四、說教法為了更好地突出本節(jié)課的重點和難點,我采用了以下教法:1、討論法。通過學(xué)生的討論讓他們自己總結(jié)歸納出通分的意義和方法。2、借助直觀的演示進(jìn)行教學(xué),幫助學(xué)生理解通分的算理,培養(yǎng)了學(xué)生的觀察、分析能力。3、運用口答、多媒體課件等形式的練習(xí),使學(xué)生鞏固了所學(xué)的知識,使教學(xué)得到反饋。 4、循循善誘,啟發(fā)引導(dǎo)學(xué)生,鼓勵學(xué)生積極發(fā)言,引導(dǎo)學(xué)生動口、動腦、動手,逐步掌握新知。五、說學(xué)法通過本節(jié)課的學(xué)習(xí),使學(xué)生學(xué)會聯(lián)系舊知識解決新問題,通過對操作演示的觀察、分析,自己總結(jié)歸納出通分的意義和方法,體現(xiàn)了學(xué)生的自主。六、說教學(xué)過程(一)再現(xiàn)導(dǎo)入通分是在求幾個數(shù)的最小公倍數(shù)和分?jǐn)?shù)的基本性質(zhì)的基礎(chǔ)上學(xué)習(xí)的,因此,在新授前我利用多媒體課件,先安排了求兩個數(shù)的最小公倍數(shù)和分?jǐn)?shù)的基本性質(zhì)、比較分?jǐn)?shù)的大小的復(fù)習(xí)。復(fù)習(xí)第(1)題讓學(xué)生回憶了兩個數(shù)是互質(zhì)關(guān)系、倍數(shù)關(guān)系和一般關(guān)系時怎樣求它們的最小公倍數(shù);復(fù)習(xí)第(2)題讓學(xué)生回顧分?jǐn)?shù)的基本性質(zhì),為通分過程打好基礎(chǔ)。這兩題都分散了教學(xué)中的難點。
一、說教材《約分》是人教版小學(xué)數(shù)學(xué)五下第四單元的教學(xué)內(nèi)容,在學(xué)習(xí)約分前,學(xué)生已經(jīng)探索了分?jǐn)?shù)的基本性質(zhì),學(xué)習(xí)了求最大公因數(shù)的方法,這些知識的掌握都為約分方法的學(xué)習(xí)提供了認(rèn)知基礎(chǔ)。教材通過例4,教學(xué)約分的一般方法。同時在學(xué)生會求兩數(shù)最大公因數(shù)的基礎(chǔ)上,啟發(fā)他們思考,有沒有更簡便的方法?并介紹了約分時的常用書寫形式。二、談學(xué)情這一課的學(xué)習(xí)對象是五年級的學(xué)生,他們一方面具有小學(xué)生的特點:對新鮮事物很感興趣,以形象思維為主,有強烈的表現(xiàn)欲望、好勝心,但是部分學(xué)生還不能快速找出兩個數(shù)的公因數(shù)、最大公因數(shù)以及快速判斷兩個數(shù)是否互質(zhì)。 二、說教學(xué)目標(biāo)基于對教材和學(xué)情的分析,我們確定了以下教學(xué)目標(biāo):1.知識目標(biāo):理解和掌握約分的意義和方法,掌握最簡分?jǐn)?shù)的概念2.能力目標(biāo):熟練進(jìn)行約分,培養(yǎng)靈活運用所學(xué)知識解決實際問題的能力。 3.情感目標(biāo):引導(dǎo)探索知識間的內(nèi)在聯(lián)系,培養(yǎng)學(xué)生觀察、比較、分析的能力和良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣。
三、估算度的把握?!稑?biāo)準(zhǔn)》在計算教學(xué)方面強調(diào)的內(nèi)容之一是重視估算,培養(yǎng)估算意識。我們認(rèn)為重視估算,就是對學(xué)生數(shù)感的培養(yǎng),具體體現(xiàn)在能估計運算的結(jié)果,并對結(jié)果的合理性作出解釋。本節(jié)課的設(shè)計就是讓學(xué)生在具體情境中,學(xué)會兩種估算方法,結(jié)合具體情況作出合理解釋。四、教會學(xué)生單元整理與復(fù)習(xí)的方法,使學(xué)生終身受益。我們知道授人以漁而非魚的道理。在本節(jié)課中,老師設(shè)計了引導(dǎo)學(xué)生學(xué)會整理與復(fù)習(xí)的方法,如:帶著問題看書,將算式分類、歸納、總結(jié)出本單元所學(xué)內(nèi)容,計算方法,注意地方,最后進(jìn)行有針對性的練習(xí)。如果我們的老師從小就有意識地對學(xué)生進(jìn)行學(xué)習(xí)方法的培養(yǎng),學(xué)生將終身受益。我想我們教學(xué)研討活動就是為了實現(xiàn)教育的最高境界:今天的教是為了明天的不教。
第三個圖采用教師適當(dāng)提醒,由學(xué)生自己收集背景材料中的數(shù)學(xué)信息,自己根據(jù)信息提出問題,解決問題,有利于培養(yǎng)學(xué)生問題解決能力。)(4)出示整幅圖,綜合感知,提出問題在學(xué)生解決了三個游戲中的數(shù)學(xué)問題,進(jìn)一步感知解決一個數(shù)學(xué)問題所必須具備的條件后,通過媒體顯示相關(guān)數(shù)學(xué)信息,再引導(dǎo)學(xué)生觀察整個畫面,選擇有用信息,提出不同的問題。這樣安排有利于學(xué)生更加明確應(yīng)用題的結(jié)構(gòu)特征,掌握如何根據(jù)特定的情景,提出問題,解決數(shù)學(xué)問題;有利于培養(yǎng)學(xué)生的問題意識和創(chuàng)新思維;有利于提高學(xué)生用數(shù)學(xué)眼光觀察周圍事物的能力和問題解決的能力。三、鞏固反饋,深化新知1. 書上“做一做”。(結(jié)合小學(xué)生追求快樂的天性,好勝的心理,我設(shè)計幫小動物解決問題的故事情境,吸引學(xué)生的學(xué)習(xí)興趣,營造出充滿生氣和激情的學(xué)習(xí)氛圍,并運用獎勵措施,滿足孩子們成功的喜悅心理需求)
1.能從統(tǒng)計圖中獲取信息,并求出相關(guān)數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù);(重點)2.理解并分析平均數(shù)、中位數(shù)、眾數(shù)所體現(xiàn)的集中趨勢.(難點)一、情境導(dǎo)入某次射擊比賽,甲隊員的成績?nèi)缦拢?1)根據(jù)統(tǒng)計圖,確定10次射擊成績的眾數(shù)、中位數(shù),說說你的做法,并與同伴交流.(2)先估計這10次射擊成績的平均數(shù),再具體算一算,看看你的估計水平如何.二、合作探究探究點一:從折線統(tǒng)計圖分析數(shù)據(jù)的集中趨勢廣州市努力改善空氣質(zhì)量,近年空氣質(zhì)量明顯好轉(zhuǎn),根據(jù)廣州市環(huán)境保護(hù)局公布的2006~2010年這五年各年的全年空氣質(zhì)量優(yōu)良的天數(shù),繪制成折線圖如圖所示.根據(jù)圖中信息回答:(1)這五年的全年空氣質(zhì)量優(yōu)良天數(shù)的中位數(shù)是________;(2)這五年的全年空氣質(zhì)量優(yōu)良天數(shù)與它前一年相比較,增加最多的是________年(填寫年份);(3)求這五年的全年空氣質(zhì)量優(yōu)良天數(shù)的平均數(shù).解析:(1)由圖知,把這五年的全年空氣質(zhì)量優(yōu)良天數(shù)按照從小到大的順序排列為:333,334,345,347,357,所以中位數(shù)是345;
(1)用簡潔明快的語言概括大意,不能超過200字;(2)圖表中能確定的數(shù)值,在故事敘述中不得少于3個,且要分別涉及時間、路和速度這三個量.意圖:旨在檢測學(xué)生的識圖能力,可根據(jù)學(xué)生情況和上課情況適當(dāng)調(diào)整。說明:練習(xí)注意了問題的梯度,由淺入深,一步步引導(dǎo)學(xué)生從不同的圖象中獲取信息,對同學(xué)的回答,教師給予點評,對回答問題暫時有困難的同學(xué),教師應(yīng)幫助他們樹立信心。第四環(huán)節(jié):課時小結(jié)內(nèi)容:本節(jié)課我們學(xué)習(xí)了一次函數(shù)圖象的應(yīng)用,在運用一次函數(shù)解決實際問題時,可以直接從函數(shù)圖象上獲取信息解決問題,當(dāng)然也可以設(shè)法得出各自對應(yīng)的函數(shù)關(guān)系式,然后借助關(guān)系式完全通過計算解決問題。通過列出關(guān)系式解決問題時,一般首先判斷關(guān)系式的特征,如兩個變量之間是不是一次函數(shù)關(guān)系?當(dāng)確定是一次函數(shù)關(guān)系時,可求出函數(shù)解析式,并運用一次函數(shù)的圖象和性質(zhì)進(jìn)一步求得我們所需要的結(jié)果.
解:∵y=23x+a與y=-12x+b的圖象都過點A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類題要先求得頂點的坐標(biāo),即兩個一次函數(shù)的交點和它們分別與x軸、y軸交點的坐標(biāo).三、板書設(shè)計兩個一次函數(shù)的應(yīng)用實際生活中的問題幾何問題進(jìn)一步訓(xùn)練學(xué)生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實際問題,在函數(shù)圖象信息獲取過程中,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合意識,發(fā)展形象思維.在解決實際問題的過程中,進(jìn)一步發(fā)展學(xué)生的分析問題、解決問題的能力和數(shù)學(xué)應(yīng)用意識.
探究點三:正比例函數(shù)的性質(zhì)已知正比例函數(shù)y=-kx的圖象經(jīng)過一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三點在函數(shù)y=(k-2)x的圖象上,且x1>x3>x2,則y1,y2,y3的大小關(guān)系為()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的圖象經(jīng)過一、三象限,可知-k>0即kx3>x2得y10時,y隨x的增大而增大;k<0時,y隨x的增大而減?。?、板書設(shè)計1.函數(shù)與圖象之間是一一對應(yīng)的關(guān)系;2.作一個函數(shù)的圖象的一般步驟:列表,描點,連線;3.正比例函數(shù)的圖象的性質(zhì):正比例函數(shù)的圖象是一條經(jīng)過原點的直線.經(jīng)歷函數(shù)圖象的作圖過程,初步了解作函數(shù)圖象的一般步驟:列表、描點、連線.已知函數(shù)的表達(dá)式作函數(shù)的圖象,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識和能力.理解一次函數(shù)的表達(dá)式與圖象之間的一一對應(yīng)關(guān)系.
四、教學(xué)設(shè)計反思這節(jié)內(nèi)容是學(xué)生利用數(shù)形結(jié)合的思想去研究正比例函數(shù)的圖象,對函數(shù)與圖象的對應(yīng)關(guān)系有點陌生.在教學(xué)過程中教師應(yīng)通過情境創(chuàng)設(shè)激發(fā)學(xué)生的學(xué)習(xí)興趣,對函數(shù)與圖象的對應(yīng)關(guān)系應(yīng)讓學(xué)生動手去實踐,去發(fā)現(xiàn),對正比例函數(shù)的圖象是一條直線應(yīng)讓學(xué)生自己得出.在得出結(jié)論之后,讓學(xué)生能運用“兩點確定一條直線”,很快作出正比例函數(shù)的圖象.在鞏固練習(xí)活動中,鼓勵學(xué)生積極思考,提高學(xué)生解決實際問題的能力.當(dāng)然,根據(jù)學(xué)生狀況,教學(xué)設(shè)計也應(yīng)做出相應(yīng)的調(diào)整。如第一環(huán)節(jié):創(chuàng)設(shè)情境 引入課題,固然可以激發(fā)學(xué)生興趣,但也可能容易讓學(xué)生關(guān)注代數(shù)表達(dá)式的尋求,甚至對部分學(xué)生形成一定的認(rèn)知障礙,因此該環(huán)節(jié)也可以直接開門見山,直入主題,如提出問題:正比例函數(shù)的代數(shù)形式是y=kx,那么,一個正比例函數(shù)對應(yīng)的圖形具有什么特征呢?
方法總結(jié):要認(rèn)真觀察圖象,結(jié)合題意,弄清各點所表示的意義.探究點二:一次函數(shù)與一元一次方程一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象如圖所示,根據(jù)圖象信息可求得關(guān)于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數(shù)經(jīng)過點(0,1)可得b=1,再將點(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數(shù)的表達(dá)式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結(jié):此題主要考查了一次函數(shù)與一元一次方程的關(guān)系,關(guān)鍵是正確利用待定系數(shù)法求出一次函數(shù)的關(guān)系式.三、板書設(shè)計一次函數(shù)的應(yīng)用單個一次函數(shù)圖象的應(yīng)用一次函數(shù)與一元一次方程的關(guān)系探究的過程由淺入深,并利用了豐富的實際情景,增加了學(xué)生的學(xué)習(xí)興趣.教學(xué)中要注意層層遞進(jìn),逐步讓學(xué)生掌握求一次函數(shù)與一元一次方程的關(guān)系.教學(xué)中還應(yīng)注意尊重學(xué)生的個體差異,使每個學(xué)生都學(xué)有所獲.
學(xué)習(xí)目標(biāo)1.掌握兩個一次函數(shù)圖像的應(yīng)用;(重點)2.能利用函數(shù)圖象解決實際問題。(難點)教學(xué)過程一、情景導(dǎo)入在一次蠟燭燃燒實驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(厘米)與燃燒時間x(小時)之間的關(guān)系如圖所示.請你根據(jù)圖象所提供的信息回答下列問題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點燃到燃盡所用的時間分別是 小時、 小時.你會解答上面的問題嗎?學(xué)完本解知識,相信你能很快得出答案。二、 合作探究探究點一:兩個一次函數(shù)的應(yīng)用(2015?日照模擬)自來水公司有甲、乙兩個蓄水池,現(xiàn)將甲池的中水勻速注入乙池,甲、乙兩個蓄水池中水的深度y(米)與注水時間x(時)之間的函數(shù)圖象如下所示,結(jié)合圖象回答下列問題.(1)分別求出甲、乙兩個蓄水池中水的深度y與注水時間x之間的函數(shù)表達(dá)式;(2)求注入多長時間甲、乙兩個蓄水池水的深度相同;(3)求注入多長時間甲、乙兩個蓄水的池蓄水量相同;
解析:此題作為一道開放型題,分類的方法非常多,只要能說明分類的理由即可.但要注意:按某一標(biāo)準(zhǔn)分類時,要做到不重不漏,分類標(biāo)準(zhǔn)不同時,分類的結(jié)果也就不盡相同.解:本題答案不唯一,如按柱體、錐體、球體分類:(2)(3)(5)和(6)都是柱體,(4)(7)是錐體,(1)是球體.方法總結(jié):生活中常見幾何體有兩種分類:一種按柱體、錐體、球體分類;一種按平面和曲面分類.探究點二:幾何體的形成筆尖畫線可以理解為點動成線.使用數(shù)學(xué)知識解釋下列生活中的現(xiàn)象:(1)流星劃破夜空,留下美麗的弧線;(2)一條拉直的細(xì)線切開了一塊豆腐;(3)把一枚硬幣立在桌面上用力一轉(zhuǎn),形成一個球.解析:解釋現(xiàn)象關(guān)鍵是看其屬于什么運動.解:(1)點動成線;(2)線動成面;(3)面動成體.方法總結(jié):生活中的很多現(xiàn)象都可以用數(shù)學(xué)知識來解釋,關(guān)鍵是要找到生活實例與數(shù)學(xué)知識的連接點,如第(1)題可將流星看作一個點,則“點動成線”.如圖所示,將平面圖形繞軸旋轉(zhuǎn)一周,得到的幾何體是()
(1)該校被抽查的學(xué)生共有多少名?(2)現(xiàn)規(guī)定視力5.1及以上為合格,若被抽查年級共有600名學(xué)生,估計該年級在2015年有多少名學(xué)生視力合格.解析:由折線統(tǒng)計圖可知2015年被抽取的學(xué)生人數(shù),且扇形統(tǒng)計圖中對應(yīng)的A區(qū)所占的百分比已知,由此即可求出被抽查的學(xué)生人數(shù);根據(jù)扇形統(tǒng)計圖中C、D區(qū)所占的百分比,即可求出該年級在2015年有多少名學(xué)生視力合格.解:(1)該校被抽查的學(xué)生人數(shù)為80÷40%=200(人);(2)估計該年級在2015年視力合格的學(xué)生人數(shù)為600×(10%+20%)=180(人).方法總結(jié):本題的解題技巧在于從兩個統(tǒng)計圖中獲取正確的信息,并互相補充互相利用.例如求被抽查的學(xué)生人數(shù)時,由折線統(tǒng)計圖可知2015年被抽取的學(xué)生人數(shù)是80人,與其相對應(yīng)的是扇形統(tǒng)計圖中的A區(qū),而A區(qū)所占的百分比是40%,由此求出被抽查的學(xué)生人數(shù)為80÷40%=200(人).
四、做一做(實踐)1、用牙簽和橡皮泥制作球體和一些柱體和錐體,看哪些同學(xué)做得比較標(biāo)準(zhǔn)。2、使出事先準(zhǔn)備好的等邊三角形紙片,試將它折成一個正四面體。五、試一試(探索)課前,發(fā)給學(xué)生閱讀材料《晶體--自然界的多面體》,讓學(xué)生通過閱讀了解什么是正多面體,正多面體是柏拉圖約在公元400年獨立發(fā)現(xiàn)的,在這之前,埃及人已經(jīng)用于建筑(埃及金字塔),以此激勵學(xué)生探索的欲望。教師出示實物模型:正四面體、正方體、正八面體、正十二面體、正二十面體1、以正四面體為例,說出它的頂點數(shù)、棱數(shù)和面數(shù)。2、再讓學(xué)生觀察、討論其它正多面體的頂點數(shù)、棱數(shù)和面數(shù)。將結(jié)果記入書上的P128的表格。引導(dǎo)學(xué)生發(fā)現(xiàn)結(jié)論。3、(延伸):若隨意做一個多面體,看看是否還是那個結(jié)果。
【類型三】 已知三邊作三角形已知三條線段a、b、c,用尺規(guī)作出△ABC,使BC=a,AC=b、AB=c.解:作法:1.作線段BC=a;2.以點C為圓心,以b為半徑畫弧,再以B為圓心,以c為半徑畫弧,兩弧相交于點A;3.連接AC和AB,則△ABC即為所求作的三角形,如圖所示.方法總結(jié):已知三角形三邊的長,根據(jù)全等三角形的判定“SSS”,知三角形的形狀和大小也就確定了.作三角形相當(dāng)于確定三角形三個頂點的位置.因此可先確定三角形的一條邊(即兩個頂點),再分別以這條邊的兩個端點為圓心,以已知線段長為半徑畫弧,兩弧的交點即為另一個頂點.三、板書設(shè)計1.已知兩邊及其夾角作三角形2.已知兩角及其夾邊作三角形3.已知三邊作三角形本節(jié)課學(xué)習(xí)了有關(guān)三角形的作圖,主要包括兩種基本作圖:作一條線段等于已知線段,作一個角等于已知角.作圖時,鼓勵學(xué)生一邊作圖,一邊用幾何語言敘述作法,培養(yǎng)學(xué)生的動手能力、語言表達(dá)能力
1、自主檢測現(xiàn)在我們要開始攀登主峰了,道路是崎嶇的,我相信同學(xué)們能夠克服重重困難登頂成功,只要細(xì)心,你就能行。學(xué)生獨立完成習(xí)題。2、評價完善一生匯報答案,其余自我核對,矯正錯誤。(四)、歸納小結(jié) 課外延伸1、歸納小結(jié)這節(jié)課我們主要學(xué)習(xí)了什么內(nèi)容?你最大的收獲是什么?你覺得自己的表現(xiàn)怎么樣?教師適時的對學(xué)生的學(xué)習(xí)情況作以情感性和知識性評價。2、課外延伸課本第九頁思考練習(xí)。(設(shè)計意圖:讓學(xué)生總結(jié)所學(xué),在交流反思中,意識到學(xué)習(xí)方式的重要性和數(shù)學(xué)內(nèi)容的延續(xù)性,激發(fā)學(xué)生進(jìn)一步探究知識的欲望。讓學(xué)生把這節(jié)課的收獲和尚存在的疑問告訴小組的同伴,針對學(xué)生疑問采用生生交流,師生交流的形式給予解決,這樣不但使問題得以解決,還培養(yǎng)了學(xué)生的團(tuán)隊協(xié)助精神。)
因此,本套教材中刪去了“整除”的數(shù)學(xué)化定義,而是借助整除的模式na=b直接引出因數(shù)和倍數(shù)的概念。在本冊教材中,由于允許學(xué)生采用多樣的方法求最大公因數(shù)和最小公倍數(shù),分解質(zhì)因數(shù)也失去了其不可或缺的作用,同時,也是為了減少這一單元的理論概念,教材不再把它作為正式教學(xué)內(nèi)容,而是作為一個補充知識,安排在“你知道嗎?”中進(jìn)行介紹。由于這部分內(nèi)容較為抽象,很難結(jié)合生活實例或具體情境來進(jìn)行教學(xué),學(xué)生理解起來有一定的難度。在過去的教學(xué)中,一些教師往往忽視概念的本質(zhì),而是讓學(xué)生死記硬背相關(guān)概念或結(jié)論,學(xué)生無法理清各概念間的前后承接關(guān)系,達(dá)不到融會貫通的程度。再加上有些教師在考核時使用一些偏題、難題,導(dǎo)致學(xué)生在學(xué)習(xí)這部分知識時覺得枯燥乏味,體會不到初等數(shù)論的抽象性、嚴(yán)密性和邏輯性,感受不到數(shù)學(xué)的魅力。所以在教學(xué)中應(yīng)注意以下兩點: (1)加強對概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念,避免死記硬背。(2)由于本單元知識特有的抽象性,教學(xué)時要注意培養(yǎng)學(xué)生的抽象思維能力。
6. 本題是一道實際應(yīng)用的題,可以結(jié)合生活實際舉例,在舉例中進(jìn)一步認(rèn)識分?jǐn)?shù)。7. (讀作八分之一)表示把人的身高看作單位“1”,頭部的高度占整個身高的 ; (讀作五分之三)表示把整個長江的干流看作單位“1”,受污染的部分占整個長江干流的 ; (讀作十分之三)表示把死海表層的水看作單位“1”,含鹽量占死海表層水的 。8. 讀作六分之一, 讀作七分之二, 讀作是十五分之四, 讀作十八分之十一, 讀作一百分之七。它們的分?jǐn)?shù)單位分別是: 、 、 、 、 。9. 本題有兩個知識點:一是根據(jù)分?jǐn)?shù)的意義涂色,是把12個蘋果平均分成了2份,1份有6個蘋果; 是把12個蘋果平均分成了3份,1份有4個蘋果; 是把12個蘋果平均分成了4份,1份有3個蘋果; 是把12個蘋果平均分成了6份,1份有2個蘋果; 是把12個蘋果平均分成了12份,1份有1個蘋果。二是在涂色中感受平均分成的份數(shù)越多,每一份越少,也可以說隨著分母的增大,幾分之一所表示的蘋果個數(shù),從 的6個到 的1個,相應(yīng)地在減少。
二、 教學(xué)目標(biāo)1.理解分?jǐn)?shù)加減法的算理,掌握分?jǐn)?shù)加減法的計算方法,并能正確地計算出結(jié)果。2.理解整數(shù)加法的運算定律對分?jǐn)?shù)加法仍然適用,并會運用這些運算定律進(jìn)行一些分?jǐn)?shù)加法的簡便運算,進(jìn)一步提高簡算能力。 3.體會分?jǐn)?shù)加減運算在生活、生產(chǎn)中的廣泛應(yīng)用。三、學(xué)情分析五年級的學(xué)生已有一定的生活經(jīng)驗,對數(shù)學(xué)的神秘感有了更強的好奇心。因此,結(jié)合分?jǐn)?shù)加減的學(xué)習(xí)內(nèi)容適當(dāng)補充一些數(shù)學(xué)史料,可使學(xué)生的好奇轉(zhuǎn)化為探究欲,促其學(xué)習(xí)數(shù)學(xué)興趣的提高,并逐步形成良好的探究習(xí)慣。因此,教學(xué)時,應(yīng)重視教材提供的兩個涉及數(shù)學(xué)文化的閱讀材料的學(xué)習(xí)。在此基礎(chǔ)上,再補充一些相關(guān)的學(xué)習(xí)材料。四、教學(xué)重點、難點重點:分?jǐn)?shù)加減法的計算方法難點:引導(dǎo)學(xué)生體會理解不同算法的思路。
(3)按每千克涂料粉刷3.5 m2計算,可求出共需要涂料:1600÷3.5≈460(千克);(4)根據(jù)涂料的型號及費用,選擇合適的涂料。師:選擇涂料時,要考慮很多因素,如價格、耐用期、消費心理、環(huán)保等,要怎么選擇呢?學(xué)生可以把幾種涂料進(jìn)行對比,一起討論決定,同時學(xué)會在交流中理解接納別人較好的建議:如:A型,優(yōu)點:價格便宜,需要19桶,總共才5700元;缺點:耐用期太短,兩年后又要重新粉刷;B-1型和B-2型,雖然桶裝量不同,但價格和耐用期都處在中游水平;C型和D型,優(yōu)點:耐用期長,最劃算;缺點:價格太高,不符合人們的消費心理,也不可能持續(xù)那么長時間,至少5年就要更換一下樣子。綜合以上價格、耐用期、消費心理,選擇B-1或B-2型比較劃算。而這兩種比較來看,B-2型更便宜一些,所以,最后確立用B-2型涂料。