第一環(huán)節(jié)感受生活中的情境,導入新課通過若干圖片,引導學生感受生活中常常需要確定位置.導入新課:怎樣確定位置呢?——§3.1確定位置。第二環(huán)節(jié)分類討論,探索新知1.溫故啟新(1)溫故:在數(shù)軸上,確定一個點的位置需要幾個數(shù)據(jù)呢? 答:一個,例如,若A點表示-2,B點表示3,則由-2和3就可以在數(shù)軸上找到A點和B點的位置??偨Y(jié)得出結(jié)論:在直線上, 確定一個點的位置一般需要一個數(shù)據(jù).(2)啟新:在平面內(nèi),又如何確定一個點的位置呢?請同學們根據(jù)生活中確定位置的實例,請談談自己的看法.2.舉例探究Ⅰ. 探究1(1)在電影院內(nèi)如何找到電影票上指定的位置?(2)在電影票上“6排3號”與“3排6號”中的“6”的含義有什么不同?(3)如果將“6排3號”簡記作(6,3),那么“3排6號”如何表示?(5,6)表示什么含義? (4) 在只有一層的電影院內(nèi),確定一個座位一般需要幾個數(shù)據(jù)?結(jié)論:生活中常常用“排數(shù)”和“號數(shù)”來確定位置. Ⅱ. 學有所用(1) 你能用兩個數(shù)據(jù)表示你現(xiàn)在所坐的位置嗎?
探究點二:三角形內(nèi)角和定理的推論2如圖,P是△ABC內(nèi)的一點,求證:∠BPC>∠A.解析:由題意無法直接得出∠BPC>∠A,延長BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得證.證明:延長BP交AC于D,∵∠BPC是△ABC的外角(外角定義),∴∠BPC>∠PDC(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角).同理可證:∠PDC>∠A,∴∠BPC>∠A.方法總結(jié):利用推論2證明角的大小時,兩個角應是同一個三角形的內(nèi)角和外角.若不是,就需借助中間量轉(zhuǎn)化求證.三、板書設計三角形的外角外角:三角形的一邊與另一邊的延長線所組成的 角,叫做三角形的外角推論1:三角形的一個外角等于和它不相鄰的兩 個內(nèi)角的和推論2:三角形的一個外角大于任何一個和它不 相鄰的內(nèi)角利用已經(jīng)學過的知識來推導出新的定理以及運用新的定理解決相關問題,進一步熟悉和掌握證明的步驟、格式、方法、技巧.進一步培養(yǎng)學生的邏輯思維能力和推理能力,特別是培養(yǎng)有條理的想象和探索能力,從而做到強化基礎,激發(fā)學習興趣.
3.想一想在例1中,(1)點B與點C的縱坐標相同,線段BC的位置有什么特點?(2)線段CE位置有什么特點?(3)坐標軸上點的坐標有什么特點?由B(0,-3),C(3,-3)可以看出它們的縱坐標相同,即B,C兩點到X軸的距離相等,所以線段BC平行于橫軸(x軸),垂直于縱軸(y軸)。第三環(huán)節(jié)學有所用.補充:1.在下圖中,確定A,B,C,D,E,F(xiàn),G的坐標。(第1題) (第2題)2.如右圖,求出A,B,C,D,E,F(xiàn)的坐標。第四環(huán)節(jié)感悟與收獲1.認識并能畫出平面直角坐標系。2.在給定的直角坐標系中,由點的位置寫出它的坐標。3.能適當建立直角坐標系,寫出直角坐標系中有關點的坐標。4.橫(縱)坐標相同的點的直線平行于y軸,垂直于x軸;連接縱坐標相同的點的直線平行于x軸,垂直于y軸。5.坐標軸上點的縱坐標為0;縱坐標軸上點的坐標為0。6.各個象限內(nèi)的點的坐標特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。
教學過程我主要分為六部分:一、新課引入,二、探究新知 ,三、鞏固新知,四、感悟收獲,五、布置作業(yè),六、板書設計 (一)、新課引入教師提問:一個直角三角形中,一個銳角正弦、余弦、正切值是怎么定義的? sinA如圖在 Rt△ABC中,∠C=90°。(1)a、b、c三者之間的關系是 ,∠A+∠B= 。 (2)sinA=sinB= , cosB= ,tanB= 。 (3)若A=30°,則B(4)sinA和cosB有什么關系?____________________;【設計意圖】回顧上節(jié)課所學的內(nèi)容,便于后面教學的開展。 (二)、探究新知活動一、探索特殊角的三角函數(shù),并填寫課本表格[問題] 1、觀察一副三角尺,其中有幾個銳角?它們分別等于多少度? [問題] 2、sin30°等于多少呢?你是怎樣得到的?與同伴交流. [問題] 3、cos30°等于多少?tan30°呢? [問題] 4、我們求出了30°角的三個三角函數(shù)值,還有兩個特殊角——45°、60°,它們的三角函數(shù)值分別是多少?你是如何得到的? 1、特殊角的三角函數(shù)值表:
設計意圖:最后是當堂訓練,目標檢測,這一環(huán)節(jié)要盡量讓學生獨立完成,使訓練高效,在學生訓練時教師要巡回輔導,重點關注課堂表現(xiàn)不太突出的學生,由于本課時內(nèi)容多,訓練貫穿課堂始終,加上不能使用計算器,因此課堂節(jié)奏難于加快,所以當堂訓練的時間預估不足。四、教學思考1.教材是素材,本節(jié)課對教材進行了全新的處理和大膽的取舍,力求創(chuàng)設符合學生實際的問題情境,讓學生經(jīng)歷從實際問題中抽象出銳角三角函數(shù)模型的過程,發(fā)展了學生的應用意識及分析問題解決問題的能力,培養(yǎng)了學生的數(shù)學建模能力及轉(zhuǎn)化的思維方法。2.充分相信學生并為學生提供展示自己的機會,課堂上要把激發(fā)學生學習熱情和獲得學習能力放在教學首位,通過運用各種啟發(fā)、激勵的語言,以及小組交流、演板等形式,幫助學生形成積極主動的求知態(tài)度。
解析:水是生命之源,節(jié)約水資源是我們每個居民都應有的意識.題中給出假如每人浪費一點水,當人數(shù)增多時,將是一個非常驚人的數(shù)字,100萬人每天浪費的水資源為1000000×0.32=320000(升).所以320000=3.2×105.故選B.方法總結(jié):從實際問題入手讓學生體會科學記數(shù)法的實際應用.題中沒有直接給出數(shù)據(jù),應先計算,再表示.探究點二:將用科學記數(shù)法表示的數(shù)轉(zhuǎn)換為原數(shù)已知下列用科學記數(shù)法表示的數(shù),寫出原來的數(shù):(1)2.01×104;(2)6.070×105.解析:(1)將2.01的小數(shù)點向右移動4位即可;(2)將6.070的小數(shù)點向右移動5位即可.解:(1)2.01×104=20100;(2)6.070×105=607000.方法總結(jié):將科學記數(shù)法a×10n表示的數(shù),“還原”成通常表示的數(shù),就是把a的小數(shù)點向右移動n位所得到的數(shù).三、板書設計借助身邊熟悉的事物進一步體會大數(shù),積累數(shù)學活動經(jīng)驗,發(fā)展數(shù)感、空間感,培養(yǎng)學生自主學習的能力.
將有理數(shù)-2,+1,0,-212,314在數(shù)軸上表示出來,并用“<”號連接各數(shù).解析:利用數(shù)軸上的點來表示相應的數(shù),再利用它們對應點的位置來判斷各數(shù)的大小.解:如圖:由數(shù)軸可知-212<-2<0<+1<314.方法總結(jié):一般地,數(shù)軸上多個數(shù)的大小比較,可利用“數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大”這一性質(zhì)進行比較.探究點四:點在數(shù)軸上的移動問題點A為數(shù)軸上表示-2的動點,當點A沿數(shù)軸移動4個單位長度到點B時,點B所表示的有理數(shù)為()A.2 B.-6C.2或-6 D.以上答案都不對解析:∵點A為數(shù)軸上表示-2的動點,①當點A沿數(shù)軸向左移動4個單位長度時,點B所表示的有理數(shù)為-6;②當點A沿數(shù)軸向右移動4個單位長度時,點B所表示的有理數(shù)為2.故選C.方法總結(jié):點A在數(shù)軸上移動要注意分兩種情況:一個向左,一個向右,不要漏掉其中的一種情況.
解析:本題是要求兩個未知數(shù),即3和4的權.所以應把平均數(shù)與方程組綜合起來,利用平均數(shù)的定義來列方程,組成方程組求解.解:設投進3個球的有x人,投進4個球的有y人,由題意,得3x+4y+5×2=3.5×(x+y+2),0×1+1×2+2×7+3x+4y=2.5×(1+2+7+x+y).整理,得x-y=6,x+3y=18.解得x=9,y=3.答:投進3個球的有9人,投進4個球的有3人.方法總結(jié):利用平均數(shù)的公式解題時,要弄清數(shù)據(jù)及相應的權,避免出錯.三、板書設計平均數(shù)算術平均數(shù):x=1n(x1+x2+…+xn)加權平均數(shù):x=(x1f1+x2f2+…+xnfn)f1+f2+…fn通過探索算術平均數(shù)和加權平均數(shù)的聯(lián)系與區(qū)別,培養(yǎng)學生的思維能力;通過有關平均數(shù)問題的解決,提升學生的數(shù)學應用能力.通過解決實際問題,體會數(shù)學與社會生活的密切聯(lián)系,了解數(shù)學的價值,增進學生對數(shù)學的理解和增加學好數(shù)學的信心.
探究點三:函數(shù)的圖象洗衣機在洗滌衣服時,每漿洗一遍都經(jīng)歷了注水、清洗、排水三個連續(xù)過程(工作前洗衣機內(nèi)無水).在這三個過程中,洗衣機內(nèi)的水量y(升)與漿洗一遍的時間x(分)之間函數(shù)關系的圖象大致為()解析:∵洗衣機工作前洗衣機內(nèi)無水,∴A,B兩選項不正確,淘汰;又∵洗衣機最后排完水,∴D選項不正確,淘汰,所以選項C正確,故選C.方法總結(jié):本題考查了對函數(shù)圖象的理解能力,看函數(shù)圖象要理解兩個變量的變化情況.三、板書設計函數(shù)定義:自變量、因變量、常量函數(shù)的關系式三種表示方法函數(shù)值函數(shù)的圖象在教學過程中,注意通過對以前學過的“變量之間的關系”的回顧與思考,力求提供生動有趣的問題情境,激發(fā)學生的學習興趣,并通過層層深入的問題設計,引導學生進行觀察、操作、交流、歸納等數(shù)學活動.在活動中歸納、概括出函數(shù)的概念,并通過師生交流、生生交流、辨析識別等加深學生對函數(shù)概念的理解.
方法總結(jié):描述一個代數(shù)式的意義,可以從字母本身出發(fā)來描述字母之間的數(shù)量關系,也可以聯(lián)系生活實際或幾何背景賦予其中字母一定的實際意義加以描述.探究點四:根據(jù)實際問題列代數(shù)式用代數(shù)式表示下列各式:(1)王明同學買2本練習冊花了n元,那么買m本練習冊要花多少元?(2)正方體的棱長為a,那么它的表面積是多少?體積呢?解析:(1)根據(jù)買2本練習冊花了n元,得出買1本練習冊花n2元,再根據(jù)買了m本練習冊,即可列出算式.(2)根據(jù)正方體的棱長為a和表面積公式、體積公式列出式子.解:(1)∵買2本練習冊花了n元,∴買1本練習冊花n2元,∴買m本練習冊要花12mn元;(2)∵正方體的棱長為a,∴它的表面積是6a2;它的體積是a3.方法總結(jié):此題考查了列代數(shù)式,用到的知識點包括正方體的表面積公式和體積公式,根據(jù)題意列出式子是解本題的關鍵.
新建成的紅星中學,首次招收七年級新生12個班共500人,學校準備修建一個自行車車棚.請問需要修建多大面積的自行車車棚?請你設計一個調(diào)查方案解決這個問題.解析:決定自行車車棚面積的因素有兩個,即自行車的數(shù)量與每輛自行車的占地面積.因此收集數(shù)據(jù)的重點應圍繞這兩個因素進行.解:調(diào)查方案如下:(1)對全體新生的到校方式進行問卷調(diào)查.調(diào)查問卷如下:你到校的方式是騎自行車嗎?A.經(jīng)常是 B.不經(jīng)常是C.很少是 D.從不是(2)根據(jù)調(diào)查問卷結(jié)果分類統(tǒng)計騎自行車的人數(shù);(3)實際測量或估計存放1輛自行車的大約占地面積;(4)根據(jù)學校的建設規(guī)劃、財力等因素確定自行車車棚的面積.方法總結(jié):確定調(diào)查方案時必須明確兩個問題:(1)需要收集哪些數(shù)據(jù)?(2)采用什么方式進行調(diào)查可以獲得這些數(shù)據(jù)?探究點三:從圖表中獲取信息小冰就公眾對在餐廳吸煙的態(tài)度進行了調(diào)查,并將調(diào)查結(jié)果制作成如圖所示的統(tǒng)計圖,請根據(jù)圖中的信息回答下列問題:
解:有理數(shù):3.14,-53,0.58··,-0.125,0.35,227;無理數(shù):-5π,5.3131131113…(相鄰兩個3之間1的個數(shù)逐次加1).方法總結(jié):有理數(shù)與無理數(shù)的主要區(qū)別.(1)無理數(shù)是無限不循環(huán)小數(shù),而有理數(shù)可以用有限小數(shù)或無限循環(huán)小數(shù)表示.(2)任何一個有理數(shù)都可以化為分數(shù)形式,而無理數(shù)則不能.探究點二:借助計算器用“夾逼法”求無理數(shù)的近似值正數(shù)x滿足x2=17,則x精確到十分位的值是________.解析:已知x2=17,所以417,所以4.117,所以4.120)中的正數(shù)x各位上的數(shù)字的方法:(1)估計x的整數(shù)部分,看它在哪兩個連續(xù)整數(shù)之間,較小數(shù)即為整數(shù)部分;(2)確定x的十分位上的數(shù),同樣尋找它在哪兩個連續(xù)整數(shù)之間;(3)按照上述方法可以依次確定x的百分位、千分位、…上的數(shù),從而確定x的值.
方法總結(jié):本題考查了利用數(shù)軸,比較數(shù)的大小關系,對于含有絕對值的式子的化簡,要根據(jù)絕對值內(nèi)的式子的正負,去掉絕對值符號.探究點四:含括號的整式的化簡應用某商店有一種商品每件成本a元,原來按成本增加b元定出售價,售出40件后,由于庫存積壓,調(diào)整為按售價的80%出售,又銷售了60件.(1)銷售100件這種商品的總售價為多少元?(2)銷售100件這種商品共盈利多少元?解析:(1)求出前40件的售價與后60件的售價即可確定出總售價;(2)由“利潤=售價-成本”列出關系式即可得到結(jié)果.解:(1)根據(jù)題意得:40(a+b)+60(a+b)×80%=88a+88b(元),則銷售100件這種商品的總售價為(88a+88b)元;(2)根據(jù)題意得:88a+88b-100a=-12a+88b(元),則銷售100件這種商品共盈利(-12a+88b)元.方法總結(jié):解決此類題目的關鍵是熟記去括號法則和熟練運用合并同類項的法則.
1、如圖,OA、OB是兩條射線,C是OA上一點,D、E是OB上兩點,則圖中共有 條錢段、它們分別是 ;圖中共有 射線,它們分別是 。2、如果線段AB=5cm,BC=3cm,那么A、C兩點間的距離是 3、(1)用度、分、秒表示48.26° (2)用度表示37°28′24″ 4、從3點到5點30分,時鐘的時針轉(zhuǎn)過了 度。5、一輪船航行到B處測得小島A的方向為北偏西30°,則從A處觀測此B處的方向為( ) A. 南偏東30° B. 東偏北30° C. 南偏東60° D. 東偏北60°6、已知,OA⊥OC,∠AOB∶∠AOC=2∶3,則∠BOC的度數(shù)為( )A. 30° B. 150° C. 30°或150° D. 不同于上述答案7、如圖,AO⊥OB,直線CD過點O,且∠BOD=130°,求∠AOD的大小。8、已知:如圖,B、C兩點把線段AD分成2∶4∶3三部分,M是AD的中點,CD=6,求:線段MC的長。9、平面上有n個點(n≥2)且任意三個點不在同一直線上,經(jīng)過每兩個點畫一條直線,一共可以畫多少條直線?遷移:某足球比賽中有20個球隊進行單循環(huán)比賽(每兩隊之間必須比賽一場),那么一共要進行多少場比賽?
16.已知甲組有28人,乙組有20人,則下列調(diào)配方法中,能使一組人數(shù)為另一組人數(shù)的一半的是( ).A.從甲組調(diào)12人去乙組 B.從乙組調(diào)4人去甲組C.從乙組調(diào)12人去甲組 D.從甲組調(diào)12人去乙組,或從乙組調(diào)4人去甲組17.足球比賽的規(guī)則為勝一場得3分,平一場得1分,負一場是0分,一個隊打了14場比賽,負了5場,共得19分,那么這個隊勝了( )場.A.3 B.4 C.5 D.618.如圖所示,在甲圖中的左盤上將2個物品取下一個,則在乙圖中右盤上取下幾個砝碼才能使天平仍然平衡?( )A.3個 B.4個 C.5個 D.6個三、解答題.(19,20題每題6分,21,22題每題7分,23,24題每題10分,共46分)19.解方程:2(x-3)+3(2x-1)=5(x+3)20.解方程: 21.如圖所示,在一塊展示牌上整齊地貼著許多資料卡片,這些卡片的大小相同,卡片之間露出了三塊正方形的空白,在圖中用斜線標明.已知卡片的短邊長度為10厘米,想要配三張圖片來填補空白,需要配多大尺寸的圖片.
一、教學目標:1、會辨認基本幾何體(直棱柱、圓柱、圓錐、球等)2、了解直棱柱、圓柱、圓錐的側(cè)面展開圖,能根據(jù)展開圖判斷和制作立體模型;3、能想象基本幾何體的截面形狀;4、會畫基本幾何體的三視圖,會判斷簡單物體的三視圖,能根據(jù)三視圖描述幾何體或?qū)嵨镌停?、能從豐富的現(xiàn)實背景中抽象出空間幾何體和基本平面圖形,進一步認識點、線、面。6、獲得一些研究問題的方法和經(jīng)驗,發(fā)展思維能力,加深理解相關的數(shù)學知識。7、體驗數(shù)學知識之間的內(nèi)在聯(lián)系,初步形成對數(shù)學整體性的認識。教學重點:在具體的情境中,認識一些基本的幾何體,并能描述這些幾何體的特征。教學難點:是描述幾何體的特征,對幾何體進行分類。二、設疑自探1、梳理本章知識(一)生活中有哪些你熟悉的圖形?舉例說明.(二)你喜歡哪些幾何體?舉出一個生活中的物體,使它盡可能地包含不同的幾何體.(三)用自己的語言說一說棱柱的特征?(直棱柱)
一天,王村的小明奶奶提著一籃子土豆去換蘋果,雙方商定的結(jié)果是:1千克土豆換0.5千克蘋果.當稱完帶籃子的土豆重量后,攤主對小明奶奶說:“別稱籃子的重量了,稱蘋果時也帶籃子稱,這樣既省事又互不吃虧.”你認為攤主的話有道理嗎?請你用所學的有關數(shù)學知識加以判定.解析:要看攤主說得有沒有道理,只要按稱籃子和不稱籃子兩種方式分別求出所得蘋果的重量,比較即可.解:設土豆重a千克,籃子重b千克,則應換蘋果0.5a千克.若不稱籃子,則實換蘋果為0.5a+0.5b-b=(0.5a-0.5b)千克,很明顯小明奶奶少得蘋果0.5b千克.所以攤主說得沒有道理,這樣做小明奶奶吃虧了.方法總結(jié):體現(xiàn)了數(shù)學在生活中的運用.解決問題的關鍵是讀懂題意,找到所求的量之間的關系.三、板書設計數(shù)學教學要緊密聯(lián)系學生的生活實際,本節(jié)課從實際問題入手,引出合并同類項的概念.通過獨立思考、討論交流等方式歸納出合并同類項的法則,通過例題教學、練習等方式鞏固相關知識.教學中應激發(fā)學生主動參與學習的積極性,培養(yǎng)學生思維的靈活性.
方法總結(jié):由絕對值的定義可知,一個數(shù)的絕對值越小,離原點越近.將實際問題轉(zhuǎn)化為數(shù)學問題,即為與標準質(zhì)量的差的絕對值越小,越接近標準質(zhì)量.【類型四】 絕對值的非負性已知|x-3|+|y-2|=0,求x+y的值.解析:一個數(shù)的絕對值總是大于或等于0,即為非負數(shù),若兩個非負數(shù)的和為0,則這兩個數(shù)同為0.解:由題意得x-3=0,y-2=0,所以x=3,y=2.所以x+y=3+2=5.方法總結(jié):幾個非負數(shù)的和為0,則這幾個數(shù)都為0.三、板書設計絕對值相反數(shù)絕對值性質(zhì)→|a|=a(a>0)0(a=0)-a(a<0)互為相反數(shù)的兩個數(shù)的絕對值相等兩個負數(shù)比較大小:絕對值大的反而小絕對值這個名詞既陌生,又是一個不易理解的數(shù)學術語,是本章的重點內(nèi)容,同時也是一個難點內(nèi)容.教材從幾何的角度給出絕對值的概念,也就是從數(shù)軸上表示數(shù)的點的位置出發(fā),得出定義的.
【類型三】 已知方程組的解,用代入法求待定系數(shù)的值 已知x=2,y=1是二元一次方程組ax+by=7,ax-by=1的解,則a-b的值為()A.1 B.-1 C.2 D.3解析:把解代入原方程組得2a+b=7,2a-b=1,解得a=2,b=3,所以a-b=-1.故選B.方法總結(jié):解這類題就是根據(jù)方程組解的定義求,即將解代入方程組,得到關于字母系數(shù)的方程組,解方程組即可.三、板書設計解二元一,次方程組)基本思路是“消元”代入法解二元一次方程組的一般步驟回顧一元一次方程的解法,借此探索二元一次方程組的解法,使得學生的探究有很好的認知基礎,探究顯得十分自然流暢.充分體現(xiàn)了轉(zhuǎn)化與化歸思想.引導學生充分思考和體驗轉(zhuǎn)化與化歸思想,增強學生的觀察歸納能力,提高學生的學習能力.
一、情境導入上一節(jié)課我們做過:由兩個邊長為1的小正方形,通過剪一剪,拼一拼,得到一個邊長為a的大正方形,那么有a2=2,a=________,2是有理數(shù),而a是無理數(shù).在前面我們學過若x2=a,則a叫做x的平方,反過來x叫做a的什么呢?二、合作探究探究點一:算術平方根的概念【類型一】 求一個數(shù)的算術平方根求下列各數(shù)的算術平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根據(jù)算術平方根的定義求非負數(shù)的算術平方根,只要找到一個非負數(shù)的平方等于這個非負數(shù)即可.解:(1)∵82=64,∴64的算術平方根是8;(2)∵(32)2=94=214,∴214的算術平方根是32;(3)∵0.62=0.36,∴0.36的算術平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算術平方根是3.方法總結(jié):(1)求一個數(shù)的算術平方根時,首先要弄清是求哪個數(shù)的算術平方根,分清求81與81的算術平方根的不同意義,不要被表面現(xiàn)象迷惑.(2)求一個非負數(shù)的算術平方根常借助平方運算,因此熟記常用平方數(shù)對求一個數(shù)的算術平方根十分有用.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。