù)的和、差、積、商,再根據(jù)導(dǎo)數(shù)的運(yùn)算法則求導(dǎo)數(shù);(2)對(duì)于三個(gè)以上函數(shù)的積、商的導(dǎo)數(shù),依次轉(zhuǎn)化為“兩個(gè)”函數(shù)的積、商的導(dǎo)數(shù)計(jì)算.跟蹤訓(xùn)練1 求下列函數(shù)的導(dǎo)數(shù):(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓(xùn)練2 求下列函數(shù)的導(dǎo)數(shù)(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經(jīng)過(guò)凈化的,隨著水的純凈度的提高,所需進(jìn)化費(fèi)用不斷增加,已知將1t水進(jìn)化到純凈度為x%所需費(fèi)用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進(jìn)化到下列純凈度時(shí),所需進(jìn)化費(fèi)用的瞬時(shí)變化率:(1) 90% ;(2) 98%解:凈化費(fèi)用的瞬時(shí)變化率就是凈化費(fèi)用函數(shù)的導(dǎo)數(shù);c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2
由樣本相關(guān)系數(shù)??≈0.97,可以推斷脂肪含量和年齡這兩個(gè)變量正線性相關(guān),且相關(guān)程度很強(qiáng)。脂肪含量與年齡變化趨勢(shì)相同.歸納總結(jié)1.線性相關(guān)系數(shù)是從數(shù)值上來(lái)判斷變量間的線性相關(guān)程度,是定量的方法.與散點(diǎn)圖相比較,線性相關(guān)系數(shù)要精細(xì)得多,需要注意的是線性相關(guān)系數(shù)r的絕對(duì)值小,只是說(shuō)明線性相關(guān)程度低,但不一定不相關(guān),可能是非線性相關(guān).2.利用相關(guān)系數(shù)r來(lái)檢驗(yàn)線性相關(guān)顯著性水平時(shí),通常與0.75作比較,若|r|>0.75,則線性相關(guān)較為顯著,否則不顯著.例2. 有人收集了某城市居民年收入(所有居民在一年內(nèi)收入的總和)與A商品銷(xiāo)售額的10年數(shù)據(jù),如表所示.畫(huà)出散點(diǎn)圖,判斷成對(duì)樣本數(shù)據(jù)是否線性相關(guān),并通過(guò)樣本相關(guān)系數(shù)推斷居民年收入與A商品銷(xiāo)售額的相關(guān)程度和變化趨勢(shì)的異同.