【類型三】 已知三邊作三角形已知三條線段a、b、c,用尺規(guī)作出△ABC,使BC=a,AC=b、AB=c.解:作法:1.作線段BC=a;2.以點(diǎn)C為圓心,以b為半徑畫弧,再以B為圓心,以c為半徑畫弧,兩弧相交于點(diǎn)A;3.連接AC和AB,則△ABC即為所求作的三角形,如圖所示.方法總結(jié):已知三角形三邊的長(zhǎng),根據(jù)全等三角形的判定“SSS”,知三角形的形狀和大小也就確定了.作三角形相當(dāng)于確定三角形三個(gè)頂點(diǎn)的位置.因此可先確定三角形的一條邊(即兩個(gè)頂點(diǎn)),再分別以這條邊的兩個(gè)端點(diǎn)為圓心,以已知線段長(zhǎng)為半徑畫弧,兩弧的交點(diǎn)即為另一個(gè)頂點(diǎn).三、板書設(shè)計(jì)1.已知兩邊及其夾角作三角形2.已知兩角及其夾邊作三角形3.已知三邊作三角形本節(jié)課學(xué)習(xí)了有關(guān)三角形的作圖,主要包括兩種基本作圖:作一條線段等于已知線段,作一個(gè)角等于已知角.作圖時(shí),鼓勵(lì)學(xué)生一邊作圖,一邊用幾何語(yǔ)言敘述作法,培養(yǎng)學(xué)生的動(dòng)手能力、語(yǔ)言表達(dá)能力
方法總結(jié):本題結(jié)合三角形內(nèi)角和定理考查反證法,解此題關(guān)鍵要懂得反證法的意義及步驟.反證法的步驟是:(1)假設(shè)結(jié)論不成立;(2)從假設(shè)出發(fā)推出矛盾;(3)假設(shè)不成立,則結(jié)論成立.在假設(shè)結(jié)論不成立時(shí)要注意考慮結(jié)論的反面所有可能的情況.如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.三、板書設(shè)計(jì)1.等腰三角形的判定定理:有兩個(gè)角相等的三角形是等腰三角形(等角對(duì)等邊).2.反證法(1)假設(shè)結(jié)論不成立;(2)從假設(shè)出發(fā)推出矛盾;(3)假設(shè)不成立,則結(jié)論成立.解決幾何證明題時(shí),應(yīng)結(jié)合圖形,聯(lián)想我們已學(xué)過的定義、公理、定理等知識(shí),尋找結(jié)論成立所需要的條件.要特別注意的是,不要遺漏題目中的已知條件.解題時(shí)學(xué)會(huì)分析,可以采用執(zhí)果索因(從結(jié)論出發(fā),探尋結(jié)論成立所需的條件)的方法.
【設(shè)計(jì)意圖:讓學(xué)生在操作、探索的基礎(chǔ)上,組內(nèi)交流想法,再在班內(nèi)交流匯報(bào),讓學(xué)生的語(yǔ)言得到相互交流、碰撞,從而不斷激發(fā)學(xué)生的思維火花?!繋煟耗隳馨堰@些擺法用算式寫出來(lái)嗎?(學(xué)生獨(dú)立寫出算式并匯報(bào))依學(xué)生匯報(bào)板書:1×12=122×6=1212×1=126×2=123×4=124×3=12師:請(qǐng)同學(xué)們觀察一下,哪兩道算式的因數(shù)一樣?學(xué)生觀察算式,找出因數(shù)一樣的算式。師:那么,這6個(gè)算式最少能用幾種算式表示出來(lái)?引導(dǎo)學(xué)生說(shuō)出能用3種方法表示,這三種方法是:1×12=122×6=123×4=12,并指明算式一樣時(shí)選擇其中一種說(shuō)出來(lái)。板書:12=1×12=2×6=3×4師:同學(xué)們觀察一下,12的因數(shù)有哪幾個(gè)?(學(xué)生說(shuō)出12的因數(shù)有:1、12、2、6、3、4。)師:拼長(zhǎng)方形與找因數(shù)有什么關(guān)系呢?(指名學(xué)生說(shuō)一說(shuō))師:根據(jù)剛才的操作交流,請(qǐng)同學(xué)們說(shuō)一說(shuō)怎樣找一個(gè)數(shù)的因數(shù)呢?(學(xué)生思考片刻后匯報(bào),可以組內(nèi)交流。)引導(dǎo)學(xué)生說(shuō)出:用乘法思路想,看哪兩個(gè)數(shù)相乘得12,然后一對(duì)一對(duì)找出來(lái)。
第一:說(shuō)教材?!百|(zhì)數(shù)和合數(shù)”是九年義務(wù)教育小學(xué)數(shù)學(xué)五年級(jí)(上)第三單元的內(nèi)容,在教材第39~40頁(yè);是學(xué)生學(xué)習(xí)了因數(shù)和倍數(shù)的意義,了解了2、5、3倍數(shù)的特征之后的重要知識(shí),它是學(xué)生學(xué)習(xí)分解質(zhì)因數(shù)、求最大公約數(shù)和最小公倍數(shù)的基礎(chǔ),在本章教學(xué)中起著承前啟后的重要作用。第二:說(shuō)教法:根據(jù)新課標(biāo)的精神和學(xué)生實(shí)際,我將本節(jié)課教學(xué)目標(biāo)定為:1)找因數(shù)填表格經(jīng)歷探索質(zhì)數(shù)與合數(shù)的過程,理解質(zhì)數(shù)與合數(shù)的意義;2)能正確判斷一個(gè)數(shù)是質(zhì)數(shù)或合數(shù);3)在研究質(zhì)數(shù)的過程中豐富對(duì)數(shù)學(xué)發(fā)展的認(rèn)識(shí),感受數(shù)學(xué)發(fā)展的文化魅力;4)、在猜想——驗(yàn)證——概括——理解的過程中體會(huì)學(xué)習(xí)數(shù)學(xué)的樂趣,積累數(shù)學(xué)學(xué)習(xí)的方法。第三:說(shuō)教學(xué)重難點(diǎn)重點(diǎn):理解質(zhì)數(shù)與合數(shù)的意義。難點(diǎn):能正確判斷一個(gè)數(shù)是質(zhì)數(shù)還是合數(shù),體會(huì)數(shù)學(xué)學(xué)習(xí)的方法。教學(xué)準(zhǔn)備:課件教學(xué)安排:兩課時(shí)。
課程標(biāo)準(zhǔn)中明確指出:“小學(xué)數(shù)學(xué)的教學(xué)內(nèi)容絕大多數(shù)可以聯(lián)系學(xué)生的生活實(shí)際,找準(zhǔn)每一節(jié)教材內(nèi)容與學(xué)生生活實(shí)際的“切入點(diǎn)”可讓學(xué)生產(chǎn)生一種熟悉感、親切感“,以及“數(shù)學(xué)教學(xué)活動(dòng)中,教師應(yīng)向?qū)W生提供充分從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),幫助他們?cè)谧灾魈剿鞯倪^程中真正理解和掌握基本的數(shù)學(xué)知識(shí)與技能?!币獙⑦@個(gè)理念落實(shí)在課堂教學(xué)中,就要求教師能根據(jù)教學(xué)的具體內(nèi)容,選擇恰當(dāng)?shù)膶W(xué)習(xí)方式,并巧妙創(chuàng)設(shè)學(xué)生主動(dòng)探索的機(jī)會(huì),變“接受學(xué)習(xí)”為“創(chuàng)造學(xué)習(xí)”,讓學(xué)生在觀察、操作、討論、交流、歸納、整理、概括的過程中學(xué)習(xí)新知,充分以學(xué)生為主體,逐步培養(yǎng)學(xué)生的創(chuàng)新意識(shí),形成初步的探索和解決問題的能力。根據(jù)以上思想,本節(jié)課的設(shè)計(jì)我主要從尊重學(xué)生已有的知識(shí)經(jīng)驗(yàn);在觀察與操作中去親身體驗(yàn)知識(shí)的形成過程,掌握約分的方法。
2、提出問題:3張大餅怎樣能夠平均分給唐僧師徒四人呢?每人得到大餅的多少?gòu)埬兀?、揭示課題:分餅二、動(dòng)手操作,探究新知:活動(dòng)操作一:3張餅平均分給4個(gè)人。1、要求學(xué)生用準(zhǔn)備好的圓紙片代表餅,剪一剪,拼一拼,畫一畫,小組交流自己的想法。教師巡視并進(jìn)行指導(dǎo)。2、各小組匯報(bào)分法及分得的結(jié)果。(指名回答)第一種分法:把一張一張的餅平均分成4份,每人分每張餅的,共分一張餅的。并請(qǐng)學(xué)生上臺(tái)演示分的整個(gè)過程。第二種分法:把3張餅疊起來(lái),平均分成4份,每人分得3張餅的,也是張餅,請(qǐng)學(xué)生上臺(tái)演示分的整個(gè)過程。3、演示學(xué)生兩種分法的圖片:4、請(qǐng)觀察,這個(gè)分?jǐn)?shù)有什么特點(diǎn),分子比分母小,你還能舉幾個(gè)這樣的例子嗎?像這樣的分?jǐn)?shù)叫作真分?jǐn)?shù),真分?jǐn)?shù)小于1。
尊敬的領(lǐng)導(dǎo),評(píng)委老師:大家好,今天我說(shuō)課的題目是北師大版小學(xué)數(shù)學(xué)五年級(jí)上冊(cè)第一單元第五節(jié)《除得盡嗎》。我將會(huì)以說(shuō)教材、說(shuō)學(xué)生、說(shuō)教法、說(shuō)教學(xué)過程、說(shuō)教學(xué)效果評(píng)測(cè)、說(shuō)反思等六各方面進(jìn)行我的說(shuō)課。一:說(shuō)教材《除得盡嗎》本節(jié)內(nèi)容是本單元的第五節(jié),是在學(xué)生已經(jīng)學(xué)習(xí)了整數(shù)除整數(shù)、整數(shù)除小樹、小樹除小數(shù)、以及四舍五入保留若干位小樹的基礎(chǔ)之上進(jìn)行設(shè)置的。本節(jié)內(nèi)容的主要知識(shí)點(diǎn)就是讓學(xué)生認(rèn)識(shí)循環(huán)小數(shù)、表示循環(huán)小數(shù)以及“四舍五入”法取其近似值,總體難度不大。二:說(shuō)學(xué)生對(duì)于五年級(jí)學(xué)生而言,已經(jīng)在四年級(jí)學(xué)習(xí)了“四舍五入”法,所以在本節(jié)新授教學(xué)中已經(jīng)有了一定的基礎(chǔ)。對(duì)于教師的教和學(xué)生的學(xué)都有了一定的促進(jìn)作用。
4.x的值是否可以任意取?如果不能任意取,請(qǐng)求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤(rùn)為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出問題讓學(xué)生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個(gè)? (各有1個(gè))(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式?(分別是二次多項(xiàng)式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)? (都是用自變量的二次多項(xiàng)式來(lái)表示的)(4)本章導(dǎo)圖中的問題以及P1頁(yè)的問題2有什么共同特點(diǎn)?讓學(xué)生討論、歸結(jié)為:自變量x為何值時(shí),函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).
(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質(zhì)量檔次為第6檔.方法總結(jié):解決此類問題的關(guān)鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第8題三、板書設(shè)計(jì)二次函數(shù)1.二次函數(shù)的概念2.從實(shí)際問題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型.許多實(shí)際問題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過實(shí)例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡(jiǎn)單的實(shí)際問題中二次函數(shù)的解析式.在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗(yàn)從問題出發(fā)到列二次函數(shù)解析式的過程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.
三、教法和學(xué)法要實(shí)現(xiàn)上述教學(xué)目標(biāo),必須考慮教法和學(xué)法。課程標(biāo)準(zhǔn)指出:“有效的教學(xué)活動(dòng)是學(xué)生學(xué)與教師教的統(tǒng)一,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者與合作者?!北局耙詫W(xué)定教”的理念,我先來(lái)說(shuō)說(shuō)本節(jié)課的學(xué)法。1、學(xué)法本節(jié)課的內(nèi)容是掌握乘法解決實(shí)際問題的方法,為了讓學(xué)生能夠較好地理解知識(shí)點(diǎn),掌握方法,我在教學(xué)中安排了(動(dòng)手操作、自主探索、合作交流、創(chuàng)新學(xué)習(xí)等交給學(xué)生觀察的方法,目的是為了激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,提高自信心。2、教法數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”,因此在教學(xué)中我力求展現(xiàn)獲取知識(shí)和方法的思維過程。最后我來(lái)說(shuō)一說(shuō)這一堂課的教學(xué)過程:
一、說(shuō)教材教材分析:《快樂的動(dòng)物》一課是北師大版小學(xué)數(shù)學(xué)第三冊(cè)46-47頁(yè)上的內(nèi)容。本節(jié)課是學(xué)生接觸“倍”的概念的第一課。對(duì)于低年級(jí)的孩子來(lái)說(shuō)“倍”這個(gè)概念是比較抽象的,但卻非常重要。記得去年教二年級(jí)的時(shí)候,這塊內(nèi)容學(xué)生掌握得不是很好,在復(fù)習(xí)時(shí),學(xué)生對(duì)倍的概念比較模糊,不知道什么時(shí)候該用乘法,什么時(shí)候該用除法,所以上這一課時(shí)應(yīng)該特別認(rèn)真。從教材編寫體系看:教材首先展示了一幅春天動(dòng)物王國(guó)歡聚圖的情景,圖中蘊(yùn)含著各種動(dòng)物的數(shù)量以及數(shù)量之間的關(guān)系。其次,是編排了“做一做”、“說(shuō)一說(shuō)”的內(nèi)容。其目的是讓學(xué)生在具體的活動(dòng)中,感受“倍”的含義,使學(xué)生逐步體會(huì)與等分之間的關(guān)系。求倍數(shù)的關(guān)系,涉及兩個(gè)量之間的比較,實(shí)際上是等分活動(dòng)的擴(kuò)展。教材“說(shuō)一說(shuō)”中的第三個(gè)小問題:“你還能提出哪些用除法解決的問題?”給學(xué)生創(chuàng)設(shè)了充分的觀察、探究、體驗(yàn)、交往的空間。這是本節(jié)教材的一個(gè)特色?!氨丁笔巧钣谜Z(yǔ),
一、說(shuō)教材本節(jié)課是北師大版小學(xué)二年級(jí)數(shù)學(xué)上冊(cè)第六單元測(cè)量中第一課內(nèi)容。課標(biāo)要求經(jīng)歷“直接比較、運(yùn)用非標(biāo)準(zhǔn)長(zhǎng)度單位測(cè)量、運(yùn)用標(biāo)準(zhǔn)長(zhǎng)度單位測(cè)量”三個(gè)過程,這樣可以幫助學(xué)生對(duì)標(biāo)準(zhǔn)長(zhǎng)度單位的意義有充分的理解。本節(jié)課通過測(cè)量活動(dòng),讓學(xué)生體會(huì)量的概念,為后續(xù)正式學(xué)習(xí)長(zhǎng)度單位做好準(zhǔn)備。二、學(xué)情分析學(xué)生在一年級(jí)時(shí)已經(jīng)積累了比較直接長(zhǎng)、短的活動(dòng)經(jīng)驗(yàn),對(duì)長(zhǎng)和短有了一定的認(rèn)識(shí),能想出很多測(cè)量的方法。但由于學(xué)生年齡小,引導(dǎo)學(xué)生小組內(nèi)互助解決問題尤為重要。三、說(shuō)教學(xué)目標(biāo)1.知識(shí)目標(biāo):積累測(cè)量活動(dòng)經(jīng)驗(yàn),發(fā)展度量意識(shí)和能力。2.能力目標(biāo):經(jīng)歷用不同方式測(cè)量教室長(zhǎng)度的過程,體會(huì)測(cè)量方式、測(cè)量工具的多樣性。3.情感態(tài)度價(jià)值觀:在測(cè)量活動(dòng)中培養(yǎng)學(xué)生互助、交流表達(dá)的能力。四、說(shuō)教學(xué)重、難點(diǎn)教學(xué)重點(diǎn):積累測(cè)量活動(dòng)經(jīng)驗(yàn),發(fā)展度量意識(shí)和能力。教學(xué)難點(diǎn):在測(cè)量活動(dòng)中培養(yǎng)學(xué)生合作互助、交流表達(dá)的能力。
一、本章知識(shí)要點(diǎn): 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學(xué)生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關(guān)系,進(jìn)而才能利用直角三角形的邊與角的相互關(guān)系去解直角三角形,因此三角形函數(shù)定義既是本章的重點(diǎn)又是理解本章知識(shí)的關(guān)鍵,而且也是本章知識(shí)的難點(diǎn)。如何解決這一關(guān)鍵問題,教材采取了以下的教學(xué)步驟:1. 從實(shí)際中提出問題,如修建揚(yáng)水站的實(shí)例,這一實(shí)例可歸結(jié)為已知RtΔ的一個(gè)銳角和斜邊求已知角的對(duì)邊的問題。顯然用勾股定理和直角三角形兩個(gè)銳角互余中的邊與邊或角與角的關(guān)系無(wú)法解出了,因此需要進(jìn)一步來(lái)研究直角三角形中邊與角的相互關(guān)系。2. 教材又采取了從特殊到一般的研究方法利用學(xué)生的舊知識(shí),以含30°、45°的直角三角形為例:揭示了直角三角形中一個(gè)銳角確定為30°時(shí),那么這角的對(duì)邊與斜邊之比就確定比值為1:2。
【類型四】 含整數(shù)指數(shù)冪、零指數(shù)冪與絕對(duì)值的混合運(yùn)算計(jì)算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分別根據(jù)有理數(shù)的乘方、零指數(shù)冪、負(fù)整數(shù)指數(shù)冪及絕對(duì)值的性質(zhì)計(jì)算出各數(shù),再根據(jù)實(shí)數(shù)的運(yùn)算法則進(jìn)行計(jì)算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法總結(jié):熟練掌握有理數(shù)的乘方、零指數(shù)冪、負(fù)整數(shù)指數(shù)冪及絕對(duì)值的性質(zhì)是解答此題的關(guān)鍵.三、板書設(shè)計(jì)1.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.2.零次冪:任何一個(gè)不等于零的數(shù)的零次冪都等于1.即a0=1(a≠0).3.負(fù)整數(shù)次冪:任何一個(gè)不等于零的數(shù)的-p(p是正整數(shù))次冪,等于這個(gè)數(shù)p次冪的倒數(shù).即a-p=1ap(a≠0,p是正整數(shù)).從計(jì)算具體問題中的同底數(shù)冪的除法,逐步歸納出同底數(shù)冪除法的一般性質(zhì).教學(xué)時(shí)要多舉幾個(gè)例子,讓學(xué)生從中總結(jié)出規(guī)律,體驗(yàn)自主探究的樂趣和數(shù)學(xué)學(xué)習(xí)的魅力,為以后的學(xué)習(xí)奠定基礎(chǔ)
問題:2015年9月24日,美國(guó)國(guó)家航空航天局(下簡(jiǎn)稱:NASA)對(duì)外宣稱將有重大發(fā)現(xiàn)宣布,可能發(fā)現(xiàn)除地球外適合人類居住的星球,一時(shí)間引起了人們的廣泛關(guān)注.早在2014年,NASA就發(fā)現(xiàn)一顆行星,這顆行星是第一顆在太陽(yáng)系外恒星旁發(fā)現(xiàn)的適居帶內(nèi)、半徑與地球相若的系外行星,這顆行星環(huán)繞紅矮星開普勒186,距離地球492光年.1光年是光經(jīng)過一年所行的距離,光的速度大約是3×105km/s.問:這顆行星距離地球多遠(yuǎn)(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.問題:“10×105×107×102”等于多少呢?二、合作探究探究點(diǎn):同底數(shù)冪的乘法【類型一】 底數(shù)為單項(xiàng)式的同底數(shù)冪的乘法計(jì)算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)mn+1·mn·m2·m.解析:(1)根據(jù)同底數(shù)冪的乘法法則進(jìn)行計(jì)算即可;(2)先算乘方,再根據(jù)同底數(shù)冪的乘法法則進(jìn)行計(jì)算即可;(3)根據(jù)同底數(shù)冪的乘法法則進(jìn)行計(jì)算即可.
【類型三】 分式方程無(wú)解,求字母的值若關(guān)于x的分式方程2x-2+mxx2-4=3x+2無(wú)解,求m的值.解析:先把分式方程化為整式方程,再分兩種情況討論求解:一元一次方程無(wú)解與分式方程有增根.解:方程兩邊都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①當(dāng)m-1=0時(shí),此方程無(wú)解,此時(shí)m=1;②方程有增根,則x=2或x=-2,當(dāng)x=2時(shí),代入(m-1)x=-10得(m-1)×2=-10,m=-4;當(dāng)x=-2時(shí),代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法總結(jié):分式方程無(wú)解與分式方程有增根所表達(dá)的意義是不一樣的.分式方程有增根僅僅針對(duì)使最簡(jiǎn)公分母為0的數(shù),分式方程無(wú)解不但包括使最簡(jiǎn)公分母為0的數(shù),而且還包括分式方程化為整式方程后,使整式方程無(wú)解的數(shù).三、板書設(shè)計(jì)1.分式方程的解法方程兩邊同乘以最簡(jiǎn)公分母,化為整式方程求解,再檢驗(yàn).2.分式方程的增根(1)解分式方程為什么會(huì)產(chǎn)生增根;(2)分式方程檢驗(yàn)的方法.
解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2.∵積不含x2項(xiàng),也不含x項(xiàng),∴-2a+3b=0,-2b+3=0,解得b=32,a=94,∴系數(shù)a、b的值分別是94,32.方法總結(jié):解決此類問題首先要利用多項(xiàng)式乘法法則計(jì)算出展開式,合并同類項(xiàng)后,再根據(jù)不含某一項(xiàng),可得這一項(xiàng)系數(shù)等于零,再列出方程解答.三、板書設(shè)計(jì)1.多項(xiàng)式與多項(xiàng)式的乘法法則:多項(xiàng)式和多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)與另一個(gè)多項(xiàng)式的每一項(xiàng)相乘,再把所得的積相加.2.多項(xiàng)式與多項(xiàng)式乘法的應(yīng)用本節(jié)知識(shí)的綜合性較強(qiáng),要求學(xué)生熟練掌握前面所學(xué)的單項(xiàng)式與單項(xiàng)式相乘及單項(xiàng)式與多項(xiàng)式相乘的知識(shí),同時(shí)為了讓學(xué)生理解并掌握多項(xiàng)式與多項(xiàng)式相乘的法則,教學(xué)中一定要精講精練,讓學(xué)生從練習(xí)中再次體會(huì)法則的內(nèi)容,為以后的學(xué)習(xí)奠定基礎(chǔ)
光的速度約為3×108米/秒,一顆人造地球衛(wèi)星的速度是8×103米/秒,則光的速度是這顆人造地球衛(wèi)星速度的多少倍?解析:要求光速是人造地球衛(wèi)星的速度的倍數(shù),用光速除以人造地球衛(wèi)星的速度,可轉(zhuǎn)化為單項(xiàng)式相除問題.解:(3×108)÷(8×103)=(3÷8)·(108÷103)=3.75×104.答:光速是這顆人造地球衛(wèi)星速度的3.75×104倍.方法總結(jié):解整式除法的實(shí)際應(yīng)用題時(shí),應(yīng)分清何為除式,何為被除式,然后應(yīng)當(dāng)單項(xiàng)式除以單項(xiàng)式法則計(jì)算.三、板書設(shè)計(jì)1.單項(xiàng)式除以單項(xiàng)式的運(yùn)算法則:?jiǎn)雾?xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式;對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式.2.單項(xiàng)式除以單項(xiàng)式的應(yīng)用在教學(xué)過程中,通過生活中的情景導(dǎo)入,引導(dǎo)學(xué)生根據(jù)單項(xiàng)式乘以單項(xiàng)式的乘法運(yùn)算推導(dǎo)出其逆運(yùn)算的規(guī)律,在探究的過程中經(jīng)歷數(shù)學(xué)概念的生成過程,從而加深印象
解析:先求出長(zhǎng)方形的面積,再求出綠化的面積,兩者相減即可求出剩下的面積.解:長(zhǎng)方形的面積是xym2,綠化的面積是35x×34y=920xy(m2),則剩下的面積是xy-920xy=1120xy(m2).方法總結(jié):掌握長(zhǎng)方形的面積公式和單項(xiàng)式乘單項(xiàng)式法則是解題的關(guān)鍵.三、板書設(shè)計(jì)1.單項(xiàng)式乘以單項(xiàng)式的運(yùn)算法則:?jiǎn)雾?xiàng)式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對(duì)于只在一個(gè)單項(xiàng)式里面含有的字母,則連同它的指數(shù)作為積的一個(gè)因式.2.單項(xiàng)式乘以單項(xiàng)式的應(yīng)用本課時(shí)的重點(diǎn)是讓學(xué)生理解單項(xiàng)式的乘法法則并能熟練應(yīng)用.要求學(xué)生在乘法的運(yùn)算律以及冪的運(yùn)算律的基礎(chǔ)上進(jìn)行探究.教師在課堂上應(yīng)該處于引導(dǎo)位置,鼓勵(lì)學(xué)生“試一試”,學(xué)生通過動(dòng)手操作,能夠更為直接的理解和應(yīng)用該知識(shí)點(diǎn)
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù)).解析:(1)根據(jù)已知計(jì)算過程直接得出因式分解的方法即可;(2)根據(jù)已知分解因式的方法可以得出答案;(3)由(1)中計(jì)算發(fā)現(xiàn)規(guī)律進(jìn)而得出答案.解:(1)因式分解的方法是提公因式法,共應(yīng)用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需應(yīng)用上述方法2016次,結(jié)果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法總結(jié):解決此類問題需要認(rèn)真閱讀,理解題意,根據(jù)已知得出分解因式的規(guī)律是解題關(guān)鍵.三、板書設(shè)計(jì)1.提公因式分解因式的一般步驟:(1)觀察;(2)適當(dāng)變形;(3)確定公因式;(4)提取公因式.2.提公因式法因式分解的應(yīng)用本課時(shí)是在上一課時(shí)的基礎(chǔ)上進(jìn)行的拓展延伸,在教學(xué)時(shí)要給學(xué)生足夠主動(dòng)權(quán)和思考空間,突出學(xué)生在課堂上的主體地位,引導(dǎo)和鼓勵(lì)學(xué)生自主探究,在培養(yǎng)學(xué)生創(chuàng)新能力的同時(shí)提高學(xué)生的邏輯思維能力.