新知探究前面我們研究了兩類變化率問題:一類是物理學(xué)中的問題,涉及平均速度和瞬時(shí)速度;另一類是幾何學(xué)中的問題,涉及割線斜率和切線斜率。這兩類問題來自不同的學(xué)科領(lǐng)域,但在解決問題時(shí),都采用了由“平均變化率”逼近“瞬時(shí)變化率”的思想方法;問題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問題。探究1: 對(duì)于函數(shù)y=f(x) ,設(shè)自變量x從x_0變化到x_0+ ?x ,相應(yīng)地,函數(shù)值y就從f(x_0)變化到f(〖x+x〗_0) 。這時(shí), x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數(shù)從x_0到x_0+?x的平均變化率。1.導(dǎo)數(shù)的概念如果當(dāng)Δx→0時(shí),平均變化率ΔyΔx無限趨近于一個(gè)確定的值,即ΔyΔx有極限,則稱y=f (x)在x=x0處____,并把這個(gè)________叫做y=f (x)在x=x0處的導(dǎo)數(shù)(也稱為__________),記作f ′(x0)或________,即
新知探究國(guó)際象棋起源于古代印度.相傳國(guó)王要獎(jiǎng)賞國(guó)際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請(qǐng)?jiān)谄灞P的第1個(gè)格子里放上1顆麥粒,第2個(gè)格子里放上2顆麥粒,第3個(gè)格子里放上4顆麥粒,依次類推,每個(gè)格子里放的麥粒都是前一個(gè)格子里放的麥粒數(shù)的2倍,直到第64個(gè)格子.請(qǐng)給我足夠的麥粒以實(shí)現(xiàn)上述要求.”國(guó)王覺得這個(gè)要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國(guó)王是否能實(shí)現(xiàn)他的諾言.問題1:每個(gè)格子里放的麥粒數(shù)可以構(gòu)成一個(gè)數(shù)列,請(qǐng)判斷分析這個(gè)數(shù)列是否是等比數(shù)列?并寫出這個(gè)等比數(shù)列的通項(xiàng)公式.是等比數(shù)列,首項(xiàng)是1,公比是2,共64項(xiàng). 通項(xiàng)公式為〖a_n=2〗^(n-1)問題2:請(qǐng)將發(fā)明者的要求表述成數(shù)學(xué)問題.
我們知道數(shù)列是一種特殊的函數(shù),在函數(shù)的研究中,我們?cè)诶斫饬撕瘮?shù)的一般概念,了解了函數(shù)變化規(guī)律的研究?jī)?nèi)容(如單調(diào)性,奇偶性等)后,通過研究基本初等函數(shù)不僅加深了對(duì)函數(shù)的理解,而且掌握了冪函數(shù),指數(shù)函數(shù),對(duì)數(shù)函數(shù),三角函數(shù)等非常有用的函數(shù)模型。類似地,在了解了數(shù)列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數(shù)列,建立它們的通項(xiàng)公式和前n項(xiàng)和公式,并應(yīng)用它們解決實(shí)際問題和數(shù)學(xué)問題,從中感受數(shù)學(xué)模型的現(xiàn)實(shí)意義與應(yīng)用,下面,我們從一類取值規(guī)律比較簡(jiǎn)單的數(shù)列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內(nèi)到外各圈的示板數(shù)依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號(hào)的女裝上對(duì)應(yīng)的尺碼分別是38,40,42,44,46,48 ②3.測(cè)量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③
二、典例解析例3.某公司購(gòu)置了一臺(tái)價(jià)值為220萬元的設(shè)備,隨著設(shè)備在使用過程中老化,其價(jià)值會(huì)逐年減少.經(jīng)驗(yàn)表明,每經(jīng)過一年其價(jià)值會(huì)減少d(d為正常數(shù))萬元.已知這臺(tái)設(shè)備的使用年限為10年,超過10年 ,它的價(jià)值將低于購(gòu)進(jìn)價(jià)值的5%,設(shè)備將報(bào)廢.請(qǐng)確定d的范圍.分析:該設(shè)備使用n年后的價(jià)值構(gòu)成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設(shè)備的價(jià)值不小于(220×5%=)11萬元;10年后,該設(shè)備的價(jià)值需小于11萬元.利用{an}的通項(xiàng)公式列不等式求解.解:設(shè)使用n年后,這臺(tái)設(shè)備的價(jià)值為an萬元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個(gè)公差為-d的等差數(shù)列.因?yàn)閍1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9
二、典例解析例10. 如圖,正方形ABCD 的邊長(zhǎng)為5cm ,取正方形ABCD 各邊的中點(diǎn)E,F,G,H, 作第2個(gè)正方形 EFGH,然后再取正方形EFGH各邊的中點(diǎn)I,J,K,L,作第3個(gè)正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個(gè)正方形的面積之和;(2) 如果這個(gè)作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個(gè)等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個(gè)正方形的頂點(diǎn)分別是第k個(gè)正方形各邊的中點(diǎn),所以a_(k+1)=〖1/2 a〗_k,因此{(lán)a_n},是以25為首項(xiàng),1/2為公比的等比數(shù)列.設(shè){a_n}的前項(xiàng)和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個(gè)正方形的面積之和為25575/512cm^2.(2)當(dāng)無限增大時(shí),無限趨近于所有正方形的面積和
情景導(dǎo)學(xué)古語(yǔ)云:“勤學(xué)如春起之苗,不見其增,日有所長(zhǎng)”如果對(duì)“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個(gè)數(shù)列. 那么什么叫數(shù)列呢?二、問題探究1. 王芳從一歲到17歲,每年生日那天測(cè)量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時(shí)的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號(hào)K90,約生產(chǎn)于公元前7世紀(jì))上,有一列依次表示一個(gè)月中從第1天到第15天,每天月亮可見部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②
(三)教學(xué)重、難點(diǎn)1、教學(xué)重點(diǎn):結(jié)合課文,了解演講辭針對(duì)性強(qiáng)、條理清楚、通俗易懂、適當(dāng)?shù)母星樯实忍攸c(diǎn)。2、教學(xué)難點(diǎn):深入理解文章內(nèi)涵,聯(lián)系現(xiàn)實(shí),體會(huì)本文的現(xiàn)實(shí)意義二、說學(xué)情高中學(xué)生在初中階段已經(jīng)接觸過演講辭了,對(duì)演講詞的特點(diǎn)已經(jīng)有了一些基本的知識(shí),因此本輪的教學(xué)應(yīng)該讓他們?cè)诖嘶A(chǔ)上有所提高。本文是學(xué)生在高中階段第一次接觸演講辭,有必要讓他們了解演講辭的特點(diǎn)及課文如何體現(xiàn)這些特點(diǎn)的。隨著年齡的增長(zhǎng),生活閱歷的增加,高中學(xué)生正逐漸形成自己對(duì)世界、對(duì)人生的看法,蔡元培先生的這篇文章能很好地激發(fā)他們對(duì)當(dāng)前的高中學(xué)習(xí)和未來的大學(xué)生活進(jìn)行思考。此外,學(xué)生對(duì)北大的歷史及蔡元培先生作這番演講的時(shí)代背景了解不深,應(yīng)作出補(bǔ)充說明。
二、相對(duì)論的創(chuàng)立【課件】展示下列材料艾伯特·愛因斯坦(1879——1955),1879年3月14日誕生在德國(guó)烏爾姆的一個(gè)猶太人家中。1894年舉家遷居意大利米蘭。1900年畢業(yè)于瑞士蘇黎世工業(yè)大學(xué)。愛因斯坦被認(rèn)為是最富于創(chuàng)造力的科學(xué)家,他不但創(chuàng)立了相對(duì)論,還提出了光量子的概念,得出了光電效應(yīng)的基本定律,并揭示了光的波粒二重性本質(zhì),為量子力學(xué)的建立奠定基礎(chǔ)。為此榮獲1921年度的諾貝爾物理學(xué)獎(jiǎng)。同時(shí),他還證明了熱的分子運(yùn)動(dòng)論,提出了測(cè)定分子大小的新方法?!締栴}】19世紀(jì)末20世紀(jì)初愛因斯坦對(duì)物理學(xué)的貢獻(xiàn)是什么?意義是什么?為什么會(huì)出現(xiàn)?1、背景:經(jīng)典物理學(xué)的危機(jī)。19世紀(jì)末三大發(fā)現(xiàn):x射線、放射性和電子,經(jīng)典力學(xué)無法解釋研究中的新問題,如:黑體輻射、光電效應(yīng)等。2、相對(duì)論的提出及主要內(nèi)容:(1)“狹義相對(duì)論”和光速不變?cè)恚?905年提出。
《奇偶性》內(nèi)容選自人教版A版第一冊(cè)第三章第三節(jié)第二課時(shí);函數(shù)奇偶性是研究函數(shù)的一個(gè)重要策略,因此奇偶性成為函數(shù)的重要性質(zhì)之一,它的研究也為今后指對(duì)函數(shù)、冪函數(shù)、三角函數(shù)的性質(zhì)等后續(xù)內(nèi)容的深入起著鋪墊的作用.課程目標(biāo)1、理解函數(shù)的奇偶性及其幾何意義;2、學(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì);3、學(xué)會(huì)判斷函數(shù)的奇偶性.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:用數(shù)學(xué)語(yǔ)言表示函數(shù)奇偶性;2.邏輯推理:證明函數(shù)奇偶性;3.數(shù)學(xué)運(yùn)算:運(yùn)用函數(shù)奇偶性求參數(shù);4.數(shù)據(jù)分析:利用圖像求奇偶函數(shù);5.數(shù)學(xué)建模:在具體問題情境中,運(yùn)用數(shù)形結(jié)合思想,利用奇偶性解決實(shí)際問題。重點(diǎn):函數(shù)奇偶性概念的形成和函數(shù)奇偶性的判斷;難點(diǎn):函數(shù)奇偶性概念的探究與理解.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。
一、復(fù)習(xí)回顧,溫故知新1. 任意角三角函數(shù)的定義【答案】設(shè)角 它的終邊與單位圓交于點(diǎn) 。那么(1) (2) 2.誘導(dǎo)公式一 ,其中, 。終邊相同的角的同一三角函數(shù)值相等二、探索新知思考1:(1).終邊相同的角的同一三角函數(shù)值有什么關(guān)系?【答案】相等(2).角 -α與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于x軸對(duì)稱(3).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于y軸對(duì)稱(4).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于原點(diǎn)對(duì)稱思考2: 已知任意角α的終邊與單位圓相交于點(diǎn)P(x, y),請(qǐng)同學(xué)們思考回答點(diǎn)P關(guān)于原點(diǎn)、x軸、y軸對(duì)稱的三個(gè)點(diǎn)的坐標(biāo)是什么?【答案】點(diǎn)P(x, y)關(guān)于原點(diǎn)對(duì)稱點(diǎn)P1(-x, -y)點(diǎn)P(x, y)關(guān)于x軸對(duì)稱點(diǎn)P2(x, -y) 點(diǎn)P(x, y)關(guān)于y軸對(duì)稱點(diǎn)P3(-x, y)
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1第四章第4.3.2節(jié)《對(duì)數(shù)的運(yùn)算》。其核心是弄清楚對(duì)數(shù)的定義,掌握對(duì)數(shù)的運(yùn)算性質(zhì),理解它的關(guān)鍵就是通過實(shí)例使學(xué)生認(rèn)識(shí)對(duì)數(shù)式與指數(shù)式的關(guān)系,分析得出對(duì)數(shù)的概念及對(duì)數(shù)式與指數(shù)式的 互化,通過實(shí)例推導(dǎo)對(duì)數(shù)的運(yùn)算性質(zhì)。由于它還與后續(xù)很多內(nèi)容,比如對(duì)數(shù)函數(shù)及其性質(zhì),這也是高考必考內(nèi)容之一,所以在本學(xué)科有著很重要的地位。解決重點(diǎn)的關(guān)鍵是抓住對(duì)數(shù)的概念、并讓學(xué)生掌握對(duì)數(shù)式與指數(shù)式的互化;通過實(shí)例推導(dǎo)對(duì)數(shù)的運(yùn)算性質(zhì),讓學(xué)生準(zhǔn)確地運(yùn)用對(duì)數(shù)運(yùn)算性質(zhì)進(jìn)行運(yùn)算,學(xué)會(huì)運(yùn)用換底公式。培養(yǎng)學(xué)生數(shù)學(xué)運(yùn)算、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1、理解對(duì)數(shù)的概念,能進(jìn)行指數(shù)式與對(duì)數(shù)式的互化;2、了解常用對(duì)數(shù)與自然對(duì)數(shù)的意義,理解對(duì)數(shù)恒等式并能運(yùn)用于有關(guān)對(duì)數(shù)計(jì)算。
學(xué)生已經(jīng)學(xué)習(xí)了指數(shù)運(yùn)算性質(zhì),有了這些知識(shí)作儲(chǔ)備,教科書通過利用指數(shù)運(yùn)算性質(zhì),推導(dǎo)對(duì)數(shù)的運(yùn)算性質(zhì),再學(xué)習(xí)利用對(duì)數(shù)的運(yùn)算性質(zhì)化簡(jiǎn)求值。課程目標(biāo)1、通過具體實(shí)例引入,推導(dǎo)對(duì)數(shù)的運(yùn)算性質(zhì);2、熟練掌握對(duì)數(shù)的運(yùn)算性質(zhì),學(xué)會(huì)化簡(jiǎn),計(jì)算.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:對(duì)數(shù)的運(yùn)算性質(zhì);2.邏輯推理:換底公式的推導(dǎo);3.數(shù)學(xué)運(yùn)算:對(duì)數(shù)運(yùn)算性質(zhì)的應(yīng)用;4.數(shù)學(xué)建模:在熟悉的實(shí)際情景中,模仿學(xué)過的數(shù)學(xué)建模過程解決問題.重點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì),換底公式,對(duì)數(shù)恒等式及其應(yīng)用;難點(diǎn):正確使用對(duì)數(shù)的運(yùn)算性質(zhì)和換底公式.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入回顧指數(shù)性質(zhì):(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么對(duì)數(shù)有哪些性質(zhì)?如 要求:讓學(xué)生自由發(fā)言,教師不做判斷。而是引導(dǎo)學(xué)生進(jìn)一步觀察.研探.
對(duì)數(shù)與指數(shù)是相通的,本節(jié)在已經(jīng)學(xué)習(xí)指數(shù)的基礎(chǔ)上通過實(shí)例總結(jié)歸納對(duì)數(shù)的概念,通過對(duì)數(shù)的性質(zhì)和恒等式解決一些與對(duì)數(shù)有關(guān)的問題.課程目標(biāo)1、理解對(duì)數(shù)的概念以及對(duì)數(shù)的基本性質(zhì);2、掌握對(duì)數(shù)式與指數(shù)式的相互轉(zhuǎn)化;數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:對(duì)數(shù)的概念;2.邏輯推理:推導(dǎo)對(duì)數(shù)性質(zhì);3.數(shù)學(xué)運(yùn)算:用對(duì)數(shù)的基本性質(zhì)與對(duì)數(shù)恒等式求值;4.數(shù)學(xué)建模:通過與指數(shù)式的比較,引出對(duì)數(shù)定義與性質(zhì).重點(diǎn):對(duì)數(shù)式與指數(shù)式的互化以及對(duì)數(shù)性質(zhì);難點(diǎn):推導(dǎo)對(duì)數(shù)性質(zhì).教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入已知中國(guó)的人口數(shù)y和年頭x滿足關(guān)系 中,若知年頭數(shù)則能算出相應(yīng)的人口總數(shù)。反之,如果問“哪一年的人口數(shù)可達(dá)到18億,20億,30億......”,該如何解決?要求:讓學(xué)生自由發(fā)言,教師不做判斷。而是引導(dǎo)學(xué)生進(jìn)一步觀察.研探.
函數(shù)在高中數(shù)學(xué)中占有很重要的比重,因而作為函數(shù)的第一節(jié)內(nèi)容,主要從三個(gè)實(shí)例出發(fā),引出函數(shù)的概念.從而就函數(shù)概念的分析判斷函數(shù),求定義域和函數(shù)值,再結(jié)合三要素判斷函數(shù)相等.課程目標(biāo)1.理解函數(shù)的定義、函數(shù)的定義域、值域及對(duì)應(yīng)法則。2.掌握判定函數(shù)和函數(shù)相等的方法。3.學(xué)會(huì)求函數(shù)的定義域與函數(shù)值。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:通過教材中四個(gè)實(shí)例總結(jié)函數(shù)定義;2.邏輯推理:相等函數(shù)的判斷;3.數(shù)學(xué)運(yùn)算:求函數(shù)定義域和求函數(shù)值;4.數(shù)據(jù)分析:運(yùn)用分離常數(shù)法和換元法求值域;5.數(shù)學(xué)建模:通過從實(shí)際問題中抽象概括出函數(shù)概念的活動(dòng),培養(yǎng)學(xué)生從“特殊到一般”的分析問題的能力,提高學(xué)生的抽象概括能力。重點(diǎn):函數(shù)的概念,函數(shù)的三要素。難點(diǎn):函數(shù)概念及符號(hào)y=f(x)的理解。
《基本不等式》在人教A版高中數(shù)學(xué)第一冊(cè)第二章第2節(jié),本節(jié)課的內(nèi)容是基本不等式的形式以及推導(dǎo)和證明過程。本章一直在研究不等式的相關(guān)問題,對(duì)于本節(jié)課的知識(shí)點(diǎn)有了很好的鋪墊作用。同時(shí)本節(jié)課的內(nèi)容也是之后基本不等式應(yīng)用的必要基礎(chǔ)。課程目標(biāo)1.掌握基本不等式的形式以及推導(dǎo)過程,會(huì)用基本不等式解決簡(jiǎn)單問題。2.經(jīng)歷基本不等式的推導(dǎo)與證明過程,提升邏輯推理能力。3.在猜想論證的過程中,體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn)性。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:基本不等式的形式以及推導(dǎo)過程;2.邏輯推理:基本不等式的證明;3.數(shù)學(xué)運(yùn)算:利用基本不等式求最值;4.數(shù)據(jù)分析:利用基本不等式解決實(shí)際問題;5.數(shù)學(xué)建模:利用函數(shù)的思想和基本不等式解決實(shí)際問題,提升學(xué)生的邏輯推理能力。重點(diǎn):基本不等式的形成以及推導(dǎo)過程和利用基本不等式求最值;難點(diǎn):基本不等式的推導(dǎo)以及證明過程.
例7 用描述法表示拋物線y=x2+1上的點(diǎn)構(gòu)成的集合.【答案】見解析 【解析】 拋物線y=x2+1上的點(diǎn)構(gòu)成的集合可表示為:{(x,y)|y=x2+1}.變式1.[變條件,變?cè)O(shè)問]本題中點(diǎn)的集合若改為“{x|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全體實(shí)數(shù).變式2.[變條件,變?cè)O(shè)問]本題中點(diǎn)的集合若改為“{y|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{ y| y=x2+1}的代表元素是y,滿足條件y=x2+1的y的取值范圍是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全體實(shí)數(shù).解題技巧(認(rèn)識(shí)集合含義的2個(gè)步驟)一看代表元素,是數(shù)集還是點(diǎn)集,二看元素滿足什么條件即有什么公共特性。
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-必修一》(人 教A版)第五章《三角函數(shù)》,本節(jié)課是第1課時(shí),本節(jié)主要介紹推廣角的概念,引入正角、負(fù)角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹立運(yùn)動(dòng)變化的觀點(diǎn),并由此進(jìn)一步理解推廣后的角的概念。教學(xué)方法可以選用討論法,通過實(shí)際問題,如時(shí)針與分針、體操等等都能形成角的流念,給學(xué)生以直觀的印象,形成正角、負(fù)角、零角的概念,明確規(guī)定角的概念,通過具體問題讓學(xué)生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負(fù)角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會(huì)判斷角所在的象限。 1.數(shù)學(xué)抽象:角的概念;2.邏輯推理:象限角的表示;3.數(shù)學(xué)運(yùn)算:判斷角所在象限;4.直觀想象:從特殊到一般的數(shù)學(xué)思想方法;
學(xué)生在初中學(xué)習(xí)了 ~ ,但是現(xiàn)實(shí)生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動(dòng)輪和被動(dòng)輪的旋轉(zhuǎn)方向不一致.因此為了準(zhǔn)確描述這些現(xiàn)象,本節(jié)課主要就旋轉(zhuǎn)度數(shù)和旋轉(zhuǎn)方向?qū)堑母拍钸M(jìn)行推廣.課程目標(biāo)1.了解任意角的概念.2.理解象限角的概念及終邊相同的角的含義.3.掌握判斷象限角及表示終邊相同的角的方法.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解任意角的概念,能區(qū)分各類角;2.邏輯推理:求區(qū)域角;3.數(shù)學(xué)運(yùn)算:會(huì)判斷象限角及終邊相同的角.重點(diǎn):理解象限角的概念及終邊相同的角的含義;難點(diǎn):掌握判斷象限角及表示終邊相同的角的方法.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入初中對(duì)角的定義是:射線OA繞端點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)一周回到起始位置,在這個(gè)過程中可以得到 ~ 范圍內(nèi)的角.但是現(xiàn)實(shí)生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動(dòng)輪和被動(dòng)輪的旋轉(zhuǎn)方向不一致.
知識(shí)探究(一):普查與抽查像人口普查這樣,對(duì)每一個(gè)調(diào)查調(diào)查對(duì)象都進(jìn)行調(diào)查的方法,稱為全面調(diào)查(又稱普查)。 在一個(gè)調(diào)查中,我們把調(diào)查對(duì)象的全體稱為總體,組成總體的每一個(gè)調(diào)查對(duì)象稱為個(gè)體。為了強(qiáng)調(diào)調(diào)查目的,也可以把調(diào)查對(duì)象的某些指標(biāo)的全體作為總體,每一個(gè)調(diào)查對(duì)象的相應(yīng)指標(biāo)作為個(gè)體。問題二:除了普查,還有其他的調(diào)查方法嗎?由于人口普查需要花費(fèi)巨大的財(cái)力、物力,因而不宜經(jīng)常進(jìn)行。為了及時(shí)掌握全國(guó)人口變動(dòng)狀況,我國(guó)每年還會(huì)進(jìn)行一次人口變動(dòng)情況的調(diào)查,根據(jù)抽取的居民情況來推斷總體的人口變動(dòng)情況。像這樣,根據(jù)一定目的,從總體中抽取一部分個(gè)體進(jìn)行調(diào)查,并以此為依據(jù)對(duì)總體的情況作出估計(jì)和判斷的方法,稱為抽樣調(diào)查(或稱抽查)。我們把從總體中抽取的那部分個(gè)體稱為樣本,樣本中包含的個(gè)體數(shù)稱為樣本量。
本節(jié)主要內(nèi)容是三角函數(shù)的誘導(dǎo)公式中的公式二至公式六,其推導(dǎo)過程中涉及到對(duì)稱變換,充分體現(xiàn)對(duì)稱變換思想在數(shù)學(xué)中的應(yīng)用,在練習(xí)中加以應(yīng)用,讓學(xué)生進(jìn)一步體會(huì) 的任意性;綜合六組誘導(dǎo)公式總結(jié)出記憶誘導(dǎo)公式的口訣:“奇變偶不變,符號(hào)看象限”,了解從特殊到一般的數(shù)學(xué)思想的探究過程,培養(yǎng)學(xué)生用聯(lián)系、變化的辯證唯物主義觀點(diǎn)去分析問題的能力。誘導(dǎo)公式在三角函數(shù)化簡(jiǎn)、求值中具有非常重要的工具作用,要求學(xué)生能熟練的掌握和應(yīng)用。課程目標(biāo)1.借助單位圓,推導(dǎo)出正弦、余弦第二、三、四、五、六組的誘導(dǎo)公式,能正確運(yùn)用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角的三角函數(shù),并解決有關(guān)三角函數(shù)求值、化簡(jiǎn)和恒等式證明問題2.通過公式的應(yīng)用,了解未知到已知、復(fù)雜到簡(jiǎn)單的轉(zhuǎn)化過程,培養(yǎng)學(xué)生的化歸思想,以及信息加工能力、運(yùn)算推理能力、分析問題和解決問題的能力。