問題導學類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認為應研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側,開口向右,這條拋物線上的任意一點M 的坐標 (x, y) 的橫坐標滿足不等式 x ≥ 0;當x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點拋物線和它軸的交點叫做拋物線的頂點.拋物線的頂點坐標是坐標原點 (0, 0) .4. 離心率拋物線上的點M 到焦點的距離和它到準線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標準方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直線與拋物線的位置關系設直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當Δ>0時,直線與拋物線相交,有兩個交點;當Δ=0時,直線與拋物線相切,有一個切點;當Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設拋物線的標準方程為:y2=2px(p>0).設A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
本節(jié)課選自《2019人教A版高中數(shù)學選擇性必修第一冊》第二章《直線和圓的方程》,本節(jié)課主要學習拋物線及其標準方程在經(jīng)歷了橢圓和雙曲線的學習后再學習拋物線,是在學生原有認知的基礎上從幾何與代數(shù)兩 個角度去認識拋物線.教材在拋物線的定義這個內(nèi)容的安排上是:先從直觀上認識拋物線,再從畫法中提煉出拋物線的幾何特征,由此抽象概括出拋物線的定義,最后是拋物線定義的簡單應用.這樣的安排不僅體現(xiàn)出《課程標準》中要求通過豐富的實例展開教學的理念,而且符合學生從具體到抽象的認知規(guī)律,有利于學生對概念的學習和理解.坐標法的教學貫穿了整個“圓錐曲線方程”一章,是學生應重點掌握的基本數(shù)學方法 運動變化和對立統(tǒng)一的思想觀點在這節(jié)知識中得到了突出體現(xiàn),我們必須充分利用好這部分教材進行教學
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標高112.5m,試建立適當?shù)淖鴺讼担蟪龃穗p曲線的標準方程(精確到1m)解:設雙曲線的標準方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標為塔頂直徑的一半即 ,其縱坐標為塔的總高度與喉部標高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設而不求,運用韋達定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為
∵在△EFP中,|EF|=2c,EF上的高為點P的縱坐標,∴S△EFP=4/3c2=12,∴c=3,即P點坐標為(5,4).由兩點間的距離公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求雙曲線的方程為x^2/5-y^2/4=1.5.求適合下列條件的雙曲線的標準方程.(1)兩個焦點的坐標分別是(-5,0),(5,0),雙曲線上的點與兩焦點的距離之差的絕對值等于8;(2)以橢圓x^2/8+y^2/5=1長軸的端點為焦點,且經(jīng)過點(3,√10);(3)a=b,經(jīng)過點(3,-1).解:(1)由雙曲線的定義知,2a=8,所以a=4,又知焦點在x軸上,且c=5,所以b2=c2-a2=25-16=9,所以雙曲線的標準方程為x^2/16-y^2/9=1.(2)由題意得,雙曲線的焦點在x軸上,且c=2√2.設雙曲線的標準方程為x^2/a^2 -y^2/b^2 =1(a>0,b>0),則有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求雙曲線的標準方程為x^2/3-y^2/5=1.(3)當焦點在x軸上時,可設雙曲線方程為x2-y2=a2,將點(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線的標準方程為x^2/8-y^2/8=1.當焦點在y軸上時,可設雙曲線方程為y2-x2=a2,將點(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點不可能在y軸上.綜上,所求雙曲線的標準方程為x^2/8-y^2/8=1.
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉橢圓面(橢圓繞其對稱軸旋轉一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經(jīng)過旋轉橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當?shù)钠矫嬷苯亲鴺讼?,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標系,設所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標準方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標準方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設出相應橢圓的標準方程(對于焦點位置不確定的橢圓可能有兩種標準方程);(3)根據(jù)已知條件構造關于參數(shù)的關系式,利用方程(組)求參數(shù),列方程(組)時常用的關系式有b2=a2-c2等.
二、探究新知一、點到直線的距離、兩條平行直線之間的距離1.點到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點,P是直線l外一點.設(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點P,則兩條平行直線間的距離就等于點P到直線m的距離.點睛:點到直線的距離,即點到直線的垂線段的長度,由于直線與直線外一點確定一個平面,所以空間點到直線的距離問題可轉化為空間某一個平面內(nèi)點到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長為2,E,F分別是C1C,D1A1的中點,則點A到直線EF的距離為 . 答案: √174/6解析:如圖,以點D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
二、探究新知一、空間中點、直線和平面的向量表示1.點的位置向量在空間中,我們?nèi)∫欢cO作為基點,那么空間中任意一點P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設P是直線l上的任意一點,則點P在直線l上的充要條件是存在實數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點O,可以得到點P在直線l上的充要條件是存在實數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項正確.
跟蹤訓練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系.設正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結論;另一種思路是建立空間直角坐標系,通過坐標運算證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.
一、 說教材 Firstly, let’s focus on theteaching material. It include 3 parts: teaching status、teachingaim、the key and difficult points. Now, I will talk about the analysis of teaching status: 1. 教學地位(體現(xiàn)教材的整合) The lesson is the first Unit of Module . It focuses on the topic of , and serves as a connectinglink between the preceding and the following unit. So we can see that it playan important role in the whole book. 2. 教學目標 (根據(jù)具體內(nèi)容定目標和要求) The main instructional aims of teaching English inprimary school is to cultivate pupils’ basic abilitiesof their listening and speaking and their good sense of the English language,so I design 3 aims:
科學是人類認識世界的重要工具,閱讀科普說明文不僅可以啟迪心智,了解更多知識。而且更夠激發(fā)學生對科學的興趣。學習這些文章要注重學生科學精神的培養(yǎng),關注科學探索的過程,感受科學家在科學探索中表現(xiàn)的人格魅力。我們知道一些科學家就是因為閱讀了相關的科普文章才對某一學科產(chǎn)生興趣,從而走上成功之路的。我們在講解的時候可以跟學生列舉一些例子,讓學生認識到一篇好的科普文章的重大意義。
一、教學理念在新課改精神指導下,我在本課教學中力求貫徹以下教學理念:新課標的指引觀 、生本位的學生觀、探究式的學習觀、多角色的教師觀、 發(fā)展性的評價觀二、教材地位《馬克思主義的誕生》是人教版必修一第五單元第18課內(nèi)容,本課講述的是國際共產(chǎn)主義運動范疇的歷史,是人類社會進入一個新的發(fā)展時期。從總體上概述了社會主義從空想到科學,從理論到實踐的歷程。說明了科學社會主義理論是歷史發(fā)展的必然結果。本課在國際工運史上占有重要的地位。通過學習學生可對馬克思主義加深了解,理解人類歷史發(fā)展的必然趨勢以及人類一直不斷追求進步的精神,幫助學生樹立正確的人生觀、價值觀,達到以史鑒今,服務現(xiàn)實的目的。
1.說教材《記念劉和珍君》是魯迅先生用飽醮著熱淚,用悲憤的筆調(diào)寫下的一篇感人至深的散文,既有對愛國青年沉痛的悼念,又有對反動派憤怒的控訴,也有對覺醒的國民的吶喊?!队浤顒⒑驼渚肥歉咧姓Z文必修1第三單元第一課的講讀課文。文中描摹人物的音容笑貌,敘述人物的行為事跡,都融入了作者真摯的情感和深刻的感悟。對學生明辨是非,領悟時代精神和人生意義,有著重要的作用。新課標強調(diào)了要全面提升高中學生的語文素養(yǎng),初步形成正確的世界觀、人生觀、價值觀,并學會收集、判斷、處理信息,具有人文素養(yǎng)、創(chuàng)新精神與實踐能力。同時,《記念劉和珍君》感情真摯,感悟深刻,具有典型人文性。結合本單元教學目標,確立教學目標如下。
4、學習全詞:(1)背景介紹,讓學生看課文中的年代,然后讓學生回憶1925年的毛澤東的情況,老師適當提示,讓學生了解其背景。(出示幻燈片)(2)學生自由朗讀,結合注釋和背景理解詩詞。(3)師生共同理解全詞①先讓學生齊讀前三句,思考正確的語序,并用正常的語序解釋。②品味第三到第十句,這里是教學的一個重點,要讓學生先讀,再理解,在此基礎上訓練學生的想象能力。③分析上闕中的最后三句。④小結上闕。提出了一個問題“誰主沉浮”讓學生在文中找內(nèi)容回答,然后轉入下闕內(nèi)容的分析。⑤分析下闕內(nèi)容,回答“誰主沉浮”的問題,突出本文主旨5、描繪詩詞形象:學生用自己的語言把上闕的內(nèi)容生動地描繪出來。6、欣賞學生優(yōu)秀作品。(根據(jù)時間具體而定,也可以作為課后作業(yè))
一、教材分析1、教學對象分析《再別康橋》的教學對象是高一學生,高一學生往往對那種純粹的、原始的、本真的情感體會較為膚淺,《再別康橋》是新月派詩人徐志摩的傳世之作,有極高美學價值,它所抒發(fā)的離愁別緒是人類共同的情感經(jīng)歷,通過誦讀容易將學生帶人詩境,喚醒他們沉寂的真情,從而引起強烈的共鳴。 2、教材地位及作用 高中語文第一冊第一單元為詩歌單元,本單元收錄了中國現(xiàn)當代的一些優(yōu)秀詩篇?!对賱e康橋》安排在本單元的第二課,屬于必讀課。雖然本詩向來眾說紛紜,但其藝術之美人所共知,培養(yǎng)學生高尚的審美情趣和良好的審美創(chuàng)造力是語文學科的任務,因此,從語言賞析入手,從情感體驗切入,就可以讓學生通過學習本課體會現(xiàn)代詩歌的特點,多方面感受體悟詩歌的情感,受到美的熏陶。
“深入探究,把握主旨”這一步則是解決教學的重點難點,這里涉及到課文的深層意蘊,學生理解有難度,教師在通過問題引領學生探討的基礎上,還要適時啟發(fā)、點撥,因為教學時間有限,讓學生漫無邊際的討論,可能難以完成預定的教學任務,會使教學過程不完整。至于本文的寫作特點的教學視時間而定,有時間可以讓學生說一說,沒有時間用小黑板出示一下,讓學生了解就行,如果時間不夠,甚至可以不講。第三階段是“延伸練習,鞏固提高”。
(2).教學手段為了使我根據(jù)教材而設計的三個教學目標以及重點難點得以的突出和突破,達到最大化的展示境界,同時也為了配合以上我選擇的四種教法得以完滿實現(xiàn),我決定采用“多媒體”教學手段進行全程教學。利用電腦的信息容量大,操作簡便等優(yōu)點,形象生動的直觀展示教學內(nèi)容,不但提高學習效率和質(zhì)量,而且容易激發(fā)學生的學習興趣和調(diào)動學習的積極性。四、說學法我為學生設計了三個學習方法:1.讓學生學會在探究中學。通過“對黑人嚴酷處境的探究”和對文中重點語句的探究,培養(yǎng)學生在探究中學習的能力。2.讓學生學會在讀中學。通過“誦讀法”指導學生在誦讀過程中感受演講詞內(nèi)在的魅力,學會在讀中學。3.讓學生學會在練習中學。通過“課外延伸練習法”,對所學的知識進行運用,培養(yǎng)學生的創(chuàng)新和自學能力。
(一)解題:包身工──舊社會一種變相的販賣奴隸的形式。被販賣的多是女孩子由承辦人送到工廠做工,無人身自由,所得工資全部歸承辦人所有,在這種形式下做工的人也稱包身工。包身工是指二三十年代(時間),在上海東洋紗廠里(地點),為外國人工作的女工(工作性質(zhì))。因為這些女工在進廠時已經(jīng)簽訂了賣身契,失去了人身的自由權,所以被稱為“包身工”。標題中的“包身”二字,突出了帝國主義、封建勢力對中國女童工的殘酷剝削的罪行,控訴了他們的野蠻殘暴的統(tǒng)治手段,以激起人們的義憤和同情,這是全文的中心思想。(二)關于報告文學:《包身工》屬于報告文學。(同類題材有初中的《地質(zhì)之光》、《誰是最可愛的人》)報告文學,是文學體裁的一種,散文的一類,是文藝通訊、速寫、特寫的總稱,是文學創(chuàng)作中的“輕騎兵”。
四、教學方法和學法。課前學生搜集有關《詩經(jīng)》的資料必不可少。另外,時隔數(shù)千年,年代久遠,文字的障礙很大,然而,過分糾纏于文字的疏通會破壞詩歌的“氣”,喪失詩歌的“神”,所以在學習時,應舍去條分縷析的理論評價,指導學生結合注釋疏通文字,然后引領他們經(jīng)由文字再現(xiàn)形象和事件,經(jīng)由形象和事件領略情感,感受其中濃濃的詩情。誦讀的環(huán)節(jié)是重要的,配以二胡獨奏《長相思》,營造意境,學生沉浸在音樂營造的意境中反復吟詠,讀出節(jié)奏,讀出音調(diào),讀出感情,細細體味,讓或優(yōu)或喜的情愫縈繞心間,我們就觸到了先民的靈魂。比興手法為《詩經(jīng)》獨創(chuàng),重章疊句同樣別致而新鮮,教學過程中結合具體語境讓學生自己去發(fā)現(xiàn)并進行討論,不搞枯燥的知識傳授。還引入講故事、改寫兩種活潑的學習形式,從而達到加深理解的目的。