二.思考:(-2) 可以寫成-2 嗎?( ) 可以寫成 嗎?(指名學生回答,師生共同總結:負數和分數的乘方書寫時,一定要把整個負數和分數用小括號括起來)三.計算:①(-2) ,②-2 ,③(- ) ,④ (叫4個學生上臺板演,其他練習本上完成,教師巡視,確保人人學得緊張高效).(四)討論更正,合作探究1.學生自由更正,或寫出不同解法;2.評講思考:將三題①③中將底數換成為正數或0,結果有什么規(guī)律?學生總結:負數的奇次冪是負數,負數的偶次冪是正數,正數的任何次冪都是正數,0的任何正整數次冪都為0。有理數的乘方就是幾個相同因數積的運算,可以運用有理數乘方法則進行符號的確定和冪的求值.乘方的含義:①表示一種運算;②表示運算的結果.
解:由題意得a+b=0,cd=1,|m|=6,m=±6;∴(1)當m=6時,原式=06-1+6=5;(2)當m=-6時,原式=0-6-1+6=5.故a+bm-cd+|m|的值為5.方法總結:解答此題的關鍵是先根據題意得出a+b=0,cd=1及m=±6,再代入所求代數式進行計算.探究點三:有理數乘法的應用性問題小紅家春天粉刷房間,雇用了5個工人,干了3天完成;用了某種涂料150升,費用為4800元,粉刷的面積是150m2.最后結算工錢時,有以下幾種方案:方案一:按工算,每個工100元;(1個工人干1天是一個工);方案二:按涂料費用算,涂料費用的30%作為工錢;方案三:按粉刷面積算,每平方米付工錢12元.請你幫小紅家出主意,選擇哪種方案付錢最合算(最省)?解析:根據有理數的乘法的意義列式計算.解:第一種方案的工錢為100×3×5=1500(元);第二種方案的工錢為4800×30%=1440(元);第三種方案的工錢為150×12=1800(元).答:選擇方案二付錢最合算(最省).方法總結:解此題的關鍵是根據題意列出算式,計算出結果,比較得出最省的付錢方案.
討論歸納,總結出多個有理數相乘的規(guī)律:幾個不等于0的因數相乘,積的符號由負因數的個數決定。當負因數有奇數個時,積的符號為負;當負因數有偶數個時,積的符號為正。只要有一個因數為0,積就為0。(2)幾個不等于0的因數相乘時,積的絕對值是多少?(生:積的絕對值是這幾個因數的絕對值的乘積.)例2、計算:(1) ;(2) 分析:(1)有多個不為零的有理數相乘時,可以先確定積的符號,再把絕對值相乘;(2)若其中有一個因數為0,則積為0。解:(1) = (2) =0練習(1) ,(2) ,(3) 6、探索活動:把-6表示成兩個整數的積,有多少種可能性?把它們全部寫出來。(三)課堂小結通過本節(jié)課的學習,大家學會了什么?(1)有理數的乘法法則。(2)多個不等于0的有理數相乘,積的符號由負因數的個數決定。(3)幾個數相乘時,如果有一個因數是0,則積就為0。(4)乘積是1的兩個有理數互為倒數。(四)作業(yè):課本作業(yè)題
解析:∵ab>0,根據“兩數相除,同號得正”可知,a、b同號,又∵a+b<0,∴可以判斷a、b均為負數.故選D.方法總結:此題考查了有理數乘法和加法法則,將二者綜合考查是考試中常見的題型,此題的側重點在于考查學生的邏輯推理能力.讓學生深刻理解除法是乘法的逆運算,對學好本節(jié)內容有比較好的作用.教學設計可以采用課本的引例作為探究除法法則的過程.讓學生自己探索并總結除法法則,同時也讓學生對比乘法法則和除法法則,加深印象.并講清楚除法的兩種運算方法:(1)在除式的項和數字不復雜的情況下直接運用除法法則求解.(2)在多個有理數進行除法運算,或者是乘、除混合運算時應該把除法轉化為乘法,然后統(tǒng)一用乘法的運算律解決問題.
方法總結:股票每天的漲跌都是在前一天的基礎上進行的,不要理解為每天都是在67元的基礎上漲跌.另外熟記運算法則并根據題意準確列出算式也是解題的關鍵.三、板書設計加法法則(1)同號兩數相加,取與加數相同的符號,把絕對 值相加.(2)異號兩數相加,取絕對值較大加數的符號,并 用較大的絕對值減去較小的絕對值.(3)互為相反數的兩數相加得0.(4)一個數同0相加,仍得這個數.本課時利用情境教學、解決問題等方法進行教學,使學生在情境中提出問題,并尋找解決問題的途徑,因此不知不覺地進入學習氛圍,把學生從被動學習變?yōu)橹鲃酉雽W.在本節(jié)教學中,要堅持以學生為主體,教師為主導,充分調動學生的興趣和積極性,使他們最大限度地參與到課堂的活動中.
1.掌握有理數混合運算的順序,并能熟練地進行有理數加、減、乘、除、乘方的混合運算.2.在運算過程中能合理地應用運算律簡化運算.一、情境導入在學完有理數的混合運算后,老師為了檢驗同學們的學習效果,出了下面這道題:計算-32+(-6)÷12×(-4).小明和小穎很快給出了答案.小明:-32+(-6)÷12×(-4)=-9+(-6)÷(-2)=-9+3=-6.小穎:-32+(-6)÷12×(-4)=-9+(-6)×2×(-4)=39.你能判斷出誰的計算正確嗎?二、合作探究探究點一:有理數的混合運算計算:(1)(-5)-(-5)×110÷110×(-5);(2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)題是含有減法、乘法、除法的混合運算,運算時,一定要注意運算順序,尤其是本題中的乘除運算.要從左到右進行計算;(2)題有大括號、中括號,在運算時,可從里到外進行.注意要靈活掌握運算順序.
1、掌握有理數混合運算法則,并能進行有理數的混合運算的計算。2、經歷“二十四”點游戲,培養(yǎng)學生的探究能力[教學重點]有理數混合運算法則。[教學難點]培養(yǎng)探索思 維方式?!窘虒W過程】情境導入——有理數的混合運算是指一個算式里含有加、減、乘、除、乘方的多種運算.下面的算式里有哪幾種運算?3+50÷22×( )-1.有理數混合運算的運算順序規(guī)定如下:1 先算乘方,再算乘除,最后算加減;2 同級運算,按照從左至右的順序進行;3 如果有括號,就先算小括號里的,再算中括號里的,最后算大括號里的。 加法和減法叫做第一級運算;乘法和除法叫做第二級運算;乘方和開方(今后將會學到)叫做第三級運算。注意:可以應用運算律,適當改變運算順序,使運算簡便.合作探究——
師生共同歸納法則2、異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。生5:這兩天的庫存量合計增加了2噸。(+3)+(-1)=+2 或(+8)+(-6)=+2師:會不會出現和為零的情況?提示:可以聯系倉庫進出貨的具體情形。生6:如星期一倉庫進貨5噸,出貨5噸,則庫存量為零。(+5)+(-5)=0師生共同歸納法則3、互為相反數的兩個數相加得零。師:你能用加法法則來解釋法則3嗎?生7:可用異號兩數相加的法則。一般地還有:一個數同零相加,仍得這個數。小結:運算關鍵:先分類運算步驟:先確定符號,再計算絕對值做一做:(口答)確定下列各題中和的符號,并說明理由:(1)(+3)+(+7);(2)(-10)+(-3);(3)(+6)+(-5);(4)0+(-5).例 計算下列各式:(1)(-3)+(-4);(2)(-2.5)+5;(3)(-2)+0;(4)(+ )+(- )教法:請四位學生板演,讓學生批改并說明理由。
由②得y=23x+23.在同一直角坐標系中分別作出一次函數y=3x-4和y=23x+23的圖象.如右圖,由圖可知,它們的圖象的交點坐標為(2,2).所以方程組3x-y=4,2x-3y=-2的解是x=2,y=2.方法總結:用畫圖象的方法可以直觀地獲得問題的結果,但不是很準確.三、板書設計1.二元一次方程組的解是對應的兩條直線的交點坐標;2.用圖象法解二元一次方程組的步驟:(1)變形:把兩個方程化為一次函數的形式;(2)作圖:在同一坐標系中作出兩個函數的圖象;(3)觀察圖象,找出交點的坐標;(4)寫出方程組的解.通過引導學生自主學習探索,進一步揭示了二元一次方程和函數圖象之間的對應關系,很自然的得到二元一次方程組的解與兩條直線的交點之間的對應關系.進一步培養(yǎng)了學生數形結合的意識,充分提高學生數形結合的能力,使學生在自主探索中學會不同數學知識間可以互相轉化的數學思想和方法.
2. 在彈性限度內,彈簧的長度y(厘米)是所掛物體質量x(千克)的一次函數.當所掛物體的質量為1千克時彈簧長15厘米;當所掛物體的質量為3千克時,彈簧長16厘米.寫出y與x之間的函數關系式,并求當所掛物體的質量為4千克時彈簧的長度.答案: 當x=4是,y= 3. 教材例2的再探索:我邊防局接到情報,近海處有一可疑船只A正向公海方向行駛.邊防局迅速派出快艇B追趕,如圖所示, , 分別表示兩船相對于海岸的距離s(海里)與追趕時間t(分)之間的關系.當時間t等于多少分鐘時,我邊防快艇B能夠追趕上A。答案:直線 的解析式: ,直線 的解析式: 15分鐘第五環(huán)節(jié)課堂小結(2分鐘,教師引導學生總結)內容:一、函數與方程之間的關系.二、在解決實際問題時從不同角度思考問題,就會得到不一樣的方法,從而拓展自己的思維.三、掌握利用二元一次方程組求一次函數表達式的一般步驟:1.用含字母的系數設出一次函數的表達式: ;2.將已知條件代入上述表達式中得k,b的二元一次方程組;3.解這個二元一次方程組得k,b,進而得到一次函數的表達式.
解:設正比例函數的表達式為y1=k1x,一次函數的表達式為y2=k2x+b.∵點A(4,3)是它們的交點,∴代入上述表達式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數的表達式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點B在y軸的負半軸上,∴B點的坐標為(0,-52).又∵點B在一次函數y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數的表達式為y2=118x-52.方法總結:根據圖象確定一次函數的表達式的方法:從圖象上選取兩個已知點的坐標,然后運用待定系數法將兩點的橫、縱坐標代入所設表達式中求出待定系數,從而求出函數的表達式.【類型三】 根據實際問題確定一次函數的表達式某商店售貨時,在進價的基礎上加一定利潤,其數量x與售價y的關系如下表所示,請你根據表中所提供的信息,列出售價y(元)與數量x(千克)的函數關系式,并求出當數量是2.5千克時的售價.
四個不同類型的問題由淺入深,學生能從不同角度掌握求一次函數的方法.對于問題4,教師可引導學生分析,并教學生要學會畫圖,利用圖象分析問題,體會數形結合方法的重要性.學生若出現解題格式不規(guī)范的情況,教師應糾正并給予示范,訓練學生規(guī)范答題的習慣.第五環(huán)節(jié)課時小結內容:總結本課知識與方法1.本節(jié)課主要學習了怎樣確定一次函數的表達式,在確定一次函數的表達式時可以用待定系數法,即先設出解析式,再根據題目條件(根據圖象、表格或具體問題)求出 , 的值,從而確定函數解析式。其步驟如下:(1)設函數表達式;(2)根據已知條件列出有關k,b的方程;(3)解方程,求k,b;4.把k,b代回表達式中,寫出表達式.2.本節(jié)課用到的主要的數學思想方法:數形結合、方程的思想.目的:引導學生小結本課的知識及數學方法,使知識系統(tǒng)化.第六環(huán)節(jié)作業(yè)布置習題4.5:1,2,3,4目的:進一步鞏固當天所學知識。教師也可根據學生情況適當增減,但難度不應過大.
(4)從平均分看,兩隊的平均分相同,實力大體相當;從折線的走勢看,甲隊比賽成績呈上升趨勢,而乙隊比賽成績呈下降趨勢;從獲勝場數看,甲隊勝三場,乙隊勝兩場,甲隊成績較好;從方差看,甲隊比賽成績比乙隊比賽成績波動小,甲隊成績較穩(wěn)定.綜上所述,選派甲隊參賽更能取得好成績.方法總結:本題是反映數據集中程度與離散程度的綜合題.從圖形中得到兩隊的成績,然后從平均數、方差的角度來考慮,在平均數相同的情況下,方差越小的越穩(wěn)定.三、板書設計數據的離散程度極差:一組數據中最大數據與最小數據的差方差:各個數據與平均數差的平方的平均數 s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]標準差:方差的算術平方根 公式:s=s2經歷表示數據離散程度的幾個量的探索過程,通過實例體會用樣本估計總體的統(tǒng)計思想,培養(yǎng)學生的數學應用能力.通過小組合作,培養(yǎng)學生的合作意識;通過解決實際問題,讓學生體會數學與生活的密切聯系.
如圖,四邊形OABC是邊長為1的正方形,反比例函數y=kx的圖象經過點B(x0,y0),則k的值為.解析:∵四邊形OABC是邊長為1的正方形,∴它的面積為1,且BA⊥y軸.又∵點B(x0,y0)是反比例函數y=kx圖象上的一點,則有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵點B在第二象限,∴k=-1.方法總結:利用正方形或矩形或三角形的面積確定|k|的值之后,要注意根據函數圖象所在位置或函數的增減性確定k的符號.三、板書設計反比例函數的性質性質當k>0時,在每一象限內,y的值隨x的值的增大而減小當k<0時,在每一象限內,y的值隨x的值的增大而增大反比例函數圖象中比例系數k的幾何意義通過對反比例函數圖象的全面觀察和比較,發(fā)現函數自身的規(guī)律,概括反比例函數的有關性質,進行語言表述,訓練學生的概括、總結能力,在相互交流中發(fā)展從圖象中獲取信息的能力.讓學生積極參與到數學學習活動中,增強他們對數學學習的好奇心與求知欲.
因為反比例函數的圖象經過點A(1.5,400),所以有k=600.所以反比例函數的關系式為p=600S(S>0);(2)當S=0.2時,p=6000.2=3000,即壓強是3000Pa;(3)由題意知600S≤6000,所以S≥0.1,即木板面積至少要有0.1m2.方法總結:本題滲透了物理學中壓強、壓力與受力面積之間的關系p= ,當壓力F一定時,p與S成反比例.另外,利用反比例函數的知識解決實際問題時,要善于發(fā)現實際問題中變量之間的關系,從而進一步建立反比例函數模型.三、板書設計反比例函數的應用實際問題與反比例函數反比例函數與其他學科知識的綜合經歷分析實際問題中變量之間的關系,建立反比例函數模型,進而解決問題的過程,提高運用代數方法解決問題的能力,體會數學與現實生活的緊密聯系,增強應用意識.通過反比例函數在其他學科中的運用,體驗學科整合思想.
補充題:為了預防“非典”,某學校對教室采用藥熏消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如右圖),現測得藥物8分鐘燃畢,此時室內空氣中每立方米的含藥量6毫克,請根據題中所提供的信息,解答下列問題:(1)藥物燃燒時,y關于x的函數關系式為 ,自變量x的取值范圍為 ;藥物燃燒后,y關于x的函數關系式為 .(2)研究表明,當空氣中每立方米的含藥量低于1.6毫克時學生方可進教室,那么從消毒開始,至少需要經過______分鐘后,學生才能回到教室;(3)研究表明,當空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?答案:(1)y= x, 010,即空氣中的含藥量不低于3毫克/m3的持續(xù)時間為12分鐘,大于10分鐘的有效消毒時間.
方程有兩個不相等的實數根.綜上所述,m=3.易錯提醒:本題由根與系數的關系求出字母m的值,但一定要代入判別式驗算,字母m的取值必須使判別式大于0,這一點很容易被忽略.三、板書設計一元二次方程的根與系數的關系關系:如果方程ax2+bx+c=0(a≠0) 有兩個實數根x1,x2,那么x1+x2 =-ba,x1x2=ca應用利用根與系數的關系求代數式的值已知方程一根,利用根與系數的關系求方程的另一根判別式及根與系數的關系的綜合應用讓學生經歷探索,嘗試發(fā)現韋達定理,感受不完全的歸納驗證以及演繹證明.通過觀察、實踐、討論等活動,經歷發(fā)現問題、發(fā)現關系的過程,養(yǎng)成獨立思考的習慣,培養(yǎng)學生觀察、分析和綜合判斷的能力,激發(fā)學生發(fā)現規(guī)律的積極性,激勵學生勇于探索的精神.通過交流互動,逐步養(yǎng)成合作的意識及嚴謹的治學精神.
3、一般地,對于關于 方程 為已知常數, ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結果?與上面發(fā)現的現象是否一致?!局R應用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數和。(4)求一元二次方程,使它的兩個根是 ?!練w納小結】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;
2、猜想 一元二次方程的兩個根 的和與積和原來的方程有什么聯系?小組交流。3、一般地,對于關于 方程 為已知常數, ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結果?與上面發(fā)現的現象是否一致?!局R應用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數和。(4)求一元二次方程,使它的兩個根是 ?!練w納小結】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;
1.舉例說明什么時候用普查的方式獲得數據較好,什么時候用抽樣調查的方式獲得數據較好?2、下列調查中分別采用了那些調查方式?⑴為了了解你們班同學的身高,對全班同學進行調查.⑵為了了解你們學校學生對新教材的喜好情況,對所有學號是5的倍數的同學進行調查。3、說明在以下問題中,總體、個體、樣本各指什么?⑴為了考察一個學校的學生參加課外體育活動的情況,調查了其中20名學生每天參加課外體育活動的時間.⑵為了了解一批電池的壽命,從中抽取10只進行實驗。⑶為了考察某公園一年中每天進園的人數,在其中的30天里對進園的人數進行了統(tǒng)計。通過本節(jié)課的學習,同學們有什么收獲和疑問?1、基本概念:⑴.調查、普查、抽樣調查.⑵.總體、個體、樣本.2、何時采用普查、何時采用抽樣調查,各有什么優(yōu)缺點?