提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

北師大初中數學九年級上冊矩形的判定1教案

  • 北師大初中七年級數學上冊統(tǒng)計圖的選擇教案1

    北師大初中七年級數學上冊統(tǒng)計圖的選擇教案1

    (1)該校被抽查的學生共有多少名?(2)現規(guī)定視力5.1及以上為合格,若被抽查年級共有600名學生,估計該年級在2015年有多少名學生視力合格.解析:由折線統(tǒng)計圖可知2015年被抽取的學生人數,且扇形統(tǒng)計圖中對應的A區(qū)所占的百分比已知,由此即可求出被抽查的學生人數;根據扇形統(tǒng)計圖中C、D區(qū)所占的百分比,即可求出該年級在2015年有多少名學生視力合格.解:(1)該校被抽查的學生人數為80÷40%=200(人);(2)估計該年級在2015年視力合格的學生人數為600×(10%+20%)=180(人).方法總結:本題的解題技巧在于從兩個統(tǒng)計圖中獲取正確的信息,并互相補充互相利用.例如求被抽查的學生人數時,由折線統(tǒng)計圖可知2015年被抽取的學生人數是80人,與其相對應的是扇形統(tǒng)計圖中的A區(qū),而A區(qū)所占的百分比是40%,由此求出被抽查的學生人數為80÷40%=200(人).

  • 北師大初中數學八年級上冊二次根式的運算1教案

    北師大初中數學八年級上冊二次根式的運算1教案

    1.會用二次根式的四則運算法則進行簡單地運算;(重點)2.靈活運用二次根式的乘法公式.(難點)一、情境導入下面正方形的邊長分別是多少?這兩個數之間有什么關系,你能借助什么運算法則或運算律解釋它?二、合作探究探究點一:二次根式的乘除運算【類型一】 二次根式的乘法計算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法總結:幾個二次根式相乘,把它們的被開方數相乘,根指數不變,如果積含有能開得盡方的因數或因式,一定要化簡.【類型二】 二次根式的除法計算a2-2a÷a的結果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故選C.

  • 北師大初中數學八年級上冊平行線的性質1教案

    北師大初中數學八年級上冊平行線的性質1教案

    方法總結:平行線與角的大小關系、直線的位置關系是緊密聯系在一起的.由兩直線平行的位置關系得到兩個相關角的數量關系,從而得到相應角的度數.探究點四:平行于同一條直線的兩直線平行如圖所示,AB∥CD.求證:∠B+∠BED+∠D=360°.解析:證明本題的關鍵是如何使平行線與要證的角發(fā)生聯系,顯然需作出輔助線,溝通已知和結論.已知AB∥CD,但沒有一條直線既與AB相交,又與CD相交,所以需要作輔助線構造同位角、內錯角或同旁內角,但是又要保證原有條件和結論的完整性,所以需要過點E作AB的平行線.證明:如圖所示,過點E作EF∥AB,則有∠B+∠BEF=180°(兩直線平行,同旁內角互補).又∵AB∥CD(已知),∴EF∥CD(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行),∴∠FED+∠D=180°(兩直線平行,同旁內角互補).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性質),即∠B+∠BED+∠D=360°.方法總結:過一點作一條直線或線段的平行線是我們常作的輔助線.

  • 北師大初中七年級數學上冊比較線段的長短教案1

    北師大初中七年級數學上冊比較線段的長短教案1

    1.了解“兩點之間,線段最短”.2.能借助尺、規(guī)等工具比較兩條線段的大小,能用圓規(guī)作一條線段等于已知線段.3.了解線段的中點及線段的和、差、倍、分的意義,并能根據條件求出線段的長.一、情境導入愛護花草樹木是我們每個人都應具備的優(yōu)秀品質.從教學樓到圖書館,總有少數同學不走人行道而橫穿草坪(如圖),同學們,你覺得這樣做對嗎?為了解釋這種現象,學習了下面的知識,你就會知道.二、合作探究探究點一:線段長度的計算【類型一】 根據線段的中點求線段的長如圖,若線段AB=20cm,點C是線段AB上一點,M、N分別是線段AC、BC的中點.(1)求線段MN的長;(2)根據(1)中的計算過程和結果,設AB=a,其它條件不變,你能猜出MN的長度嗎?請用簡潔的話表達你發(fā)現的規(guī)律.

  • 北師大初中七年級數學上冊等式的基本性質教案1

    北師大初中七年級數學上冊等式的基本性質教案1

    方法總結:對等式進行變形,必須在等式的兩邊同時進行,即同加或同減,同乘或同除,不能漏掉一邊,且同加或同減,同乘或同除的數必須相同.探究點二:利用等式的基本性質解方程用等式的性質解下列方程:(1)4x+7=3; (2)12x-13x=4.解析:(1)在等式的兩邊都減7,再在等式的兩邊都除以4,可得答案;(2)在等式的兩邊都乘以6,再合并同類項,可得答案.解:(1)方程兩邊都減7,得4x=-4.方程兩邊都除以4,得x=-1;(2)方程兩邊都乘以6,得3x-2x=24,x=24.方法總結:解方程時,一般先將方程變形為ax=b的形式,然后再變形為x=c的形式.三、板書設計教學過程中,強調學生自主探索和合作交流,通過觀察、操作、歸納等數學活動,感受數學思想的條理性和數學結論的嚴密性.

  • 北師大初中數學八年級上冊認識勾股定理1教案

    北師大初中數學八年級上冊認識勾股定理1教案

    方法總結:題中未給出圖形,作高構造直角三角形時,易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內的情形,忽視高AD在△ABC外的情形.探究點二:利用勾股定理求面積如圖,以Rt△ABC的三邊長為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中△ABE的面積為________,陰影部分的面積為________.解析:因為AE=BE,所以S△ABE=12AE·BE=12AE2.又因為AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因為AC2+BC2=AB2,所以陰影部分的面積為14AB2+14AB2=12AB2=12×32=92.故填94、92.方法總結:求解與直角三角形三邊有關的圖形面積時,要結合圖形想辦法把圖形的面積與直角三角形三邊的平方聯系起來,再利用勾股定理找到圖形面積之間的等量關系.

  • 北師大初中數學八年級上冊驗證勾股定理1教案

    北師大初中數學八年級上冊驗證勾股定理1教案

    探究點二:勾股定理的簡單運用如圖,高速公路的同側有A,B兩個村莊,它們到高速公路所在直線MN的距離分別為AA1=2km,BB1=4km,A1B1=8km.現要在高速公路上A1、B1之間設一個出口P,使A,B兩個村莊到P的距離之和最短,求這個最短距離和.解析:運用“兩點之間線段最短”先確定出P點在A1B1上的位置,再利用勾股定理求出AP+BP的長.解:作點B關于MN的對稱點B′,連接AB′,交A1B1于P點,連BP.則AP+BP=AP+PB′=AB′,易知P點即為到點A,B距離之和最短的點.過點A作AE⊥BB′于點E,則AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).由勾股定理,得B′A2=AE2+B′E2=82+62,∴AB′=10(km).即AP+BP=AB′=10km,故出口P到A,B兩村莊的最短距離和是10km.方法總結:解這類題的關鍵在于運用幾何知識正確找到符合條件的P點的位置,會構造Rt△AB′E.三、板書設計勾股定理驗證拼圖法面積法簡單應用通過拼圖驗證勾股定理并體會其中數形結合的思想;應用勾股定理解決一些實際問題,學會勾股定理的應用并逐步培養(yǎng)學生應用數學解決實際問題的能力,為后面的學習打下基礎.

  • 北師大初中九年級數學下冊二次函數y=ax2+bx+c的圖象與性質1教案

    北師大初中九年級數學下冊二次函數y=ax2+bx+c的圖象與性質1教案

    解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點E(1,1.4),B(6,0.9),把坐標代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時,對應的x的兩個值,從而可確定t的取值范圍.解:(1)由題意得點E的坐標為(1,1.4),點B的坐標為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當y=1.575時,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結:解答本題的關鍵是注意審題,將實際問題轉化為求函數問題,培養(yǎng)自己利用數學知識解答實際問題的能力.三、板書設計二次函數y=ax2+bx+c的圖象與性質1.二次函數y=ax2+bx+c的圖象與性質2.二次函數y=ax2+bx+c的應用

  • 北師大初中九年級數學下冊二次函數y=a(x-h)2+k的圖象與性質1教案

    北師大初中九年級數學下冊二次函數y=a(x-h)2+k的圖象與性質1教案

    (3)設點A的坐標為(m,0),則點B的坐標為(12-m,0),點C的坐標為(12-m,-16m2+2m),點D的坐標為(m,-16m2+2m).∴“支撐架”總長AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數的圖象開口向下,∴當m=3米時,“支撐架”的總長有最大值為15米.方法總結:解決本題的關鍵是根據圖形特點選取一個合適的參數表示它們,得出關系式后運用函數性質來解.三、板書設計二次函數y=a(x-h(huán))2+k的圖象與性質1.二次函數y=a(x-h(huán))2+k的圖象與性質2.二次函數y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關系3.二次函數y=a(x-h(huán))2+k的應用要使課堂真正成為學生展示自我的舞臺,還學生課堂學習的主體地位,教師要把激發(fā)學生學習熱情和提高學生學習能力放在教學首位,為學生提供展示自己聰明才智的機會,使課堂真正成為學生展示自我的舞臺.充分利用合作交流的形式,能使教師發(fā)現學生分析問題、解決問題的獨到見解以及思維的誤區(qū),以便指導今后的教學.

  • 北師大初中九年級數學下冊二次函數y=ax2和y=ax2+c的圖象與性質1教案

    北師大初中九年級數學下冊二次函數y=ax2和y=ax2+c的圖象與性質1教案

    變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第5題【類型二】 在同一坐標系中判斷二次函數和一次函數的圖象在同一直角坐標系中,一次函數y=ax+c和二次函數y=ax2+c的圖象大致為()解析:∵一次函數和二次函數都經過y軸上的點(0,c),∴兩個函數圖象交于y軸上的同一點,故B選項錯誤;當a>0時,二次函數的圖象開口向上,一次函數的圖象從左向右上升,故C選項錯誤;當a<0時,二次函數的圖象開口向下,一次函數的圖象從左向右下降,故A選項錯誤,D選項正確.故選D.方法總結:熟記一次函數y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數的有關性質(開口方向、對稱軸、頂點坐標等)是解決問題的關鍵.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升” 第4題【類型三】 二次函數y=ax2+c的圖象與三角形的綜合

  • 北師大初中九年級數學下冊二次函數y=x2和y=-x2的圖象與性質1教案

    北師大初中九年級數學下冊二次函數y=x2和y=-x2的圖象與性質1教案

    雨后天空的彩虹、河上架起的拱橋等都會形成一條曲線.問題1:這些曲線能否用函數關系式表示?問題2:如何畫出這樣的函數圖象?二、合作探究探究點:二次函數y=x2和y=-x2的圖象與性質【類型一】 二次函數y=x2和y=-x2的圖象的畫法及特點在同一平面直角坐標系中,畫出下列函數的圖象:(1)y=x2;(2)y=-x2.根據圖象分別說出拋物線(1)(2)的對稱軸、頂點坐標、開口方向及最高(低)點坐標.解析:利用列表、描點、連線的方法作出兩個函數的圖象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描點、連線可得圖象如下:(1)拋物線y=x2的對稱軸為y軸,頂點坐標為(0,0),開口方向向上,最低點坐標為(0,0);(2)拋物線y=-x2的對稱軸為y軸,頂點坐標為(0,0),開口方向向下,最高點坐標為(0,0).方法總結:畫拋物線y=x2和y=-x2的圖象時,還可以根據它的對稱性,先用描點法描出拋物線的一側,再利用對稱性畫另一側.

  • 北師大初中七年級數學上冊代數式的求值教案2

    北師大初中七年級數學上冊代數式的求值教案2

    解 由題意可得,今年的年產值為a·(1+10%) 億元,于是明年的年產值為a·(1+10%)·(1+10%)= 1.21a(億元).若去年的年產值為2億元,則明年的年產值為1.21a =1.21×2 = 2.42(億元).答:該企業(yè)明年的年產值將能達到1.21a億元.由去年的年產值是2億元,可以預計明年的年產值是2.42億元.例3 當x=-3時,多項式mx3+nx-81的值是10,當x = 3時,求該代數式的值.解 當x=-3時,多項式mx3+nx-81=-27m-3n-81, 此時-27m-3n-81=10, 所以27m+3n=-91.則當x=3,mx3+nx-81 =( 27m+3n )-81=-91-81=-172.注:本題采用了一種重要的數學思想——“整體思想”.即是考慮問題時不是著眼于他的局部特征,而是把注意力和著眼點放在問題的整體結構上,把一些彼此獨立,但實質上又相互緊密聯系著的量作為整體來處理的思想方法.

  • 北師大初中七年級數學上冊有理數乘法的運算律教案2

    北師大初中七年級數學上冊有理數乘法的運算律教案2

    分析:(1)(2)用乘法的交換、結合律;(3)(4)用分配律,4.99寫成5-0.01學生板書完成,并說明根據什么?略例3、某校體育器材室共有60個籃球。一天課外活動,有3個班級分別計劃借籃球總數的 , 和 。請你算一算,這60個籃球夠借嗎?如果夠了,還多幾個籃球?如果不夠,還缺幾個?解:=60-30-20-15 =-5答:不夠借,還缺5個籃球。練習鞏固:第41頁1、2、7、探究活動 (1)如果2個數的積為負數,那么這2個數中有幾個負數?如果3個數的積為負數,那么這3個數中有幾個負數?4個數呢?5個數呢?6個數呢?有什么規(guī)律? (2)逆用分配律 第42頁 5、用簡便方法計算(三)課堂小結通過本節(jié)課的學習,大家學會了什么?本節(jié)課我們探討了有理數乘法的運算律及其應用.乘法的運算律有:乘法交換律:a×b=b×a;乘法結合律:(a×b)×c=a×(b×c);分配律:a×(b+c)=a×b+a×c.在有理數的運算中,靈活運用運算律可以簡化運算.(四)作業(yè):課本42頁作業(yè)題

  • 北師大初中七年級數學上冊有理數的乘法法則教案2

    北師大初中七年級數學上冊有理數的乘法法則教案2

    討論歸納,總結出多個有理數相乘的規(guī)律:幾個不等于0的因數相乘,積的符號由負因數的個數決定。當負因數有奇數個時,積的符號為負;當負因數有偶數個時,積的符號為正。只要有一個因數為0,積就為0。(2)幾個不等于0的因數相乘時,積的絕對值是多少?(生:積的絕對值是這幾個因數的絕對值的乘積.)例2、計算:(1) ;(2) 分析:(1)有多個不為零的有理數相乘時,可以先確定積的符號,再把絕對值相乘;(2)若其中有一個因數為0,則積為0。解:(1) = (2) =0練習(1) ,(2) ,(3) 6、探索活動:把-6表示成兩個整數的積,有多少種可能性?把它們全部寫出來。(三)課堂小結通過本節(jié)課的學習,大家學會了什么?(1)有理數的乘法法則。(2)多個不等于0的有理數相乘,積的符號由負因數的個數決定。(3)幾個數相乘時,如果有一個因數是0,則積就為0。(4)乘積是1的兩個有理數互為倒數。(四)作業(yè):課本作業(yè)題

  • 北師大初中七年級數學上冊有理數的混合運算教案2

    北師大初中七年級數學上冊有理數的混合運算教案2

    1、掌握有理數混合運算法則,并能進行有理數的混合運算的計算。2、經歷“二十四”點游戲,培養(yǎng)學生的探究能力[教學重點]有理數混合運算法則。[教學難點]培養(yǎng)探索思 維方式。【教學過程】情境導入——有理數的混合運算是指一個算式里含有加、減、乘、除、乘方的多種運算.下面的算式里有哪幾種運算?3+50÷22×( )-1.有理數混合運算的運算順序規(guī)定如下:1 先算乘方,再算乘除,最后算加減;2 同級運算,按照從左至右的順序進行;3 如果有括號,就先算小括號里的,再算中括號里的,最后算大括號里的。 加法和減法叫做第一級運算;乘法和除法叫做第二級運算;乘方和開方(今后將會學到)叫做第三級運算。注意:可以應用運算律,適當改變運算順序,使運算簡便.合作探究——

  • 北師大初中七年級數學上冊有理數的加法法則教案2

    北師大初中七年級數學上冊有理數的加法法則教案2

    師生共同歸納法則2、異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。生5:這兩天的庫存量合計增加了2噸。(+3)+(-1)=+2 或(+8)+(-6)=+2師:會不會出現和為零的情況?提示:可以聯系倉庫進出貨的具體情形。生6:如星期一倉庫進貨5噸,出貨5噸,則庫存量為零。(+5)+(-5)=0師生共同歸納法則3、互為相反數的兩個數相加得零。師:你能用加法法則來解釋法則3嗎?生7:可用異號兩數相加的法則。一般地還有:一個數同零相加,仍得這個數。小結:運算關鍵:先分類運算步驟:先確定符號,再計算絕對值做一做:(口答)確定下列各題中和的符號,并說明理由:(1)(+3)+(+7);(2)(-10)+(-3);(3)(+6)+(-5);(4)0+(-5).例 計算下列各式:(1)(-3)+(-4);(2)(-2.5)+5;(3)(-2)+0;(4)(+ )+(- )教法:請四位學生板演,讓學生批改并說明理由。

  • 北師大初中數學八年級上冊單個一次函數圖象的應用2教案

    北師大初中數學八年級上冊單個一次函數圖象的應用2教案

    (1)用簡潔明快的語言概括大意,不能超過200字;(2)圖表中能確定的數值,在故事敘述中不得少于3個,且要分別涉及時間、路和速度這三個量.意圖:旨在檢測學生的識圖能力,可根據學生情況和上課情況適當調整。說明:練習注意了問題的梯度,由淺入深,一步步引導學生從不同的圖象中獲取信息,對同學的回答,教師給予點評,對回答問題暫時有困難的同學,教師應幫助他們樹立信心。第四環(huán)節(jié):課時小結內容:本節(jié)課我們學習了一次函數圖象的應用,在運用一次函數解決實際問題時,可以直接從函數圖象上獲取信息解決問題,當然也可以設法得出各自對應的函數關系式,然后借助關系式完全通過計算解決問題。通過列出關系式解決問題時,一般首先判斷關系式的特征,如兩個變量之間是不是一次函數關系?當確定是一次函數關系時,可求出函數解析式,并運用一次函數的圖象和性質進一步求得我們所需要的結果.

  • 北師大初中數學八年級上冊正比例函數的圖象和性質2教案

    北師大初中數學八年級上冊正比例函數的圖象和性質2教案

    四、教學設計反思這節(jié)內容是學生利用數形結合的思想去研究正比例函數的圖象,對函數與圖象的對應關系有點陌生.在教學過程中教師應通過情境創(chuàng)設激發(fā)學生的學習興趣,對函數與圖象的對應關系應讓學生動手去實踐,去發(fā)現,對正比例函數的圖象是一條直線應讓學生自己得出.在得出結論之后,讓學生能運用“兩點確定一條直線”,很快作出正比例函數的圖象.在鞏固練習活動中,鼓勵學生積極思考,提高學生解決實際問題的能力.當然,根據學生狀況,教學設計也應做出相應的調整。如第一環(huán)節(jié):創(chuàng)設情境 引入課題,固然可以激發(fā)學生興趣,但也可能容易讓學生關注代數表達式的尋求,甚至對部分學生形成一定的認知障礙,因此該環(huán)節(jié)也可以直接開門見山,直入主題,如提出問題:正比例函數的代數形式是y=kx,那么,一個正比例函數對應的圖形具有什么特征呢?

  • 北師大初中七年級數學上冊有理數的乘方教案2

    北師大初中七年級數學上冊有理數的乘方教案2

    二.思考:(-2) 可以寫成-2 嗎?( ) 可以寫成 嗎?(指名學生回答,師生共同總結:負數和分數的乘方書寫時,一定要把整個負數和分數用小括號括起來)三.計算:①(-2) ,②-2 ,③(- ) ,④ (叫4個學生上臺板演,其他練習本上完成,教師巡視,確保人人學得緊張高效).(四)討論更正,合作探究1.學生自由更正,或寫出不同解法;2.評講思考:將三題①③中將底數換成為正數或0,結果有什么規(guī)律?學生總結:負數的奇次冪是負數,負數的偶次冪是正數,正數的任何次冪都是正數,0的任何正整數次冪都為0。有理數的乘方就是幾個相同因數積的運算,可以運用有理數乘方法則進行符號的確定和冪的求值.乘方的含義:①表示一種運算;②表示運算的結果.

  • 北師大初中數學八年級上冊兩個一次函數圖象的應用2教案

    北師大初中數學八年級上冊兩個一次函數圖象的應用2教案

    學習目標1.掌握兩個一次函數圖像的應用;(重點)2.能利用函數圖象解決實際問題。(難點)教學過程一、情景導入在一次蠟燭燃燒實驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(厘米)與燃燒時間x(小時)之間的關系如圖所示.請你根據圖象所提供的信息回答下列問題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點燃到燃盡所用的時間分別是 小時、 小時.你會解答上面的問題嗎?學完本解知識,相信你能很快得出答案。二、 合作探究探究點一:兩個一次函數的應用(2015?日照模擬)自來水公司有甲、乙兩個蓄水池,現將甲池的中水勻速注入乙池,甲、乙兩個蓄水池中水的深度y(米)與注水時間x(時)之間的函數圖象如下所示,結合圖象回答下列問題.(1)分別求出甲、乙兩個蓄水池中水的深度y與注水時間x之間的函數表達式;(2)求注入多長時間甲、乙兩個蓄水池水的深度相同;(3)求注入多長時間甲、乙兩個蓄水的池蓄水量相同;

上一頁456789101112131415下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。