解析:由于多邊形(三邊以上的)不具有穩(wěn)定性,將其轉化為三角形后木架的形狀就不變了.根據具體多邊形轉化為三角形的經驗及題中所加木條可找到一般規(guī)律.解:過n邊形的一個頂點可以作(n-3)條對角線,把多邊形分成(n-2)個三角形,所以,要使一個n邊形木架不變形,至少需要(n-3)根木條固定.方法總結:將多邊形轉化為三角形時,所需要的木條根數,可從具體到一般去發(fā)現(xiàn)規(guī)律,然后驗證求解.三、板書設計1.邊邊邊:三邊對應相等的兩個三角形全等,簡寫成“邊邊邊”或“SSS”.2.三角形的穩(wěn)定性本節(jié)課從操作探究活動入手,有效地激發(fā)了學生的學習積極性和探究熱情,提高了課堂的教學效率,促進了學生對新知識的理解和掌握.從課堂教學的情況來看,學生對“邊邊邊”掌握較好,達到了教學的預期目的.存在的問題是少數學生在輔助線的構造上感到困難,不知道如何添加合理的輔助線,還需要在今后的教學中進一步加強鞏固和訓練
1.理解并掌握三角形全等的判定方法——“角邊角”“角角邊”;(重點)2.能運用“角邊角”“角角邊”判定方法解決有關問題.(難點) 一、情境導入如圖所示,某同學把一塊三角形的玻璃不小心打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是帶哪塊去?學生活動:學生先自主探究出答案,然后再與同學進行交流.教師點撥:顯然僅僅帶①或②是無法配成完全一樣的玻璃的,而僅僅帶③則可以,為什么呢?本節(jié)課我們繼續(xù)研究三角形全等的判定方法.二、合作探究探究點一:全等三角形判定定理“ASA”如圖,AD∥BC,BE∥DF,AE=CF,試說明:△ADF≌△CBE.解析:根據平行線的性質可得∠A=∠C,∠DFE=∠BEC,再根據等式的性質可得AF=CE,然后利用“ASA”可得到△ADF≌△CBE.
【類型四】 含整數指數冪、零指數冪與絕對值的混合運算計算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分別根據有理數的乘方、零指數冪、負整數指數冪及絕對值的性質計算出各數,再根據實數的運算法則進行計算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法總結:熟練掌握有理數的乘方、零指數冪、負整數指數冪及絕對值的性質是解答此題的關鍵.三、板書設計1.同底數冪的除法法則:同底數冪相除,底數不變,指數相減.2.零次冪:任何一個不等于零的數的零次冪都等于1.即a0=1(a≠0).3.負整數次冪:任何一個不等于零的數的-p(p是正整數)次冪,等于這個數p次冪的倒數.即a-p=1ap(a≠0,p是正整數).從計算具體問題中的同底數冪的除法,逐步歸納出同底數冪除法的一般性質.教學時要多舉幾個例子,讓學生從中總結出規(guī)律,體驗自主探究的樂趣和數學學習的魅力,為以后的學習奠定基礎
解:(1)電動車的月產量y為隨著時間x的變化而變化,有一個時間x就有唯一一個y與之對應,月產量y是時間x的因變量;(2)6月份產量最高,1月份產量最低;(3)6月份和1月份相差最大,在1月份加緊生產,實現(xiàn)產量的增值.方法總結:觀察因變量隨自變量變化而變化的趨勢,實質是觀察自變量增大時,因變量是隨之增大還是減?。?、板書設計1.常量與變量:在一個變化過程中,數值發(fā)生變化的量為變量,數值始終不變的量稱之為常量.2.用表格表示數量間的關系:借助表格表示因變量隨自變量的變化而變化的情況.自變量和因變量是用來描述我們所熟悉的變化的事物以及自然界中出現(xiàn)的一些變化現(xiàn)象的兩個重要的量,對于我們所熟悉的變化,在用了這兩個量的描述之后更加鮮明.本節(jié)是學好本章的基礎,教學中立足于學生的認知基礎,激發(fā)學生的認知沖突,提升學生的認知水平,使學生在原有的知識基礎上迅速遷移到新知上來
問題:2015年9月24日,美國國家航空航天局(下簡稱:NASA)對外宣稱將有重大發(fā)現(xiàn)宣布,可能發(fā)現(xiàn)除地球外適合人類居住的星球,一時間引起了人們的廣泛關注.早在2014年,NASA就發(fā)現(xiàn)一顆行星,這顆行星是第一顆在太陽系外恒星旁發(fā)現(xiàn)的適居帶內、半徑與地球相若的系外行星,這顆行星環(huán)繞紅矮星開普勒186,距離地球492光年.1光年是光經過一年所行的距離,光的速度大約是3×105km/s.問:這顆行星距離地球多遠(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.問題:“10×105×107×102”等于多少呢?二、合作探究探究點:同底數冪的乘法【類型一】 底數為單項式的同底數冪的乘法計算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)mn+1·mn·m2·m.解析:(1)根據同底數冪的乘法法則進行計算即可;(2)先算乘方,再根據同底數冪的乘法法則進行計算即可;(3)根據同底數冪的乘法法則進行計算即可.
解析:(1)根據AD∥BC可知∠ADC=∠ECF,再根據E是CD的中點可求出△ADE≌△FCE,根據全等三角形的性質即可解答;(2)根據線段垂直平分線的性質判斷出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中點,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是線段AF的垂直平分線,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法總結:此題主要考查線段的垂直平分線的性質等幾何知識.線段垂直平分線上的點到線段兩個端點的距離相等,利用它可以證明線段相等.探究點二:線段垂直平分線的作圖如圖,某地由于居民增多,要在公路l邊增加一個公共汽車站,A,B是路邊兩個新建小區(qū),這個公共汽車站C建在什么位置,能使兩個小區(qū)到車站的路程一樣長(要求:尺規(guī)作圖,保留作圖痕跡,不寫畫法)?
方法總結:絕對值小于1的數也可以用科學記數法表示,一般形式為a×10-n,其中1≤a<10,n為正整數.與較大數的科學記數法不同的是其所使用的是負整數指數冪,指數由原數左邊起第一個不為零的數前面的0的個數所決定.【類型二】 將用科學記數法表示的數還原為原數用小數表示下列各數:(1)2×10-7; (2)3.14×10-5;(3)7.08×10-3; (4)2.17×10-1.解析:小數點向左移動相應的位數即可.解:(1)2×10-7=0.0000002;(2)3.14×10-5=0.0000314;(3)7.08×10-3=0.00708; (4)2.17×10-1=0.217.方法總結:將科學記數法表示的數a×10-n還原成通常表示的數,就是把a的小數點向左移動n位所得到的數.三、板書設計用科學記數法表示絕對值小于1的數:一般地,一個小于1的正數可以表示為a×10n,其中1≤a<10,n是負整數.從本節(jié)課的教學過程來看,結合了多種教學方法,既有教師主導課堂的例題講解,又有學生主導課堂的自主探究.課堂上學習氣氛活躍,學生的學習積極性被充分調動,在拓展學生學習空間的同時,又有效地保證了課堂學習質量
方法總結:當某一事件A發(fā)生的可能性大小與相關圖形的面積大小有關時,概率的計算方法是事件A所有可能結果所組成的圖形的面積與所有可能結果組成的總圖形面積之比,即P(A)=事件A所占圖形面積總圖形面積.概率的求法關鍵是要找準兩點:(1)全部情況的總數;(2)符合條件的情況數目.二者的比值就是其發(fā)生的概率.探究點二:與面積有關的概率的應用如圖,把一個圓形轉盤按1∶2∶3∶4的比例分成A、B、C、D四個扇形區(qū)域,自由轉動轉盤,停止后指針落在B區(qū)域的概率為________.解析:∵一個圓形轉盤按1∶2∶3∶4的比例分成A、B、C、D四個扇形區(qū)域,∴圓形轉盤被等分成10份,其中B區(qū)域占2份,∴P(落在B區(qū)域)=210=15.故答案為15.三、板書設計1.與面積有關的等可能事件的概率P(A)= 2.與面積有關的概率的應用本課時所學習的內容多與實際相結合,因此教學過程中要引導學生展開豐富的聯(lián)想,在日常生活中發(fā)現(xiàn)問題,并進行合理的整合歸納,選擇適宜的數學方法來解決問題
1.進一步理解概率的意義并掌握計算事件發(fā)生概率的方法;(重點)2.了解事件發(fā)生的等可能性及游戲規(guī)則的公平性.(難點)一、情境導入一個箱子中放有紅、黃、黑三個小球,三個人先后去摸球,一人摸一次,一次摸出一個小球,摸出后放回,摸出黑色小球為贏,那么這個游戲是否公平?二、合作探究探究點一:與摸球有關的等可能事件的概率【類型一】 摸球問題一個不透明的盒子中放有4個白色乒乓球和2個黃色乒乓球,所有乒乓球除顏色外完全相同,從中隨機摸出1個乒乓球,摸出黃色乒乓球的概率為()A.23 B.12 C.13 D.16解析:根據題意可得不透明的袋子里裝有6個乒乓球,其中2個黃色的,任意摸出1個,則P(摸到黃色乒乓球)=26=13.故選C.方法總結:概率的求法關鍵是找準兩點:①全部情況的總數;②符合條件的情況數目.二者的比值就是其發(fā)生的概率.【類型二】 與代數知識相關的問題已知m為-9,-6,-5,-3,-2,2,3,5,6,9中隨機取的一個數,則m4>100的概率為()A.15 B.310 C.12 D.35
光的速度約為3×108米/秒,一顆人造地球衛(wèi)星的速度是8×103米/秒,則光的速度是這顆人造地球衛(wèi)星速度的多少倍?解析:要求光速是人造地球衛(wèi)星的速度的倍數,用光速除以人造地球衛(wèi)星的速度,可轉化為單項式相除問題.解:(3×108)÷(8×103)=(3÷8)·(108÷103)=3.75×104.答:光速是這顆人造地球衛(wèi)星速度的3.75×104倍.方法總結:解整式除法的實際應用題時,應分清何為除式,何為被除式,然后應當單項式除以單項式法則計算.三、板書設計1.單項式除以單項式的運算法則:單項式相除,把系數、同底數冪分別相除,作為商的因式;對于只在被除式里含有的字母,則連同它的指數作為商的一個因式.2.單項式除以單項式的應用在教學過程中,通過生活中的情景導入,引導學生根據單項式乘以單項式的乘法運算推導出其逆運算的規(guī)律,在探究的過程中經歷數學概念的生成過程,從而加深印象
解析:先求出長方形的面積,再求出綠化的面積,兩者相減即可求出剩下的面積.解:長方形的面積是xym2,綠化的面積是35x×34y=920xy(m2),則剩下的面積是xy-920xy=1120xy(m2).方法總結:掌握長方形的面積公式和單項式乘單項式法則是解題的關鍵.三、板書設計1.單項式乘以單項式的運算法則:單項式相乘,把系數、同底數冪分別相乘,作為積的因式;對于只在一個單項式里面含有的字母,則連同它的指數作為積的一個因式.2.單項式乘以單項式的應用本課時的重點是讓學生理解單項式的乘法法則并能熟練應用.要求學生在乘法的運算律以及冪的運算律的基礎上進行探究.教師在課堂上應該處于引導位置,鼓勵學生“試一試”,學生通過動手操作,能夠更為直接的理解和應用該知識點
AD=CD,∠ADE=∠CDG,DE=GD,∴△ADE≌△CDG(SAS),∴AE=CG;(2)設AE與DG相交于M,AE與CG相交于N.在△GMN和△DME中,由(1)得∠CGD=∠AED,又∵∠GMN=∠DME,∠DEM+∠DME=90°,∴∠CGD+∠GMN=90°,∴∠GNM=90°,∴AE⊥CG.三、板書設計1.邊角邊:兩邊及其夾角分別相等的兩個三角形全等,簡寫成“邊角邊”或“SAS”.兩邊和其中一邊的對角對應相等的兩個三角形不一定全等.2.全等三角形判定與性質的綜合運用本節(jié)課從操作探究入手,具有較強的操作性和直觀性,有利于學生從直觀上積累感性認識,從而有效地激發(fā)了學生的學習積極性和探究熱情,提高了課堂的教學效率,促進了學生對新知識的理解和掌握.從課堂教學的情況來看,學生對“邊角邊”掌握較好,但在探究三角形的大小、形狀時不會正確分類,需要在今后的教學和作業(yè)中進一步加強分類思想的鞏固和訓練
方法總結:絕對值的化簡首先要判斷絕對值符號里面的式子的正負,然后根據絕對值的性質將絕對值的符號去掉,最后進行化簡.此類問題就是根據三角形的三邊關系,判斷絕對值符號里面式子的正負,然后進行化簡.三、板書設計1.三角形按邊分類:有兩邊相等的三角形叫做等腰三角形,三邊都相等的三角形是等邊三角形,三邊互不相等的三角形是不等邊三角形.2.三角形中三邊之間的關系:三角形任意兩邊之和大于第三邊,三角形任意兩邊之差小于第三邊.本節(jié)課讓學生經歷一個探究解決問題的過程,抓住“任意的三條線段能不能圍成一個三角形”引發(fā)學生探究的欲望,圍繞這個問題讓學生自己動手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關系,重點研究“能圍成三角形的三條邊之間到底有什么關系”.通過觀察、驗證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結論.這樣教學符合學生的認知特點,既增加了學習興趣,又增強了學生的動手能力
㈡教學目標⒈知識目標:①理解同類項的概念,并能辨別同類項;②掌握合并同類項的法則,并能熟練運用.⒉能力目標:①通過創(chuàng)設教學情景,使學生積極主動地參與到知識的產生過程中,培養(yǎng)學生的歸納、抽象概括能力;②通過鞏固練習,增強學生運用數學的意識,提高學生的辨別能力和計算能力.⒊情感目標:①讓學生學會在獨立思考的基礎上積極參與數學問題的討論,享受通過運用知識解決問題的成功體驗,增強學好數學的信心;②通過教學,使學生體驗“由特殊到一般、再由一般到特殊”這一認識規(guī)律,接受辯證唯物主義認識論的教育.
二、新授環(huán)節(jié)新授環(huán)節(jié)是本堂課的重點,我主要分為6步來突破語言點,步步為營,環(huán)環(huán)相扣,達到既定目標。1、首先我用touch and guess游戲來呈現(xiàn)新授單詞present,通過CAI展示各種生日禮物,如衣服,書本,玩具等讓學生操練單詞:Books can be a present等,操練時做到詞不離句。2、接著我借助多媒體讓學生說說自己想要的禮物I want a_____,同時我將實現(xiàn)準備的實物和圖片作為禮物贈送給他們,新授句子Here’s a present for you,激發(fā)學生開口說的興趣,又為接下來的操練提供了資源。我利用剛才分發(fā)的禮物采用游戲 “I’m a little bee”, (S1:I’m a little bee. Today is my birthday. S3:Here’a present for you。)四人小組合作操練這個句型。既避免了操練的機械性又調動了學生的積極性,而且提供了讓每個學生開口說的機會,關注學生個體的發(fā)展。3、當學生Act完后,我對一學生說:Oh, little bee, what’s your present? Open it and see。讓學生打開禮物呈現(xiàn)實物生日賀卡教學詞匯birthday card。既做到了呈現(xiàn)自然,又滲透西方文化知識,培養(yǎng)學生跨文化交際意識。
六, 說教學難點1. 培養(yǎng)學生合作學習的能力.,同時注意培養(yǎng)學生學習英語的興趣, 樹立自信心.2,單詞mountain引導學生分音節(jié)模仿讀音,掌握拼寫,強調字母組合ou 發(fā)( ),ai發(fā)( ).將單詞grandparents分為grant和parents讓學生掌握3,在小組討論的前提下,在學生挖掘已有的知識點和新的詞組七, 說教學準備Let's learn ,let's sing 和Let's chant的錄音磁帶.以及卡片go to bed get up have dinner eat breakfast play sports do morning exercises .以及短語卡片 climb mountains go shopping play the piano visit grandparents go hiking 以及卡紙八,說教法,學法為了突破這堂課的重,難點,根據小學五年級學生好奇,好勝,內斂,愛面子,表現(xiàn)欲旺盛等生理和心理特點,我主要采取了以任務型教學模式為主,以活動,合作為主線,讓學生在教師的指導下,通過感知,體驗,實踐,參與和合作,游戲感悟等多法并用的方式組織教學.徹底改變傳統(tǒng)的"講授"的教學模式,促進語言實際運用能力的提高.
四、教學過程:為了實現(xiàn)以上教學目標,我從以下四個環(huán)節(jié)設計本課時的教學過程。(一)熱身、復習在本環(huán)節(jié)我選用歌曲“What’s your favourite season?”作為新課的熱身,使學生在輕松愉快的環(huán)境下接受英語的熏陶。通過Free talk環(huán)節(jié)談論:How many seasons in a year? What are they? 對學生所掌握的知識進行滾動復習,同時又為新課做鋪墊。(二)新知呈現(xiàn)為了更好地突出教學重點,分散難點,在這一環(huán)節(jié)將利用多媒體設置不同的任務來完成新知呈現(xiàn)。1、任務一:四季的色彩和景色課件展示春夏秋冬四季的圖片。問學生:What colour is the spring/summer/fall/ winter?在學生回答后再向學生提問:What’s your favourite season? Why?請學生根據四季的“顏色”來選擇自己喜歡的季節(jié),引導學生用句型“Because I see…”來說出自己喜歡的理由。通過“I see…”這個角度,培養(yǎng)學生善于觀察大自然,熱愛大自然的情感。2、任務二:四季的天氣和著裝提問學生“What’s the weather like in spring/summer/fall/winter?”讓學生通過談論“天氣和著裝”來選擇自己喜歡的季節(jié),并能從生活實際出發(fā),利用句型“Because I wear…”陳述喜歡的理由,進一步培養(yǎng)學生的思維能力。
由于任何一個一元一次不等式都能寫成ax+b>0(或<0)的形式,而此式的左邊與一次函數y=ax+b的右邊一致,所以從變化與對應的觀點考慮問題,解一元一次不等式也可以歸結為兩種認識:⑴從函數值的角度看,就是尋求使一次函數y=ax+b的值大于(或小于0)的自變量x的取值范圍。⑵從函數圖像的角度看,就是確定直線y=ax+b在x軸上(或下)方部分所有的點的橫坐標所構成的集合。教學過程中,主要從以上兩個角度探討一元一次不等式與一次函數的關系。1、“動”―――學生動口說,動腦想,動手做,親身經歷知識發(fā)生發(fā)展的過程。2、“探”―――引導學生動手畫圖,合作討論。通過探究學習激發(fā)強烈的探索欲望。3、“樂”―――本節(jié)課的設計力求做到與學生的生活實際聯(lián)系緊一點,直觀多一點,動手多一點,使學生興趣高一點,自信心強一點,使學生樂于學習,樂于思考。4、“滲”―――在整個教學過程中,滲透用聯(lián)系的觀點看待數學問題的辨證思想。
第一環(huán)節(jié):教師參與到其中的一個小組,用“Do you like…?”的句型提問,因為學生在上學期已經接觸了“l(fā)ike”一詞,現(xiàn)在又有了前面三次聽的機會,對本課所要學的對話有了一定的感知,預計有部分學生會回答“Yes,Ido.或No,I don’t .”當學生回答“Yes,Ido.”時,我就說:“Here you are .”同時也將水果遞給學生。在教師與學生、學生與學生的對話中,領悟了“Yes,Ido.”和“Here you are .”的意思。當學生回答“No, I don’t.” 時,教師不把水果遞給他。通過這個過程的口語與演示,學生也會領悟到“No, I don’t.”的意思。同時,進行師問生答的口語操練。師生對話要適當增加,使學生對“Yes,Ido.和No, I don’t”的句型有更多的操練機會。這樣,第一環(huán)節(jié)的目標也就達到了。第二環(huán)節(jié):由師問生答的形式,變?yōu)樯鷨枎煷?。通過教師引導,讓學生用“Do you like …”提問。因為,學生要把“Do you like …”的音讀準,有一定難度。因此,在起先學生說這句式時,要發(fā)揮教師的主導作用,讓學生跟讀,注重學生發(fā)音的準確。
5.游戲活動:每人從信封袋中挑選一個自己最喜歡的分數卡片。(1)最簡分數上講臺,和最簡分數相同的分數起立。聯(lián)系生活實際發(fā)散性思考。(2)從剩下的同學中找到自己的好朋友。幫最后兩名同學找最簡分數作朋友。判斷并說明理由。按要求參加活動,綜合考核學生判斷最簡分數和對分數進行約分的能力。創(chuàng)設生活情景,提供了一些現(xiàn)實的學習材料,把書本知識與學生的日常生活聯(lián)系起來,使學生感受到數學來自生活,并不抽象;學好數學,為生活、生產服務,學數學真有價值。部分題目設計充滿趣味性,把孩子拉入游戲之中,鞏固本課的所有知識點。在引導學生積極觀察、思考、聯(lián)想、誘發(fā)學生的創(chuàng)新因素時,更應注意引導學生克服固定的思維模式,鼓勵創(chuàng)造性地發(fā)現(xiàn)知識的規(guī)律和發(fā)表自己的獨特見解。