提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

大班數(shù)學(xué)《設(shè)計(jì)門牌號(hào)碼》說課稿

  • 人教版高中數(shù)學(xué)選擇性必修二導(dǎo)數(shù)的四則運(yùn)算法則教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二導(dǎo)數(shù)的四則運(yùn)算法則教學(xué)設(shè)計(jì)

    求函數(shù)的導(dǎo)數(shù)的策略(1)先區(qū)分函數(shù)的運(yùn)算特點(diǎn),即函數(shù)的和、差、積、商,再根據(jù)導(dǎo)數(shù)的運(yùn)算法則求導(dǎo)數(shù);(2)對于三個(gè)以上函數(shù)的積、商的導(dǎo)數(shù),依次轉(zhuǎn)化為“兩個(gè)”函數(shù)的積、商的導(dǎo)數(shù)計(jì)算.跟蹤訓(xùn)練1 求下列函數(shù)的導(dǎo)數(shù):(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓(xùn)練2 求下列函數(shù)的導(dǎo)數(shù)(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經(jīng)過凈化的,隨著水的純凈度的提高,所需進(jìn)化費(fèi)用不斷增加,已知將1t水進(jìn)化到純凈度為x%所需費(fèi)用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進(jìn)化到下列純凈度時(shí),所需進(jìn)化費(fèi)用的瞬時(shí)變化率:(1) 90% ;(2) 98%解:凈化費(fèi)用的瞬時(shí)變化率就是凈化費(fèi)用函數(shù)的導(dǎo)數(shù);c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的概念 (2) 教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的概念 (2) 教學(xué)設(shè)計(jì)

    二、典例解析例4. 用 10 000元購買某個(gè)理財(cái)產(chǎn)品一年.(1)若以月利率0.400%的復(fù)利計(jì)息,12個(gè)月能獲得多少利息(精確到1元)?(2)若以季度復(fù)利計(jì)息,存4個(gè)季度,則當(dāng)每季度利率為多少時(shí),按季結(jié)算的利息不少于按月結(jié)算的利息(精確到10^(-5))?分析:復(fù)利是指把前一期的利息與本金之和算作本金,再計(jì)算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開始,各期的本利和a , a(1+r),a(1+r)^2…構(gòu)成等比數(shù)列.解:(1)設(shè)這筆錢存 n 個(gè)月以后的本利和組成一個(gè)數(shù)列{a_n },則{a_n }是等比數(shù)列,首項(xiàng)a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個(gè)月后的利息為10 490.7-10^4≈491(元).解:(2)設(shè)季度利率為 r ,這筆錢存 n 個(gè)季度以后的本利和組成一個(gè)數(shù)列{b_n },則{b_n }也是一個(gè)等比數(shù)列,首項(xiàng) b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項(xiàng)和公式   (1) 教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項(xiàng)和公式 (1) 教學(xué)設(shè)計(jì)

    新知探究國際象棋起源于古代印度.相傳國王要獎(jiǎng)賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請?jiān)谄灞P的第1個(gè)格子里放上1顆麥粒,第2個(gè)格子里放上2顆麥粒,第3個(gè)格子里放上4顆麥粒,依次類推,每個(gè)格子里放的麥粒都是前一個(gè)格子里放的麥粒數(shù)的2倍,直到第64個(gè)格子.請給我足夠的麥粒以實(shí)現(xiàn)上述要求.”國王覺得這個(gè)要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實(shí)現(xiàn)他的諾言.問題1:每個(gè)格子里放的麥粒數(shù)可以構(gòu)成一個(gè)數(shù)列,請判斷分析這個(gè)數(shù)列是否是等比數(shù)列?并寫出這個(gè)等比數(shù)列的通項(xiàng)公式.是等比數(shù)列,首項(xiàng)是1,公比是2,共64項(xiàng). 通項(xiàng)公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學(xué)問題.

  • 人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的概念(2)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的概念(2)教學(xué)設(shè)計(jì)

    二、典例解析例3.某公司購置了一臺(tái)價(jià)值為220萬元的設(shè)備,隨著設(shè)備在使用過程中老化,其價(jià)值會(huì)逐年減少.經(jīng)驗(yàn)表明,每經(jīng)過一年其價(jià)值會(huì)減少d(d為正常數(shù))萬元.已知這臺(tái)設(shè)備的使用年限為10年,超過10年 ,它的價(jià)值將低于購進(jìn)價(jià)值的5%,設(shè)備將報(bào)廢.請確定d的范圍.分析:該設(shè)備使用n年后的價(jià)值構(gòu)成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設(shè)備的價(jià)值不小于(220×5%=)11萬元;10年后,該設(shè)備的價(jià)值需小于11萬元.利用{an}的通項(xiàng)公式列不等式求解.解:設(shè)使用n年后,這臺(tái)設(shè)備的價(jià)值為an萬元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個(gè)公差為-d的等差數(shù)列.因?yàn)閍1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9

  • 人教版高中數(shù)學(xué)選擇性必修二數(shù)列的概念(1)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二數(shù)列的概念(1)教學(xué)設(shè)計(jì)

    情景導(dǎo)學(xué)古語云:“勤學(xué)如春起之苗,不見其增,日有所長”如果對“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個(gè)數(shù)列. 那么什么叫數(shù)列呢?二、問題探究1. 王芳從一歲到17歲,每年生日那天測量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時(shí)的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號(hào)K90,約生產(chǎn)于公元前7世紀(jì))上,有一列依次表示一個(gè)月中從第1天到第15天,每天月亮可見部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②

  • 人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的前n項(xiàng)和公式(2)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的前n項(xiàng)和公式(2)教學(xué)設(shè)計(jì)

    課前小測1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項(xiàng)和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項(xiàng)之和最大.( )(3)在等差數(shù)列中,Sn是其前n項(xiàng)和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項(xiàng)數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項(xiàng)的和為165,所有偶數(shù)項(xiàng)的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項(xiàng).]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項(xiàng)公式是an=2n-48,則Sn取得最小值時(shí),n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負(fù)項(xiàng)的和最小,即n=23或24.]二、典例解析例8.某校新建一個(gè)報(bào)告廳,要求容納800個(gè)座位,報(bào)告廳共有20排座位,從第2排起后一排都比前一排多兩個(gè)座位. 問第1排應(yīng)安排多少個(gè)座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設(shè)數(shù)列{an} 的前n項(xiàng)和為S_n。

  • 人教版高中數(shù)學(xué)選修3二項(xiàng)式系數(shù)的性質(zhì)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3二項(xiàng)式系數(shù)的性質(zhì)教學(xué)設(shè)計(jì)

    1.對稱性與首末兩端“等距離”的兩個(gè)二項(xiàng)式系數(shù)相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當(dāng)k(n+1)/2時(shí),C_n^k隨k的增加而減小.當(dāng)n是偶數(shù)時(shí),中間的一項(xiàng)C_n^(n/2)取得最大值;當(dāng)n是奇數(shù)時(shí),中間的兩項(xiàng)C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時(shí)取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項(xiàng)式系數(shù)的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開式的各二項(xiàng)式系數(shù)之和為2^n1. 在(a+b)8的展開式中,二項(xiàng)式系數(shù)最大的項(xiàng)為 ,在(a+b)9的展開式中,二項(xiàng)式系數(shù)最大的項(xiàng)為 . 解析:因?yàn)?a+b)8的展開式中有9項(xiàng),所以中間一項(xiàng)的二項(xiàng)式系數(shù)最大,該項(xiàng)為C_8^4a4b4=70a4b4.因?yàn)?a+b)9的展開式中有10項(xiàng),所以中間兩項(xiàng)的二項(xiàng)式系數(shù)最大,這兩項(xiàng)分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關(guān)系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B

  • 人教A版高中數(shù)學(xué)必修一充分條件與必要條件教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一充分條件與必要條件教學(xué)設(shè)計(jì)(2)

    【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因?yàn)閜是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范圍是(0,3].解題技巧:(利用充分、必要、充分必要條件的關(guān)系求參數(shù)范圍)(1)化簡p、q兩命題,(2)根據(jù)p與q的關(guān)系(充分、必要、充要條件)轉(zhuǎn)化為集合間的關(guān)系,(3)利用集合間的關(guān)系建立不等關(guān)系,(4)求解參數(shù)范圍.跟蹤訓(xùn)練三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,求實(shí)數(shù)a的取值范圍.【答案】見解析【解析】因?yàn)椤皒∈P”是x∈Q的必要條件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范圍是[-1,5].五、課堂小結(jié)讓學(xué)生總結(jié)本節(jié)課所學(xué)主要知識(shí)及解題技巧

  • 人教A版高中數(shù)學(xué)必修一集合間的基本關(guān)系教學(xué)設(shè)計(jì)(1)

    人教A版高中數(shù)學(xué)必修一集合間的基本關(guān)系教學(xué)設(shè)計(jì)(1)

    本節(jié)內(nèi)容來自人教版高中數(shù)學(xué)必修一第一章第一節(jié)集合第二課時(shí)的內(nèi)容。集合論是現(xiàn)代數(shù)學(xué)的一個(gè)重要基礎(chǔ),是一個(gè)具有獨(dú)特地位的數(shù)學(xué)分支。高中數(shù)學(xué)課程是將集合作為一種語言來學(xué)習(xí),在這里它是作為刻畫函數(shù)概念的基礎(chǔ)知識(shí)和必備工具。本小節(jié)內(nèi)容是在學(xué)習(xí)了集合的含義、集合的表示方法以及元素與集合的屬于關(guān)系的基礎(chǔ)上,進(jìn)一步學(xué)習(xí)集合與集合之間的關(guān)系,同時(shí)也是下一節(jié)學(xué)習(xí)集合間的基本運(yùn)算的基礎(chǔ),因此本小節(jié)起著承上啟下的關(guān)鍵作用.通過本節(jié)內(nèi)容的學(xué)習(xí),可以進(jìn)一步幫助學(xué)生利用集合語言進(jìn)行交流的能力,幫助學(xué)生養(yǎng)成自主學(xué)習(xí)、合作交流、歸納總結(jié)的學(xué)習(xí)習(xí)慣,培養(yǎng)學(xué)生從具體到抽象、從一般到特殊的數(shù)學(xué)思維能力,通過Venn圖理解抽象概念,培養(yǎng)學(xué)生數(shù)形結(jié)合思想。

  • 人教A版高中數(shù)學(xué)必修一簡單的三角恒等變換教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一簡單的三角恒等變換教學(xué)設(shè)計(jì)(2)

    它位于三角函數(shù)與數(shù)學(xué)變換的結(jié)合點(diǎn)上,能較好反應(yīng)三角函數(shù)及變換之間的內(nèi)在聯(lián)系和相互轉(zhuǎn)換,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性上。作用體現(xiàn)在它的工具性上。前面學(xué)生已經(jīng)掌握了兩角和與差的正弦、余弦、正切公式以及二倍角公式,并能通過這些公式進(jìn)行求值、化簡、證明,雖然學(xué)生已經(jīng)具備了一定的推理、運(yùn)算能力,但在數(shù)學(xué)的應(yīng)用意識(shí)與應(yīng)用能力方面尚需進(jìn)一步培養(yǎng).課程目標(biāo)1.能用二倍角公式推導(dǎo)出半角公式,體會(huì)三角恒等變換的基本思想方法,以及進(jìn)行簡單的應(yīng)用. 2.了解三角恒等變換的特點(diǎn)、變換技巧,掌握三角恒等變換的基本思想方法. 3.能利用三角恒等變換的技巧進(jìn)行三角函數(shù)式的化簡、求值以及證明,進(jìn)而進(jìn)行簡單的應(yīng)用. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯推理: 三角恒等式的證明; 2.數(shù)據(jù)分析:三角函數(shù)式的化簡; 3.數(shù)學(xué)運(yùn)算:三角函數(shù)式的求值.

  • 人教A版高中數(shù)學(xué)必修一全稱量詞與存在量詞教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一全稱量詞與存在量詞教學(xué)設(shè)計(jì)(2)

    (4)“不論m取何實(shí)數(shù),方程x2+2x-m=0都有實(shí)數(shù)根”是全稱量詞命題,其否定為“存在實(shí)數(shù)m0,使得方程x2+2x-m0=0沒有實(shí)數(shù)根”,它是真命題.解題技巧:(含有一個(gè)量詞的命題的否定方法)(1)一般地,寫含有一個(gè)量詞的命題的否定,首先要明確這個(gè)命題是全稱量詞命題還是存在量詞命題,并找到其量詞的位置及相應(yīng)結(jié)論,然后把命題中的全稱量詞改成存在量詞,存在量詞改成全稱量詞,同時(shí)否定結(jié)論.(2)對于省略量詞的命題,應(yīng)先挖掘命題中隱含的量詞,改寫成含量詞的完整形式,再依據(jù)規(guī)則來寫出命題的否定.跟蹤訓(xùn)練三3.寫出下列命題的否定,并判斷其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一個(gè)實(shí)數(shù)x,使x3+1=0.【答案】見解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命題.

  • 人教A版高中數(shù)學(xué)必修一用二分法求方程的近似解教學(xué)設(shè)計(jì)(1)

    人教A版高中數(shù)學(xué)必修一用二分法求方程的近似解教學(xué)設(shè)計(jì)(1)

    《數(shù)學(xué)1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本節(jié)課要求學(xué)生根據(jù)具體的函數(shù)圖象能夠借助計(jì)算機(jī)或信息技術(shù)工具計(jì)算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法,從中體會(huì)函數(shù)與方程之間的聯(lián)系;它既是本冊書中的重點(diǎn)內(nèi)容,又是對函數(shù)知識(shí)的拓展,既體現(xiàn)了函數(shù)在解方程中的重要應(yīng)用,同時(shí)又為高中數(shù)學(xué)中函數(shù)與方程思想、數(shù)形結(jié)合思想、二分法的算法思想打下了基礎(chǔ),因此決定了它的重要地位.發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。課程目標(biāo) 學(xué)科素養(yǎng)1.通過具體實(shí)例理解二分法的概念及其使用條件.2.了解二分法是求方程近似解的常用方法,能借助計(jì)算器用二分法求方程的近似解.3.會(huì)用二分法求一個(gè)函數(shù)在給定區(qū)間內(nèi)的零點(diǎn),從而求得方程的近似解. a.數(shù)學(xué)抽象:二分法的概念;b.邏輯推理:運(yùn)用二分法求近似解的原理;

  • 人教A版高中數(shù)學(xué)必修二直線與平面垂直教學(xué)設(shè)計(jì)

    人教A版高中數(shù)學(xué)必修二直線與平面垂直教學(xué)設(shè)計(jì)

    1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關(guān)系是什么?(2)隨著時(shí)間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠(yuǎn)垂直,也就是AB垂直于地面上所有過點(diǎn)B的直線。而不過點(diǎn)B的直線在地面內(nèi)總是能找到過點(diǎn)B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個(gè)平面α內(nèi)所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字?jǐn)⑹觯喝绻本€l與平面α內(nèi)的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時(shí),它們唯一的公共點(diǎn)P叫做交點(diǎn).②圖形語言:如圖.畫直線l與平面α垂直時(shí),通常把直線畫成與表示平面的平行四邊形的一邊垂直.

  • 人教A版高中數(shù)學(xué)必修二直線與直線垂直教學(xué)設(shè)計(jì)

    人教A版高中數(shù)學(xué)必修二直線與直線垂直教學(xué)設(shè)計(jì)

    6.例二:如圖在正方體ABCD-A’B’C’D’中,O’為底面A’B’C’D’的中心,求證:AO’⊥BD 證明:如圖,連接B’D’,∵ABCD-A’B’C’D’是正方體∴BB’//DD’,BB’=DD’∴四邊形BB’DD’是平行四邊形∴B’D’//BD∴直線AO’與B’D’所成角即為直線AO’與BD所成角連接AB’,AD’易證AB’=AD’又O’為底面A’B’C’D’的中心∴O’為B’D’的中點(diǎn)∴AO’⊥B’D’,AO’⊥BD7.例三如圖所示,四面體A-BCD中,E,F(xiàn)分別是AB,CD的中點(diǎn).若BD,AC所成的角為60°,且BD=AC=2.求EF的長度.解:取BC中點(diǎn)O,連接OE,OF,如圖。∵E,F分別是AB,CD的中點(diǎn),∴OE//AC且OE=1/2AC,OF//AC且OF=1/2BD,∴OE與OF所成的銳角就是AC與BD所成的角∵BD,AC所成角為60°,∴∠EOF=60°或120°∵BD=AC=2,∴OE=OF=1當(dāng)∠EOF=60°時(shí),EF=OE=OF=1,當(dāng)∠EOF=120°時(shí),取EF的中點(diǎn)M,連接OM,則OM⊥EF,且∠EOM=60°∴EM= ,∴EF=2EM=

  • 人教版高中數(shù)學(xué)選擇性必修二變化率問題教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二變化率問題教學(xué)設(shè)計(jì)

    導(dǎo)語在必修第一冊中,我們研究了函數(shù)的單調(diào)性,并利用函數(shù)單調(diào)性等知識(shí),定性的研究了一次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)增長速度的差異,知道“對數(shù)增長” 是越來越慢的,“指數(shù)爆炸” 比“直線上升” 快得多,進(jìn)一步的能否精確定量的刻畫變化速度的快慢呢,下面我們就來研究這個(gè)問題。新知探究問題1 高臺(tái)跳水運(yùn)動(dòng)員的速度高臺(tái)跳水運(yùn)動(dòng)中,運(yùn)動(dòng)員在運(yùn)動(dòng)過程中的重心相對于水面的高度h(單位:m)與起跳后的時(shí)間t(單位:s)存在函數(shù)關(guān)系h(t)=-4.9t2+4.8t+11.如何描述用運(yùn)動(dòng)員從起跳到入水的過程中運(yùn)動(dòng)的快慢程度呢?直覺告訴我們,運(yùn)動(dòng)員從起跳到入水的過程中,在上升階段運(yùn)動(dòng)的越來越慢,在下降階段運(yùn)動(dòng)的越來越快,我們可以把整個(gè)運(yùn)動(dòng)時(shí)間段分成許多小段,用運(yùn)動(dòng)員在每段時(shí)間內(nèi)的平均速度v ?近似的描述它的運(yùn)動(dòng)狀態(tài)。

  • 初中數(shù)學(xué)人教版二元一次方程組教學(xué)設(shè)計(jì)教案

    初中數(shù)學(xué)人教版二元一次方程組教學(xué)設(shè)計(jì)教案

    (一)例題引入籃球聯(lián)賽中,每場比賽都要分出勝負(fù),每隊(duì)勝1場得2分,負(fù)1場得1分。某隊(duì)在10場比賽中得到16分,那么這個(gè)隊(duì)勝負(fù)場數(shù)分別是多少?方法一:(利用之前的知識(shí),學(xué)生自己列出并求解)解:設(shè)剩X場,則負(fù)(10-X)場。方程:2X+(10-X)=16方法二:(老師帶領(lǐng)學(xué)生一起列出方程組)解:設(shè)勝X場,負(fù)Y場。根據(jù):勝的場數(shù)+負(fù)的場數(shù)=總場數(shù) 勝場積分+負(fù)場積分=總積分得到:X+Y=10 2X+Y=16

  • 人教A版高中數(shù)學(xué)必修二平面與平面垂直教學(xué)設(shè)計(jì)

    人教A版高中數(shù)學(xué)必修二平面與平面垂直教學(xué)設(shè)計(jì)

    6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點(diǎn),且PA=AC,求二面角P-BC-A的大?。?解:由已知PA⊥平面ABC,BC在平面ABC內(nèi)∴PA⊥BC∵AB是⊙O的直徑,且點(diǎn)C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內(nèi),∴BC⊥平面PAC又PC在平面PAC內(nèi),∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個(gè)平面相交,如果它們所成的二面角是直二面角,就說這兩個(gè)平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時(shí),常用鉛錘來檢測所砌的墻面與地面是否垂直,如果系有鉛錘的細(xì)繩緊貼墻面,工人師傅被認(rèn)為墻面垂直于地面,否則他就認(rèn)為墻面不垂直于地面,這種方法說明了什么道理?

  • 人教A版高中數(shù)學(xué)必修一充分條件與必要條件教學(xué)設(shè)計(jì)(1)

    人教A版高中數(shù)學(xué)必修一充分條件與必要條件教學(xué)設(shè)計(jì)(1)

    本課是高中數(shù)學(xué)第一章第4節(jié),充要條件是中學(xué)數(shù)學(xué)中最重要的數(shù)學(xué)概念之一, 它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學(xué)學(xué)習(xí)特別是數(shù)學(xué)推理的學(xué)習(xí)打下基礎(chǔ)。從學(xué)生學(xué)習(xí)的角度看,與舊教材相比,教學(xué)時(shí)間的前置,造成學(xué)生在學(xué)習(xí)充要條件這一概念時(shí)的知識(shí)儲(chǔ)備不夠豐富,邏輯思維能力的訓(xùn)練不夠充分,這也為教師的教學(xué)帶來一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個(gè)概念,由于這些概念比較抽象,中學(xué)生不易理解,用它們?nèi)ソ鉀Q具體問題則更為困難,因此”充要條件”的教學(xué)成為中學(xué)數(shù)學(xué)的難點(diǎn)之一,而必要條件的定義又是本節(jié)內(nèi)容的難點(diǎn).A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會(huì)判斷命題的充分條件、必要條件、充要條件.C.通過學(xué)習(xí),使學(xué)生明白對條件的判定應(yīng)該歸結(jié)為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學(xué)生思維能力的嚴(yán)密性品質(zhì).

  • 人教A版高中數(shù)學(xué)必修一等式性質(zhì)與不等式性質(zhì)教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一等式性質(zhì)與不等式性質(zhì)教學(xué)設(shè)計(jì)(2)

    等式性質(zhì)與不等式性質(zhì)是高中數(shù)學(xué)的主要內(nèi)容之一,在高中數(shù)學(xué)中占有重要地位,它是刻畫現(xiàn)實(shí)世界中量與量之間關(guān)系的有效數(shù)學(xué)模型,在現(xiàn)實(shí)生活中有著廣泛的應(yīng),有著重要的實(shí)際意義.同時(shí)等式性質(zhì)與不等式性質(zhì)也為學(xué)生以后順利學(xué)習(xí)基本不等式起到重要的鋪墊.課程目標(biāo)1. 掌握等式性質(zhì)與不等式性質(zhì)以及推論,能夠運(yùn)用其解決簡單的問題.2. 進(jìn)一步掌握作差、作商、綜合法等比較法比較實(shí)數(shù)的大?。?3. 通過教學(xué)培養(yǎng)學(xué)生合作交流的意識(shí)和大膽猜測、樂于探究的良好思維品質(zhì)。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:不等式的基本性質(zhì);2.邏輯推理:不等式的證明;3.數(shù)學(xué)運(yùn)算:比較多項(xiàng)式的大小及重要不等式的應(yīng)用;4.數(shù)據(jù)分析:多項(xiàng)式的取值范圍,許將單項(xiàng)式的范圍之一求出,然后相加或相乘.(將減法轉(zhuǎn)化為加法,將除法轉(zhuǎn)化為乘法);5.數(shù)學(xué)建模:運(yùn)用類比的思想有等式的基本性質(zhì)猜測不等式的基本性質(zhì)。

  • 人教A版高中數(shù)學(xué)必修一集合的基本運(yùn)算教學(xué)設(shè)計(jì)(1)

    人教A版高中數(shù)學(xué)必修一集合的基本運(yùn)算教學(xué)設(shè)計(jì)(1)

    本節(jié)是新人教A版高中數(shù)學(xué)必修1第1章第1節(jié)第3部分的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了集合的含義以及集合與集合之間的基本關(guān)系,這為學(xué)習(xí)本節(jié)內(nèi)容打下了基礎(chǔ)。本節(jié)內(nèi)容主要介紹集合的基本運(yùn)算一并集、交集、補(bǔ)集。是對集合基木知識(shí)的深入研究。在此,通過適當(dāng)?shù)膯栴}情境,使學(xué)生感受、認(rèn)識(shí)并掌握集合的三種基本運(yùn)算。本節(jié)內(nèi)容是函數(shù)、方程、不等式的基礎(chǔ),在教材中起著承上啟下的作用。本節(jié)內(nèi)容是高中數(shù)學(xué)的主要內(nèi)容,也是高考的對象,在實(shí)踐中應(yīng)用廣泛,是高中學(xué)生必須掌握的重點(diǎn)。A.理解兩個(gè)集合的并集與交集的含義,會(huì)求簡單集合的交、并運(yùn)算;B.理解補(bǔ)集的含義,會(huì)求給定子集的補(bǔ)集;C.能使用 圖表示集合的關(guān)系及運(yùn)算。 1.數(shù)學(xué)抽象:集合交集、并集、補(bǔ)集的含義;2.數(shù)學(xué)運(yùn)算:集合的運(yùn)算;3.直觀想象:用 圖、數(shù)軸表示集合的關(guān)系及運(yùn)算。

上一頁123...222324252627282930313233下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!