新知講授(一)——古典概型 對隨機(jī)事件發(fā)生可能性大小的度量(數(shù)值)稱為事件的概率。我們將具有以上兩個特征的試驗(yàn)稱為古典概型試驗(yàn),其數(shù)學(xué)模型稱為古典概率模型,簡稱古典概型。即具有以下兩個特征:1、有限性:樣本空間的樣本點(diǎn)只有有限個;2、等可能性:每個樣本點(diǎn)發(fā)生的可能性相等。思考一:下面的隨機(jī)試驗(yàn)是不是古典概型?(1)一個班級中有18名男生、22名女生。采用抽簽的方式,從中隨機(jī)選擇一名學(xué)生,事件A=“抽到男生”(2)拋擲一枚質(zhì)地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級中共有40名學(xué)生,從中選擇一名學(xué)生,即樣本點(diǎn)是有限個;因?yàn)槭请S機(jī)選取的,所以選到每個學(xué)生的可能性都相等,因此這是一個古典概型。
9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關(guān)系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設(shè)它們確定的平面為β,則B∈β, 由于經(jīng)過點(diǎn)B與直線a有且僅有一個平面α,因此平面平面α與β重合,從而 , 進(jìn)而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補(bǔ)充說明:例二告訴我們一種判斷異面直線的方法:與一個平面相交的直線和這個平面內(nèi)不經(jīng)過交點(diǎn)的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關(guān)系?并畫圖說明.解: 直線a與直線c的位置關(guān)系可以是平行、相交、異面.如圖(1)(2)(3).總結(jié):判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內(nèi).
問題導(dǎo)入:問題一:試驗(yàn)1:分別拋擲兩枚質(zhì)地均勻的硬幣,A=“第一枚硬幣正面朝上”,B=“第二枚硬幣正面朝上”。事件A的發(fā)生是否影響事件B的概率?因?yàn)閮擅队矌欧謩e拋擲,第一枚硬幣的拋擲結(jié)果與第二枚硬幣的拋擲結(jié)果互相不受影響,所以事件A發(fā)生與否不影響事件B發(fā)生的概率。問題二:計算試驗(yàn)1中的P(A),P(B),P(AB),你有什么發(fā)現(xiàn)?在該試驗(yàn)中,用1表示硬幣“正面朝上”,用0表示“反面朝上”,則樣本空間Ω={(1,1),(1,0),(0,1),(0,0)},包含4個等可能的樣本點(diǎn)。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率計算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)積事件AB的概率恰好等于事件A、B概率的乘積。問題三:試驗(yàn)2:一個袋子中裝有標(biāo)號分別是1,2,3,4的4個球,除標(biāo)號外沒有其他差異。
1.圓柱、圓錐、圓臺的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺的表面積也是圍成它的各個面的面積和。利用圓柱、圓錐、圓臺的展開圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺的表面積之間有什么關(guān)系?你能用圓柱、圓錐、圓臺的結(jié)構(gòu)特征來解釋這種關(guān)系嗎?3.練習(xí)一圓柱的一個底面積是S,側(cè)面展開圖是一個正方體,那么這個圓柱的側(cè)面積是( )A 4πS B 2πS C πS D 4.練習(xí)二:如圖所示,在邊長為4的正三角形ABC中,E,F(xiàn)分別是AB,AC的中點(diǎn),D為BC的中點(diǎn),H,G分別是BD,CD的中點(diǎn),若將正三角形ABC繞AD旋轉(zhuǎn)180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺的體積對于柱體、錐體、臺體的體積公式的認(rèn)識(1)等底、等高的兩個柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關(guān)系可以通過實(shí)驗(yàn)得出,等底、等高的圓柱的體積是圓錐的體積的3倍.
新知探究:向量的減法運(yùn)算定義問題四:你能根據(jù)實(shí)數(shù)的減法運(yùn)算定義向量的減法運(yùn)算嗎?由兩個向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個向量差的運(yùn)算叫做向量的減法。我們看到,向量的減法可以轉(zhuǎn)化為向量的加法來進(jìn)行:減去一個向量相當(dāng)于加上這個向量的相反向量。即新知探究(二):向量減法的作圖方法知識探究(三):向量減法的幾何意義問題六:根據(jù)問題五,思考一下向量減法的幾何意義是什么?問題七:非零共線向量怎樣做減法運(yùn)算? 問題八:非零共線向量怎樣做減法運(yùn)算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯誤的打“×”)(1)兩個向量的差仍是一個向量。 (√ )(2)向量的減法實(shí)質(zhì)上是向量的加法的逆運(yùn)算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )
一、教材分析 《真正的哲學(xué)都是自己時代精神上的精華》是人教版高中政治必修四第3章第1框的教學(xué)內(nèi)容,主要學(xué)習(xí)哲學(xué)與時代的關(guān)系。二、教學(xué)目標(biāo)1.知識目標(biāo):識記哲學(xué)是時代的精神上的精華;理解哲學(xué)與時代的關(guān)系。2.能力目標(biāo):培養(yǎng)學(xué)生運(yùn)用哲學(xué)理論觀察、分析、處理社會問題的能力,增強(qiáng)學(xué)生的時代感。3.情感、態(tài)度和價值觀目標(biāo):培養(yǎng)學(xué)生與時俱進(jìn)的思想品質(zhì),讓學(xué)生關(guān)注時代、關(guān)注現(xiàn)實(shí)、關(guān)注生活,逐步樹立科學(xué)的世界觀、人生觀、價值觀 。三、教學(xué)重點(diǎn)難點(diǎn)哲學(xué)與時代的關(guān)系。四、學(xué)情分析本框題的內(nèi)容比較抽象,不易理解,所以講解時需要詳細(xì)。教師指導(dǎo)學(xué)生借助歷史知識進(jìn)行理解。五、教學(xué)方法1.教師啟發(fā)、引導(dǎo),學(xué)生自主閱讀、思考,討論、交流學(xué)習(xí)成果。2.學(xué)案導(dǎo)學(xué):見后面的學(xué)案。3.新授課教學(xué)基本環(huán)節(jié):預(yù)習(xí)檢查、總結(jié)疑惑→情境導(dǎo)入、展示目標(biāo)→合作探究、精講點(diǎn)撥→反思總結(jié)、當(dāng)堂檢測→發(fā)導(dǎo)學(xué)案、布置預(yù)習(xí)
(一)說教材 《虞美人》選自高中語文統(tǒng)編版必修上冊·古詩詞誦讀?!队菝廊恕肥窃~中的代表作品,是李煜生命中最為重要的一首詞作,極具藝術(shù)魅力,對于陶冶學(xué)生的情操,豐富和積淀學(xué)生的人文素養(yǎng)意義非凡。(二)說學(xué)情總體來說,所教班級的學(xué)生基礎(chǔ)不強(qiáng),學(xué)習(xí)意識略有偏差,在學(xué)習(xí)過程中需要教師深入淺出,不斷創(chuàng)造動口、動手、動腦的機(jī)會,他們才能更好地達(dá)成教學(xué)目標(biāo)。(三)說教學(xué)目標(biāo)根據(jù)教學(xué)內(nèi)容和學(xué)情分析,確定如下教學(xué)目標(biāo)(1)探究這首詞的內(nèi)涵,了解李煜及其創(chuàng)作風(fēng)格。(2)通過對本詞的品析,提高詞的鑒賞能力。(3)通過對比閱讀,體會李煜詞 “赤子之心” 、“以血書者”的特色,體味其深沉的亡國之恨和故國之思。
問題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點(diǎn)的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點(diǎn)都是對稱。x軸、y軸是雙曲線的對稱軸,原點(diǎn)是對稱中心,又叫做雙曲線的中心。3、頂點(diǎn)(1)雙曲線與對稱軸的交點(diǎn),叫做雙曲線的頂點(diǎn) .頂點(diǎn)是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實(shí)軸,它的長為2a,a叫做實(shí)半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實(shí)軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫出雙曲線的草圖
問題導(dǎo)學(xué)類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點(diǎn)M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點(diǎn)拋物線和它軸的交點(diǎn)叫做拋物線的頂點(diǎn).拋物線的頂點(diǎn)坐標(biāo)是坐標(biāo)原點(diǎn) (0, 0) .4. 離心率拋物線上的點(diǎn)M 到焦點(diǎn)的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標(biāo)軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點(diǎn),M為其上任一點(diǎn),則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點(diǎn)為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點(diǎn)在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點(diǎn)坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點(diǎn)坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關(guān)于x軸、y軸、原點(diǎn)對稱;③頂點(diǎn):長軸端點(diǎn)(0,10),(0,-10),短軸端點(diǎn)(-8,0),(8,0);④焦點(diǎn):(0,6),(0,-6);⑤離心率:e=3/5.
二、探究新知一、空間中點(diǎn)、直線和平面的向量表示1.點(diǎn)的位置向量在空間中,我們?nèi)∫欢c(diǎn)O作為基點(diǎn),那么空間中任意一點(diǎn)P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點(diǎn)P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點(diǎn),則點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點(diǎn)O,可以得到點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點(diǎn)及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項(xiàng)正確.
二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時,直線與拋物線相交,有兩個交點(diǎn);當(dāng)Δ=0時,直線與拋物線相切,有一個切點(diǎn);當(dāng)Δ<0時,直線與拋物線相離,沒有公共點(diǎn).(2)若k=0,直線與拋物線有一個交點(diǎn),此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點(diǎn)是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),通過點(diǎn)A和拋物線頂點(diǎn)的直線交拋物線的準(zhǔn)線于點(diǎn)D,求證:直線DB平行于拋物線的對稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點(diǎn) 到定點(diǎn) 的距離和它到定直線l: 的距離的比是 ,則點(diǎn) 的軌跡方程為?解:設(shè)點(diǎn) ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點(diǎn)F2,傾斜角為30度的直線交雙曲線于A,B兩點(diǎn),求|AB|.分析:求弦長問題有兩種方法:法一:如果交點(diǎn)坐標(biāo)易求,可直接用兩點(diǎn)間距離公式代入求弦長;法二:但有時為了簡化計算,常設(shè)而不求,運(yùn)用韋達(dá)定理來處理.解:由雙曲線的方程得,兩焦點(diǎn)分別為F1(-3,0),F2(3,0).因?yàn)橹本€AB的傾斜角是30°,且直線經(jīng)過右焦點(diǎn)F2,所以,直線AB的方程為
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點(diǎn)F_1上,片門位另一個焦點(diǎn)F_2上,由橢圓一個焦點(diǎn)F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個橢圓焦點(diǎn)F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點(diǎn)位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對于焦點(diǎn)位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時常用的關(guān)系式有b2=a2-c2等.
跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點(diǎn).求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點(diǎn).求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過坐標(biāo)運(yùn)算證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因?yàn)镋,F,M分別為棱AB,BC,B1B的中點(diǎn),所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因?yàn)?B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.
1.從監(jiān)測的范圍、速度,人力和財力的投入等方面看,遙感具有哪些特點(diǎn)?點(diǎn)撥:范圍更廣、速度更快、需要人力更少 、財力投入少。2.有人說:遙感是人的視力的延伸。你同意這種看法嗎?點(diǎn)撥:同意??梢詮倪b感的定義分析。從某種意義上說,人們“看”的過程就是在遙感,眼睛相當(dāng)于傳感器。課堂小結(jié):遙感技術(shù)是國土整治和區(qū)域發(fā)展研究中應(yīng)用較廣的技術(shù) 手段之一,我國在這個領(lǐng)域已經(jīng)走在了世界的前列。我國的大部分土地已經(jīng)獲得了大比例尺的航空影像資料,成功發(fā)射了回收式國土資源衛(wèi)星,自行研制發(fā)射了“風(fēng)云”衛(wèi)星。遙感技術(shù)為我國自然資源開發(fā)與利用提供 了大量的有用的資料,在我國農(nóng)業(yè)估產(chǎn)、災(zāi)害監(jiān)測 、礦產(chǎn)勘察、土地利用、環(huán)境管理與城鄉(xiāng)規(guī)劃中起到了非常重要的作用。板書設(shè)計§1.2地理信息技術(shù)在區(qū)域地理環(huán)境研究中的應(yīng)用
(4)假如你是110指揮中心的調(diào)度員,描述在接到報警電話到指揮警車前往出事地點(diǎn)的工作程序。點(diǎn)撥:接警→確認(rèn)出事地點(diǎn)的位置→(在顯示各巡警車的地理信息系統(tǒng)中)了解其周圍巡警車的位置→分析確定最近(或能最快到達(dá))的巡警車→通知該巡警車。(5)由此例推想,地理信息技術(shù)還可以應(yīng)用于城市管理的哪些部門中?點(diǎn)撥:城市交通組織和管理、商業(yè)組織和管理、城市規(guī)劃、衛(wèi)生救護(hù)、物流等部門,都可利用地理信息技術(shù)?!菊n堂小結(jié)】現(xiàn)代地理學(xué)中,3S技術(shù)學(xué)科的發(fā)展與應(yīng)用,日益成為地理學(xué)前沿科學(xué)研究的重要領(lǐng)域,并成為地理學(xué)服務(wù)于社會生產(chǎn)的主要途徑,現(xiàn)在3S技術(shù)已經(jīng)廣泛應(yīng)用于社會的各個領(lǐng)域。它們?nèi)呒扔蟹止び钟新?lián)系。遙感技術(shù)主要用于地理信息數(shù)據(jù)的獲取,全球定位系統(tǒng)主要用于地理信息的空間定位,地理信息系統(tǒng)主要用來對地理信息數(shù)據(jù)的管理、更新、分析等。
教學(xué)重點(diǎn):1.比較分析地理環(huán)境差異對區(qū)域發(fā)展的影響2.分析區(qū)域不同發(fā)展階段地理環(huán)境的影響教學(xué)難點(diǎn):1.區(qū)域的特征2.以兩個區(qū)域?yàn)槔?,比較分析地理環(huán)境差異對區(qū)域發(fā)展的影響教具準(zhǔn)備:有關(guān)掛圖等、自制圖表等教學(xué)方法:比較法、案例分析法、圖示法等教學(xué)過程:一、區(qū)域1.概念:區(qū)域是地球表面的空間單位,它是人們在地理差異的基礎(chǔ)上,按一定的指標(biāo)和方法劃分出來的。2.特征:(1)區(qū)域具有一定的區(qū)位特征:不同的區(qū)域,自然環(huán)境有差異,人類活動也有差異。同一區(qū)域,區(qū)域內(nèi)部的特定性質(zhì)相對一致,如濕潤區(qū)的多年平均降水量都在800毫米以上。但自然環(huán)境對人類活動的影響隨著其他條件的變化而不同。(2)具有一定的面積、形狀和邊界。①有的區(qū)域的邊界是明 確的,如行政區(qū);②有的區(qū)域的邊界具有過渡性質(zhì),如干濕地區(qū)。
1.直觀圖:表示空間幾何圖形的平面圖形,叫做空間圖形的直觀圖直觀圖往往與立體圖形的真實(shí)形狀不完全相同,直觀圖通常是在平行投影下得到的平面圖形2.給出直觀圖的畫法斜二側(cè)畫法觀察:矩形窗戶在陽光照射下留在地面上的影子是什么形狀?眺望遠(yuǎn)處成塊的農(nóng)田,矩形的農(nóng)田在我們眼里又是什么形狀呢?3. 給出斜二測具體步驟(1)在已知圖形中取互相垂直的X軸Y軸,兩軸相交于O,畫直觀圖時,把他們畫成對應(yīng)的X'軸與Y'軸,兩軸交于O'。且使∠X'O'Y'=45°(或135°)。他們確定的平面表示水平面。(2)已知圖形中平行于X軸或y軸的線段,在直觀圖中分別畫成平行于X'軸或y'軸的線段。(3)已知圖形中平行于X軸的線段,在直觀圖中保持原長度不變,平行于Y軸的線段,在直觀圖中長度為原來一半。4.對斜二測方法進(jìn)行舉例:對于平面多邊形,我們常用斜二測畫法畫出他們的直觀圖。如圖 A'B'C'D'就是利用斜二測畫出的水平放置的正方形ABCD的直觀圖。其中橫向線段A'B'=AB,C'D'=CD;縱向線段A'D'=1/2AD,B'C'=1/2BC;∠D'A'B'=45°,這與我們的直觀觀察是一致的。5.例一:用斜二測畫法畫水平放置的六邊形的直觀圖(1)在六邊形ABCDEF中,取AD所在直線為X軸,對稱軸MN所在直線為Y軸,兩軸交于O',使∠X'oy'=45°(2)以o'為中心,在X'上取A'D'=AD,在y'軸上取M'N'=½MN。以點(diǎn)N為中心,畫B'C'平行于X'軸,并且等于BC;再以M'為中心,畫E'F'平行于X‘軸并且等于EF。 (3)連接A'B',C'D',E'F',F'A',并擦去輔助線x軸y軸,便獲得正六邊形ABCDEF水平放置的直觀圖A'B'C'D'E'F' 6. 平面圖形的斜二測畫法(1)建兩個坐標(biāo)系,注意斜坐標(biāo)系夾角為45°或135°;(2)與坐標(biāo)軸平行或重合的線段保持平行或重合;(3)水平線段等長,豎直線段減半;(4)整理.簡言之:“橫不變,豎減半,平行、重合不改變。”
本課是高中數(shù)學(xué)第一章第4節(jié),充要條件是中學(xué)數(shù)學(xué)中最重要的數(shù)學(xué)概念之一, 它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學(xué)學(xué)習(xí)特別是數(shù)學(xué)推理的學(xué)習(xí)打下基礎(chǔ)。從學(xué)生學(xué)習(xí)的角度看,與舊教材相比,教學(xué)時間的前置,造成學(xué)生在學(xué)習(xí)充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓(xùn)練不夠充分,這也為教師的教學(xué)帶來一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學(xué)生不易理解,用它們?nèi)ソ鉀Q具體問題則更為困難,因此”充要條件”的教學(xué)成為中學(xué)數(shù)學(xué)的難點(diǎn)之一,而必要條件的定義又是本節(jié)內(nèi)容的難點(diǎn).A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會判斷命題的充分條件、必要條件、充要條件.C.通過學(xué)習(xí),使學(xué)生明白對條件的判定應(yīng)該歸結(jié)為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學(xué)生思維能力的嚴(yán)密性品質(zhì).