有意義,字母x的取值必須滿足什么條件?設計意圖:通過例題的講解,使學生加深對所學知識的理解,避免一些常見錯誤。而變式練習設計,延續(xù)的例題的風格,一步一步,步步深入,本節(jié)課的教學難點就在學生的操作活動中迎刃而解了。對提高學生對所學知識的遷移能力和應用意識,激發(fā)好奇心和求知欲起到良好效果。(五)、鞏固運用,提高認識1、通過基礎訓練讓學生體驗學習的成就感。2、應用拓展:增加難處,再次讓學生聯系以前的知識,增強學生的數學應用意識。(六)、總結評價,質疑問難這節(jié)課我們學習了什么?設計意圖:學生共同總結,互相取長補短,學生在暢所欲言中對二次根式的認知得到進一步的鞏固升華。五、板書設計.采用綱領式的板書,使學生有“話”可說,有“理”可循,在簡單板書設計中使學生體會到數學的簡潔美。
③如果某人本月繳所得稅19.2元,那么此人本月工資薪金是多少元?根據所給條件寫出簡單的一次函數表達式是本節(jié)課的重點加難點,所以在解決這一問題時及時引導學生總結學習體會,教給學生掌握“從特殊到一般”的認識規(guī)律中發(fā)現問題的方法。類比出一次函數關系式的一般式的求法,以此突破教學難點。在學習過程中,我巡視并予以個別指導,關注學生的個體發(fā)展。經學生分析:(1)當月收入大于1600元而小于2100元時,y=0.05×(x-1600);(2)當x=1760時,y=0.05×(1760-1600)=8(元);(3)設此人本月工資、薪金是x元,則19.2=0.05×(x-1600) X=1984五.教學效果課前:通過本節(jié)課的學習,教學目標應該可以基本達成,學生能夠理解一次函數和正比例函數的概念,以及它們之間的關系,并能正確識別一次函數解析式,能根據所給條件寫出簡單的一次函數表達式,且通過本節(jié)課的學習學生的抽象思維能力,數學應用能力都能有所提升,
說明:8.2.1在表示范表演的點畫空心圓圈,表不包括這一點,表示大時就往右拐;圖8.2.2在表示-2的點畫黑點表示包括這一點,表示小時往左拐。3,講解補充例題,例1:判斷:①x=2是不等式4x<9的一個解.()②x=2是不等式4x<9的解集.()例2、將下列不等式的解集在數軸上表示出來:(1)x<2(2)x≥-2(設計意圖:例1是讓學生理解不等式的解與不等式的解集。聯系與區(qū)別,例2揭示不等式的解集與數軸上表示數的范圍的一種對應關系,從而進一步加深學生對不等式解集的理解,以使學生進一步領會到數形結合的方法具有形象,直觀,易于說明問題的優(yōu)點)4.鞏固練習:課本44頁練習2,3題5.歸納總結,結合板書,引導學生自我總結,重點知識和學習方法,達到掌握重點,順理成章的目的。6.作業(yè):課本49頁習題1,2題
1.通過實例體會一元一次不等式組是研究量與量之間關系的重要模型之一。2.了解一元一次不等式組及解集的概念。3.會利用數軸解較簡單的一元一次不等式組。4.培養(yǎng)學生分析、解決實際問題的能力。5.通過實際問題的解決,體會數學知識在生活中的應用,激發(fā)學生的學習興趣。能在解決問題過程中勤于思考、樂于探究,體驗解決問題策略的多樣性,體驗數學的價值。四、教學重、難點分析教學重點:1.理解有關不等式組的概念.2.會解由兩個一元一次不等式組成的不等式組.教學難點:在數軸上確定解集.五、教學手段分析本節(jié)課采用多媒體教學,利用多媒體教學信息容量大、操作簡單、形象生動、反饋及時等優(yōu)點,直觀地展示教學內容,這樣不但可以提高學習效率和質量,而且容易激發(fā)學生學習的興趣,調動積極性。
通過以上例題幫助學生總結出分式乘除法的運算步驟(當分式的分子與分母都是單項式時和當分式的分子、分母中有多項式兩種情況)4、隨堂練習。(約5分鐘)76頁第一題,共3個小題。教學效果:在總結出分式乘除法的運算步驟后,大部分學生能很好的掌握,但是還有些學生忘記運算結果要化成最簡形式,老師要及時提醒學生。 分解因式的知識沒掌握好,將會影響到分式的運算,所以有的學生有必要復習和鞏固一下分解因式的知識。5、數學理解(約5分鐘)教材77頁的數學理解,學生很容易出現像小明那樣的錯誤。但是也很容易找出錯誤的原因。補充例3 計算(xy-x2)÷ ? 教學效果:鞏固分式乘除法法則,掌握分式乘除法混合運算的方法。提醒學生,負號要提到分式前面去。6、課堂小結(約3分鐘)先學生分組小結,在全班交流,最后老師總結。
一、說教材《分式的加減法》是本冊教材第三章《分式》重要內容,是進一步學習分式方程、反比例函數以及其它數學知識的基礎,同時也是學習物理、化學等學科不可缺少的工具。與其它數學知識一樣,它在實際生活中有著廣泛的應用。學習分式的加減法并熟練地進行運算是學好分式運算的關鍵,為學生綜合運用多種運算法則拓寬了空間,有利于學生對雙基的掌握,在綜合運用多種運算法則的過程中,逐漸形成運算能力。同時本節(jié)課的教學難度有所增加,學生通過觀察、類比、猜想、嘗試等一系列思維活動中,發(fā)現規(guī)則、理解規(guī)則、應用規(guī)則??紤]到以上這些因素,確定本節(jié)課的目標和重點、難點如下:(一)說教學目標:1.知識與技能目標:理解并掌握異分母分式加減法的法則;經歷異分母分式的加減運算和通分的過程,訓練學生的分式運算能力,培養(yǎng)學生在學習中轉化未知問題為已知問題的能力;進一步通過實例發(fā)展學生的符號感。
設計意圖:考慮學生的個別差異,分層次布置作業(yè),讓基礎差的學生能夠吃飽,基礎好的學生吃好,使每位學生都感到學有所獲。五、評價分析數學課程標準指出:學生的數學學習內容應當是現實的、有意義的、富有挑戰(zhàn)性的,而動手實踐、自主探究與合作交流是學生學習數學的重要方式。本著這一理念,在本課的教學過程中,我嚴格遵循由感性到理性,將數學知識始終與現實生活中學生熟悉的實際問題相結合,不斷提高他們應用數學方法分析問題、解決問題的能力。在重視課本基礎知識的基礎上,適當進行拓展延伸,培養(yǎng)學生的創(chuàng)新意識,同時根據新課程標準的評價理念,在教學過程中,不僅注重學生的參與意識,而且注重學生對待學習的態(tài)度是否積極。課堂中也盡量給學生更多的空間、更多展示自我的機會,讓學生在和諧的氛圍中認識自我、找到自信、體驗成功的樂趣。使學生的主體地位得到充分的體現,使教學過程成為一個在發(fā)現在創(chuàng)造的認知過程。
回顧整節(jié)課的設計,我主要著力于以下三個方面:1.關于教材處理:認真處理教材,目的只有一個——為我的學生盡可能多地提供參與活動的機會,在本節(jié)課中主要體現在以下幾點:(1)通過“合成代數式”、“賦予分式實際意義”兩個活動,激發(fā)興趣,吸引學生參與活動;(2)通過“互舉例子”、“填表探究”兩個活動,鼓勵學生主動參與活動;(3)通過“應用新知”這個環(huán)節(jié),促進學生參與活動。2.關于教與學方法的選擇:我在設計中始終關注:如何精心組織活動,讓學生在豐富的活動中探索、交流與創(chuàng)新,因此我選擇了“引導——發(fā)現教學法”,具體做法如下: (1)用數、式通性的思想,類比分數,引導學生獨立思考、小組協(xié)作,完成對分式概念及意義的自主建構,突出數學合情推理能力的養(yǎng)成;(2)加強應用性,通過“應用新知”、“深化拓展”兩個環(huán)節(jié),密切分式與現實生活及其他學科的聯系,發(fā)展數學應用意識,突出分式的模型思想。
設計目的:通過學生的反饋練習,使教師能全面了解學生對公因式概念的理解是否到位,提取公因式的方法與步驟是否掌握,以便教師能及時地進行查缺補漏.但依然有部分同學會出現問題,如對首項出現負號時不能正確處理,此時,需要老師進一步引導.第四環(huán)節(jié) 課堂小結從今天的課程中,你學到了哪些知識?你認為提公因式法與單項式乘多項式有什么關系?怎樣用提公因式法分解因式?設計目的:通過學生的回顧與反思,強化學生對確定公因式的方法及提公因式法的步驟的理解,進一步清楚地了解提公因式法與單項式乘多項式的互逆關系,加深對類比的數學思想的理解。第五環(huán)節(jié) 當堂檢測把下列各式分解因式(1)2x2-4x (2)8m2n+2mn(3)-4a3b3+6a2b-2ab (4)2n2-mn-n*(5)3an+1-2anc-7an+2設計目的:檢驗學生的目標達成情況,其中第五小題供學有余力的學生選作。第六環(huán)節(jié) 課后反思教學反思
(1)請你用代數式表示水渠的橫斷面面積;(2)計算當a=3,b=1時,水渠的橫斷面面積.解析:(1)根據梯形面積=12(上底+下底)×高,即可用含有a、b的代數式表示水渠橫斷面面積;(2)把a=3、b=1帶入到(1)中求出的代數式中,其結果即為水渠的橫斷面面積.解:(1)∵梯形面積=12(上底+下底)×高,∴水渠的橫斷面面積為:12(a+b)b(m2);(2)當a=3,b=1時水渠的橫斷面面積為12(3+1)×1=2(m2).方法總結:解答本題時需搞清下列幾個問題:(1)題目中給出的是什么圖形?(2)這種圖形的面積公式是什么?(3)根據公式求圖形的面積需要知道哪幾個量?(4)這些量是否已知或能求出?搞清楚了這些問題,求解就水到渠成.三、板書設計教學過程中,應通過活動使學生感知代數式運算在判斷和推理上的意義,增強學生學習數學的興趣,培養(yǎng)學生積極的情感和態(tài)度,為進一步學習奠定堅實的基礎.
解 由題意可得,今年的年產值為a·(1+10%) 億元,于是明年的年產值為a·(1+10%)·(1+10%)= 1.21a(億元).若去年的年產值為2億元,則明年的年產值為1.21a =1.21×2 = 2.42(億元).答:該企業(yè)明年的年產值將能達到1.21a億元.由去年的年產值是2億元,可以預計明年的年產值是2.42億元.例3 當x=-3時,多項式mx3+nx-81的值是10,當x = 3時,求該代數式的值.解 當x=-3時,多項式mx3+nx-81=-27m-3n-81, 此時-27m-3n-81=10, 所以27m+3n=-91.則當x=3,mx3+nx-81 =( 27m+3n )-81=-91-81=-172.注:本題采用了一種重要的數學思想——“整體思想”.即是考慮問題時不是著眼于他的局部特征,而是把注意力和著眼點放在問題的整體結構上,把一些彼此獨立,但實質上又相互緊密聯系著的量作為整體來處理的思想方法.
方法總結:對等式進行變形,必須在等式的兩邊同時進行,即同加或同減,同乘或同除,不能漏掉一邊,且同加或同減,同乘或同除的數必須相同.探究點二:利用等式的基本性質解方程用等式的性質解下列方程:(1)4x+7=3; (2)12x-13x=4.解析:(1)在等式的兩邊都減7,再在等式的兩邊都除以4,可得答案;(2)在等式的兩邊都乘以6,再合并同類項,可得答案.解:(1)方程兩邊都減7,得4x=-4.方程兩邊都除以4,得x=-1;(2)方程兩邊都乘以6,得3x-2x=24,x=24.方法總結:解方程時,一般先將方程變形為ax=b的形式,然后再變形為x=c的形式.三、板書設計教學過程中,強調學生自主探索和合作交流,通過觀察、操作、歸納等數學活動,感受數學思想的條理性和數學結論的嚴密性.
教學目標1、知識目標:掌握等式的性質;會運用等式的性質解簡單的一元一次方程。2、能力目標:通過觀察、探究、歸納、應用,培養(yǎng)學生觀察、分析、綜合、抽象能力,獲取學習數學的方法。3、情感目標:通過學生間的交流與合作,培養(yǎng)學生積極愉悅地參與數學學習活動的意識和情感,敢于面對數學活動中的困難,獲得成功的體驗,體會解決問題中與他人合作的重要性。教學重點與難點重點:理解和應用等式的性質。難點:應用等式的性質,把簡單的一元一次方程化為“x=a”的形式。教學時數 2課時(本節(jié)課是第一課時)教學方法 多媒體教學教學過程(一) 創(chuàng)設情境,復習導入。上課開始,給出思考,(算一算,試一試)能否用估算法求出下列方程的解:(學生不用筆算,只能估算)
方法總結:觀察表中的數據,發(fā)現其中的變化規(guī)律,然后根據其增減趨勢寫出自變量與因變量之間的關系式.三、板書設計1.用關系式表示變量間關系2.表格和關系式的區(qū)別與聯系:表格能直接得到某些具體的對應值,但不能直接反映變量的整體變化情況;用關系式表示變量之間的關系簡單明了,便于計算分析,能方便求出自變量為任意一個值時,相對應的因變量的值,但是需計算.本節(jié)課的教學內容是變量間關系的另一種表示方法,這種表示方法學生才接觸到,學生感覺有點難.這節(jié)課的重點是讓學生掌握用關系式與表格表示變量間的關系,難點是理解這兩種表示方法的優(yōu)缺點.就此問題,通過讓學生對幾個例子比較、討論、總結、歸納兩種方法的優(yōu)點來解決,這樣學生就能很好地區(qū)分這兩種表示方法,并能對不同的問題選擇恰當的方法
本節(jié)課開始時,首先由一個要在一塊長方形木板上截出兩塊面積不等的正方形,引導學生得出兩個二次根式求和的運算。從而提出問題:如何進行二次根式的加減運算?這樣通過問題指向本課研究的重點,激發(fā)學生的學習興趣和強烈的求知欲望。本節(jié)課是二次根式加減法,目的是探索二次根式加減法運算法則,在設計本課時教案時,著重從以下幾點考慮:1.先通過對實際問題的解決來引入二次根式的加減運算,再由學生自主討論并總結二次根式的加減運算法則。2.四人小組探索、發(fā)現、解決問題,培養(yǎng)學生用數學方法解決實際問題的能力。3.對法則的教學與整式的加減比較學習。在理解、掌握和運用二次根式的加減法運算法則的學習過程中,滲透了分析、概括、類比等數學思想方法,提高學生的思維品質和興趣。
1.會用二次根式的四則運算法則進行簡單地運算;(重點)2.靈活運用二次根式的乘法公式.(難點)一、情境導入下面正方形的邊長分別是多少?這兩個數之間有什么關系,你能借助什么運算法則或運算律解釋它?二、合作探究探究點一:二次根式的乘除運算【類型一】 二次根式的乘法計算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法總結:幾個二次根式相乘,把它們的被開方數相乘,根指數不變,如果積含有能開得盡方的因數或因式,一定要化簡.【類型二】 二次根式的除法計算a2-2a÷a的結果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故選C.
1.關于二次根式的概念,要注意以下幾點:(1)從形式上看,二次根式是以根號“ ”表示的代數式,這里的開方運算是最后一步運算。如 , 等不是二次根式,而是含有二次根式的代數式或二次根式的運算;(2)當一個二次根式前面乘有一個有理數或有理式(整式或分式)時,雖然最后運算不是開方而是乘法,但為了方便起見,我們把它看作一個整體仍叫做二次根式,而前面與其相乘的有理數或有理式就叫做二次根式的系數;(3)二次根式的被開方數,可以是某個確定的非負實數,也可以是某個代數式表示的數,但其中所含字母的取值必須使得該代數式的值為非負實數;(4)像“ , ”等雖然可以進行開方運算,但它們仍屬于二次根式。2.二次根式的主要性質(1) ; (2) ; (3) ;(4)積的算術平方根的性質: ;(5)商的算術平方根的性質: ;
方法總結:(1)若被開方數中含有負因數,則應先化成正因數,如(3)題.(2)將二次根式盡量化簡,使被開方數(式)中不含能開得盡方的因數(因式),即化為最簡二次根式(后面學到).探究點三:最簡二次根式在二次根式8a,c9,a2+b2,a2中,最簡二次根式共有()A.1個 B.2個C.3個 D.4個解析:8a中有因數4;c9中有分母9;a3中有因式a2.故最簡二次根式只有a2+b2.故選A.方法總結:只需檢驗被開方數是否還有分母,是否還有能開得盡方的因數或因式.三、板書設計二次根式定義形如a(a≥0)的式子有意義的條件:a≥0性質:(a)2=a(a≥0),a2=a(a≥0)最簡二次根式本節(jié)經歷從具體實例到一般規(guī)律的探究過程,運用類比的方法,得出實數運算律和運算法則,使學生清楚新舊知識的區(qū)別和聯系,加深學生對運算法則的理解,能否根據問題的特點,選擇合理、簡便的算法,能否確認結果的合理性等等.
屬于此類問題一般有以下三種情況①具體數字,此時化簡的條件已暗中給定,②恒為非負值或根據題中的隱含條件,如(1)小題。③給出明確的條件,如(2)小題。第二類,需討論后再化簡。當題目中給定的條件不能判定絕對值符號內代數式值的符號時,則需討論后化簡,如(4)小題。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同號,又∵a+b=-6<0,∴a<0,b<0∴ .說明:此題中的隱含條件a<0,b<0不能忽視。否則會出現錯誤。例4.化簡: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.這樣x=6, ,x=-5,把數軸分成四段(四個區(qū)間)在這五段里分別討論如下:當x≥6時,原式=(x-6)-(1+2x)+(x+5)=-2.當 時,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.當 時,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.當x<-5時,原式=-(x-6)+(1+2x)-(x+5)=2.說明:利用公式 ,如果絕對值符號里面的代數式的值的符號無法決定,則需要討論。方法是:令每一個絕對值內的代數式為零,求出對應的“零點”,再用這些“零點”把數軸分成若干個區(qū)間,再在每個區(qū)間內進行化簡。
解:設正比例函數的表達式為y1=k1x,一次函數的表達式為y2=k2x+b.∵點A(4,3)是它們的交點,∴代入上述表達式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數的表達式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點B在y軸的負半軸上,∴B點的坐標為(0,-52).又∵點B在一次函數y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數的表達式為y2=118x-52.方法總結:根據圖象確定一次函數的表達式的方法:從圖象上選取兩個已知點的坐標,然后運用待定系數法將兩點的橫、縱坐標代入所設表達式中求出待定系數,從而求出函數的表達式.【類型三】 根據實際問題確定一次函數的表達式某商店售貨時,在進價的基礎上加一定利潤,其數量x與售價y的關系如下表所示,請你根據表中所提供的信息,列出售價y(元)與數量x(千克)的函數關系式,并求出當數量是2.5千克時的售價.