提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

《念奴嬌·過洞庭》說課稿 2020—2021學(xué)年統(tǒng)編版高中語文必修下冊

  • 人教版高中數(shù)學(xué)選擇性必修二變化率問題教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二變化率問題教學(xué)設(shè)計(jì)

    導(dǎo)語在必修第一冊中,我們研究了函數(shù)的單調(diào)性,并利用函數(shù)單調(diào)性等知識,定性的研究了一次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)增長速度的差異,知道“對數(shù)增長” 是越來越慢的,“指數(shù)爆炸” 比“直線上升” 快得多,進(jìn)一步的能否精確定量的刻畫變化速度的快慢呢,下面我們就來研究這個問題。新知探究問題1 高臺跳水運(yùn)動員的速度高臺跳水運(yùn)動中,運(yùn)動員在運(yùn)動過程中的重心相對于水面的高度h(單位:m)與起跳后的時間t(單位:s)存在函數(shù)關(guān)系h(t)=-4.9t2+4.8t+11.如何描述用運(yùn)動員從起跳到入水的過程中運(yùn)動的快慢程度呢?直覺告訴我們,運(yùn)動員從起跳到入水的過程中,在上升階段運(yùn)動的越來越慢,在下降階段運(yùn)動的越來越快,我們可以把整個運(yùn)動時間段分成許多小段,用運(yùn)動員在每段時間內(nèi)的平均速度v ?近似的描述它的運(yùn)動狀態(tài)。

  • 人教版高中數(shù)學(xué)選擇性必修二導(dǎo)數(shù)的四則運(yùn)算法則教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二導(dǎo)數(shù)的四則運(yùn)算法則教學(xué)設(shè)計(jì)

    求函數(shù)的導(dǎo)數(shù)的策略(1)先區(qū)分函數(shù)的運(yùn)算特點(diǎn),即函數(shù)的和、差、積、商,再根據(jù)導(dǎo)數(shù)的運(yùn)算法則求導(dǎo)數(shù);(2)對于三個以上函數(shù)的積、商的導(dǎo)數(shù),依次轉(zhuǎn)化為“兩個”函數(shù)的積、商的導(dǎo)數(shù)計(jì)算.跟蹤訓(xùn)練1 求下列函數(shù)的導(dǎo)數(shù):(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓(xùn)練2 求下列函數(shù)的導(dǎo)數(shù)(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經(jīng)過凈化的,隨著水的純凈度的提高,所需進(jìn)化費(fèi)用不斷增加,已知將1t水進(jìn)化到純凈度為x%所需費(fèi)用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進(jìn)化到下列純凈度時,所需進(jìn)化費(fèi)用的瞬時變化率:(1) 90% ;(2) 98%解:凈化費(fèi)用的瞬時變化率就是凈化費(fèi)用函數(shù)的導(dǎo)數(shù);c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2

  • 人教版高中數(shù)學(xué)選擇性必修二導(dǎo)數(shù)的概念及其幾何意義教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二導(dǎo)數(shù)的概念及其幾何意義教學(xué)設(shè)計(jì)

    新知探究前面我們研究了兩類變化率問題:一類是物理學(xué)中的問題,涉及平均速度和瞬時速度;另一類是幾何學(xué)中的問題,涉及割線斜率和切線斜率。這兩類問題來自不同的學(xué)科領(lǐng)域,但在解決問題時,都采用了由“平均變化率”逼近“瞬時變化率”的思想方法;問題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問題。探究1: 對于函數(shù)y=f(x) ,設(shè)自變量x從x_0變化到x_0+ ?x ,相應(yīng)地,函數(shù)值y就從f(x_0)變化到f(〖x+x〗_0) 。這時, x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數(shù)從x_0到x_0+?x的平均變化率。1.導(dǎo)數(shù)的概念如果當(dāng)Δx→0時,平均變化率ΔyΔx無限趨近于一個確定的值,即ΔyΔx有極限,則稱y=f (x)在x=x0處____,并把這個________叫做y=f (x)在x=x0處的導(dǎo)數(shù)(也稱為__________),記作f ′(x0)或________,即

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的概念 (2) 教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的概念 (2) 教學(xué)設(shè)計(jì)

    二、典例解析例4. 用 10 000元購買某個理財產(chǎn)品一年.(1)若以月利率0.400%的復(fù)利計(jì)息,12個月能獲得多少利息(精確到1元)?(2)若以季度復(fù)利計(jì)息,存4個季度,則當(dāng)每季度利率為多少時,按季結(jié)算的利息不少于按月結(jié)算的利息(精確到10^(-5))?分析:復(fù)利是指把前一期的利息與本金之和算作本金,再計(jì)算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開始,各期的本利和a , a(1+r),a(1+r)^2…構(gòu)成等比數(shù)列.解:(1)設(shè)這筆錢存 n 個月以后的本利和組成一個數(shù)列{a_n },則{a_n }是等比數(shù)列,首項(xiàng)a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個月后的利息為10 490.7-10^4≈491(元).解:(2)設(shè)季度利率為 r ,這筆錢存 n 個季度以后的本利和組成一個數(shù)列{b_n },則{b_n }也是一個等比數(shù)列,首項(xiàng) b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項(xiàng)和公式   (1) 教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項(xiàng)和公式 (1) 教學(xué)設(shè)計(jì)

    新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請?jiān)谄灞P的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子.請給我足夠的麥粒以實(shí)現(xiàn)上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實(shí)現(xiàn)他的諾言.問題1:每個格子里放的麥粒數(shù)可以構(gòu)成一個數(shù)列,請判斷分析這個數(shù)列是否是等比數(shù)列?并寫出這個等比數(shù)列的通項(xiàng)公式.是等比數(shù)列,首項(xiàng)是1,公比是2,共64項(xiàng). 通項(xiàng)公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學(xué)問題.

  • 人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的概念(1)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的概念(1)教學(xué)設(shè)計(jì)

    我們知道數(shù)列是一種特殊的函數(shù),在函數(shù)的研究中,我們在理解了函數(shù)的一般概念,了解了函數(shù)變化規(guī)律的研究內(nèi)容(如單調(diào)性,奇偶性等)后,通過研究基本初等函數(shù)不僅加深了對函數(shù)的理解,而且掌握了冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù)等非常有用的函數(shù)模型。類似地,在了解了數(shù)列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數(shù)列,建立它們的通項(xiàng)公式和前n項(xiàng)和公式,并應(yīng)用它們解決實(shí)際問題和數(shù)學(xué)問題,從中感受數(shù)學(xué)模型的現(xiàn)實(shí)意義與應(yīng)用,下面,我們從一類取值規(guī)律比較簡單的數(shù)列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內(nèi)到外各圈的示板數(shù)依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號的女裝上對應(yīng)的尺碼分別是38,40,42,44,46,48 ②3.測量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③

  • 人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的概念(2)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的概念(2)教學(xué)設(shè)計(jì)

    二、典例解析例3.某公司購置了一臺價值為220萬元的設(shè)備,隨著設(shè)備在使用過程中老化,其價值會逐年減少.經(jīng)驗(yàn)表明,每經(jīng)過一年其價值會減少d(d為正常數(shù))萬元.已知這臺設(shè)備的使用年限為10年,超過10年 ,它的價值將低于購進(jìn)價值的5%,設(shè)備將報廢.請確定d的范圍.分析:該設(shè)備使用n年后的價值構(gòu)成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設(shè)備的價值不小于(220×5%=)11萬元;10年后,該設(shè)備的價值需小于11萬元.利用{an}的通項(xiàng)公式列不等式求解.解:設(shè)使用n年后,這臺設(shè)備的價值為an萬元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個公差為-d的等差數(shù)列.因?yàn)閍1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項(xiàng)和公式   (2) 教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項(xiàng)和公式 (2) 教學(xué)設(shè)計(jì)

    二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點(diǎn)E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點(diǎn)I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點(diǎn)分別是第k個正方形各邊的中點(diǎn),所以a_(k+1)=〖1/2 a〗_k,因此{(lán)a_n},是以25為首項(xiàng),1/2為公比的等比數(shù)列.設(shè){a_n}的前項(xiàng)和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當(dāng)無限增大時,無限趨近于所有正方形的面積和

  • 人教版高中數(shù)學(xué)選擇性必修二數(shù)列的概念(1)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二數(shù)列的概念(1)教學(xué)設(shè)計(jì)

    情景導(dǎo)學(xué)古語云:“勤學(xué)如春起之苗,不見其增,日有所長”如果對“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個數(shù)列. 那么什么叫數(shù)列呢?二、問題探究1. 王芳從一歲到17歲,每年生日那天測量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號K90,約生產(chǎn)于公元前7世紀(jì))上,有一列依次表示一個月中從第1天到第15天,每天月亮可見部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②

  • 人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的前n項(xiàng)和公式(2)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的前n項(xiàng)和公式(2)教學(xué)設(shè)計(jì)

    課前小測1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項(xiàng)和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項(xiàng)之和最大.( )(3)在等差數(shù)列中,Sn是其前n項(xiàng)和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項(xiàng)數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項(xiàng)的和為165,所有偶數(shù)項(xiàng)的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項(xiàng).]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項(xiàng)公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負(fù)項(xiàng)的和最小,即n=23或24.]二、典例解析例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應(yīng)安排多少個座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設(shè)數(shù)列{an} 的前n項(xiàng)和為S_n。

  • 人教版高中數(shù)學(xué)選擇性必修二函數(shù)的單調(diào)性(1)  教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二函數(shù)的單調(diào)性(1) 教學(xué)設(shè)計(jì)

    1.判斷正誤(正確的打“√”,錯誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)越大,函數(shù)在該點(diǎn)處的切線越“陡峭”. ( )(3)函數(shù)在某個區(qū)間上變化越快,函數(shù)在這個區(qū)間上導(dǎo)數(shù)的絕對值越大.( )(4)判斷函數(shù)單調(diào)性時,在區(qū)間內(nèi)的個別點(diǎn)f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯誤.(3)√ 函數(shù)在某個區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因?yàn)閒(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示

  • 人教A版高中數(shù)學(xué)必修一三角函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一三角函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)(2)

    本節(jié)課是在學(xué)習(xí)了三角函數(shù)圖象和性質(zhì)的前提下來學(xué)習(xí)三角函數(shù)模型的簡單應(yīng)用,進(jìn)一步突出函數(shù)來源于生活應(yīng)用于生活的思想,讓學(xué)生體驗(yàn)一些具有周期性變化規(guī)律的實(shí)際問題的數(shù)學(xué)“建?!彼枷?從而培養(yǎng)學(xué)生的創(chuàng)新精神和實(shí)踐能力.課程目標(biāo)1.了解三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,并會用三角函數(shù)模型解決一些簡單的實(shí)際問題.2.實(shí)際問題抽象為三角函數(shù)模型. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯抽象:實(shí)際問題抽象為三角函數(shù)模型問題;2.數(shù)據(jù)分析:分析、整理、利用信息,從實(shí)際問題中抽取基本的數(shù)學(xué)關(guān)系來建立數(shù)學(xué)模型; 3.數(shù)學(xué)運(yùn)算:實(shí)際問題求解; 4.數(shù)學(xué)建模:體驗(yàn)一些具有周期性變化規(guī)律的實(shí)際問題的數(shù)學(xué)建模思想,提高學(xué)生的建模、分析問題、數(shù)形結(jié)合、抽象概括等能力.

  • 人教A版高中數(shù)學(xué)必修一同角三角函數(shù)的基本關(guān)系教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一同角三角函數(shù)的基本關(guān)系教學(xué)設(shè)計(jì)(2)

    本節(jié)內(nèi)容是學(xué)生學(xué)習(xí)了任意角和弧度制,任意角的三角函數(shù)后,安排的一節(jié)繼續(xù)深入學(xué)習(xí)內(nèi)容,是求三角函數(shù)值、化簡三角函數(shù)式、證明三角恒等式的基本工具,是整個三角函數(shù)知識的基礎(chǔ),在教材中起承上啟下的作用。同時,它體現(xiàn)的數(shù)學(xué)思想與方法在整個中學(xué)數(shù)學(xué)學(xué)習(xí)中起重要作用。課程目標(biāo)1.理解并掌握同角三角函數(shù)基本關(guān)系式的推導(dǎo)及應(yīng)用.2.會利用同角三角函數(shù)的基本關(guān)系式進(jìn)行化簡、求值與恒等式證明.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解同角三角函數(shù)基本關(guān)系式;2.邏輯推理: “sin α±cos α”同“sin αcos α”間的關(guān)系;3.數(shù)學(xué)運(yùn)算:利用同角三角函數(shù)的基本關(guān)系式進(jìn)行化簡、求值與恒等式證明重點(diǎn):理解并掌握同角三角函數(shù)基本關(guān)系式的推導(dǎo)及應(yīng)用; 難點(diǎn):會利用同角三角函數(shù)的基本關(guān)系式進(jìn)行化簡、求值與恒等式證明.

  • 人教版新課標(biāo)高中物理必修2生活中的圓周運(yùn)動教案2篇

    人教版新課標(biāo)高中物理必修2生活中的圓周運(yùn)動教案2篇

    思考:洗衣機(jī)脫水時轉(zhuǎn)速高時容易甩干衣物,還是轉(zhuǎn)速低時容易甩干衣物?(2) 制作棉花糖的原理內(nèi)筒與洗衣機(jī)的脫水筒相似,里面加入白砂糖,加熱使糖熔化成糖汁。內(nèi)筒高速旋轉(zhuǎn),黏稠的糖汁就做離心運(yùn)動,從內(nèi)筒壁的小孔飛散出去,成為絲狀到達(dá)溫度較低的外筒,并迅速冷卻凝固,變得纖細(xì)雪白,像一團(tuán)團(tuán)棉花。5.離心現(xiàn)象的防止在水平公路上行駛的汽車,轉(zhuǎn)彎時所需的向心力是由車輪與路面的靜摩擦力提供的。如果轉(zhuǎn)彎時速度過大,所需向心力F大于最大靜摩擦力Fmax,汽車將做離心運(yùn)動而造成交通事故。因此,在公路彎道處,車輛行駛不允許超過規(guī)定的速度。當(dāng)高速轉(zhuǎn)動的砂輪或者飛輪內(nèi)部分子間相互作用力不足以提供所需向心力時,離心運(yùn)動就會使他們破裂,甚至釀成事故。

  • 高中思想政治人教版必修四《哲學(xué)史上的偉大變革活動探究型》教案

    高中思想政治人教版必修四《哲學(xué)史上的偉大變革活動探究型》教案

    一、教材分析人教版高中思想政治必修4生活與哲學(xué)第一單元第三課第二框題《哲學(xué)史上的偉大變革》。本框主要內(nèi)容有馬克思主義哲學(xué)的產(chǎn)生和它的基本特征、馬克思主義的中國化的三大理論成果。學(xué)習(xí)本框內(nèi)容對學(xué)生來講,將有助于他們正確認(rèn)識馬克思主義,運(yùn)用馬克思主義中國化的理論成果,分析解決遇到的社會問題。具有很強(qiáng)的現(xiàn)實(shí)指導(dǎo)意義。二、學(xué)情分析高二學(xué)生已經(jīng)具備了一定的歷史知識,思維能力有一定提高,思想活躍,處于世界觀、人生觀形成時期,對一些社會現(xiàn)象能主動思考,但尚需正確加以引導(dǎo),激發(fā)學(xué)生學(xué)習(xí)馬克思主義哲學(xué)的興趣。三、教學(xué)目標(biāo)1.馬克思主義哲學(xué)產(chǎn)生的階級基礎(chǔ)、自然科學(xué)基礎(chǔ)和理論來源,馬克思主義哲學(xué)的基本特征。2.通過對馬克思主義哲學(xué)的產(chǎn)生和基本特征的學(xué)習(xí),培養(yǎng)學(xué)生鑒別理論是非的能力,進(jìn)而運(yùn)用馬克思主義哲學(xué)的基本觀點(diǎn)分析和解決生活實(shí)踐中的問題。3.實(shí)踐的觀點(diǎn)是馬克思主義哲學(xué)的首要和基本的觀點(diǎn),培養(yǎng)學(xué)生在實(shí)踐中分析問題和解決問題的能力,進(jìn)而培養(yǎng)學(xué)生在實(shí)踐活動中的科學(xué)探索精神和革命批判精神。

  • 人教版高中政治必修4綜合探究:走進(jìn)哲學(xué),問辯人生教案

    人教版高中政治必修4綜合探究:走進(jìn)哲學(xué),問辯人生教案

    1.根據(jù)課程標(biāo)準(zhǔn)的要求。本單元的主題是“生活智慧與時代精神”,課程標(biāo)準(zhǔn)的要求主要是引導(dǎo)學(xué)生“思考日常生活富有哲理的事例,感悟哲學(xué)是世界觀的學(xué)問,能夠開啟人的智慧”,“解釋哲學(xué)的基本問題”,“分析實(shí)例,說明真正的哲學(xué)是時代精神的精華,明確馬克思主義哲學(xué)在人類認(rèn)識史上的重要地位”。這些問題,綜合起來就是使學(xué)生明確哲學(xué)與我們生活的關(guān)系,認(rèn)識學(xué)習(xí)哲學(xué)特別是馬克思主義哲學(xué)對我們?nèi)松淖饔?。因此,探究本問題有助于學(xué)生更好地理解本單元的內(nèi)容,完成本單元的教學(xué)目標(biāo)。2.根據(jù)學(xué)生的實(shí)際需要。學(xué)習(xí)哲學(xué)特別是馬克思主義哲學(xué),可以幫助學(xué)生樹立正確的世界觀、人生觀和價值觀,這也是學(xué)習(xí)哲學(xué)的主要目的。但在學(xué)生中還不同程度地存在著“哲學(xué)與我們的生活很遠(yuǎn)”、“哲學(xué)與我無關(guān)”、“哲學(xué)對我將來從事自然科學(xué)的研究沒有什么用處”等認(rèn)識,這些都影響著學(xué)生對哲學(xué)學(xué)習(xí)的態(tài)度和哲學(xué)作用的發(fā)揮。設(shè)置本探究問題,有助于幫助學(xué)生澄清這些模糊認(rèn)識。

  • 人教版高中政治必修4生活處處有哲學(xué)精品教案

    人教版高中政治必修4生活處處有哲學(xué)精品教案

    (三)合作探究、精講點(diǎn)撥。探究一:探究問題:如何看待排名一名高中生在談到“排名的二重性”時說:“我們既不能盲目地張揚(yáng)排名,也不能簡單地否定排名。作為學(xué)生,如果用片面的觀點(diǎn)對待排名,排在前面沾沾自喜、驕傲自滿,排在后面灰心喪氣、一蹶不振,就會停滯不前,甚至倒退;如果通過排名了解自己的學(xué)習(xí)實(shí)力以及同別人的差距,做到知彼知己,揚(yáng)長避短,就會出現(xiàn)先進(jìn)更先進(jìn)、后進(jìn)趕先進(jìn)的生動局面。”問題:(1)在排名問題上,人們的看法往往各不相同,這是為什么?(2)為什么我們應(yīng)看到排名的“二重性”?(3)聯(lián)系生活中類似的事例,談?wù)勆钆c哲學(xué)的關(guān)系。教師活動:指導(dǎo)學(xué)生閱讀以上的材料,并思考所提問題。學(xué)生活動:閱讀材料,分組討論問題,發(fā)表自己的觀點(diǎn),分析材料中包含的哲學(xué)道理。教師點(diǎn)評:(1)在排名問題上,人們的看法不同,主要是因?yàn)槿藗兊乃季S方法不同。

  • 人教版高中政治必修4哲學(xué)的基本問題精品教案

    人教版高中政治必修4哲學(xué)的基本問題精品教案

    一、教材分析本框題包括什么是哲學(xué)的基本問題、為什么思維和存在的關(guān)系問題是哲學(xué)的基本問題兩個目題。第一個問題:什么是哲學(xué)的基本問題。其邏輯順序是:什么是哲學(xué)的基本問題→哲學(xué)的基本問題所包含的兩方面的內(nèi)容→對哲學(xué)的基本問題第一方面內(nèi)容的不同回答是劃分唯物主義和唯心主義的標(biāo)準(zhǔn)→對哲學(xué)的基本問題第二方面內(nèi)容的不同回答是劃分可知論和不可知論的標(biāo)準(zhǔn)。第二個問題:為什么思維和存在的關(guān)系問題是哲學(xué)的基本問題。其 邏輯順序是:思維和存在的關(guān)系問題是人們在現(xiàn)實(shí)生活和實(shí)踐活動中遇到的和無法回避的基本問題→思維和存在的關(guān)系問題,是一切哲學(xué)都不能回避的、必須回答的問題→思維和存在的關(guān)系問題,貫穿于哲學(xué)發(fā)展的始終,對這個問題的不同回答決定著各種哲學(xué)的基本性質(zhì)和方向,決定著對其它哲學(xué)問題的回答。 二、教學(xué)目標(biāo)(一)知識目標(biāo)(1)識記哲學(xué)的基本問題(2)解釋哲學(xué)的基本問題

  • 人教版高中政治必修4哲學(xué)史上的偉大變革精品教案

    人教版高中政治必修4哲學(xué)史上的偉大變革精品教案

    一、教材分析《哲學(xué)史上的偉大變革》是人教版高中政治必修四第3課第2框的教學(xué)內(nèi)容。二、教學(xué)目標(biāo)1.知識目標(biāo):馬克思主義哲學(xué)產(chǎn)生的階級基礎(chǔ)、自然科學(xué)基礎(chǔ)和理論來源馬克思主義哲學(xué)的基本特征馬克思主義中國化的重大理論成果2.能力目標(biāo):通過對馬克思主義哲學(xué)的產(chǎn)生和基本特征的學(xué)習(xí),培養(yǎng)學(xué)生鑒別理論是非的能力,進(jìn)而運(yùn)用馬克思主義哲學(xué)的基本觀點(diǎn)分析和解決生活實(shí)踐中的問題。3.情感、態(tài)度和價值觀目標(biāo):實(shí)踐的觀點(diǎn)是馬克思主義哲學(xué)的首要和基本的觀點(diǎn),培養(yǎng)學(xué)生在實(shí)踐中分析問題和解決問題的能力,進(jìn)而培養(yǎng)學(xué)生在實(shí)踐活動中的科學(xué)探索精神和革命批判精神。三、教學(xué)重點(diǎn)難點(diǎn)重點(diǎn):馬克思主義哲學(xué)的基本特征;馬克思主義中國化的重大理論成果

  • 人教版高中政治必修4第十課創(chuàng)新意識與社會進(jìn)步精品教案

    人教版高中政治必修4第十課創(chuàng)新意識與社會進(jìn)步精品教案

    在數(shù)學(xué)上,0這個數(shù)是解決記數(shù)和進(jìn)位問題而引進(jìn)的概念,由于它不能表示實(shí)在的東西,很長時間人們不把它看作是一個數(shù)。認(rèn)為0是無,是對有的否定。從唯物辯證法的觀點(diǎn)看,這種否定不是形而上學(xué)的簡單否定,而是具有豐富內(nèi)容的辨證否定。辨證的否定是發(fā)展的環(huán)節(jié)。0是從無到有的必經(jīng)之路,是連接無和有的橋梁。0又是正數(shù)和負(fù)數(shù)之間的界限,它既否定了任何正數(shù),也否定了任何負(fù)數(shù),是唯一的中性數(shù)。但它又是聯(lián)結(jié)正數(shù)和負(fù)數(shù)的中間環(huán)節(jié)。沒有0,負(fù)數(shù)就過渡不到正數(shù)去,正數(shù)也休想發(fā)展到負(fù)數(shù)來。數(shù)學(xué)中的0是對任何定量的否定。如果沒有這一否定,任何量的發(fā)展都無從談起。這個否定不是一筆勾銷,而是揚(yáng)棄。因?yàn)樗朔巳魏味康挠邢扌?,成為其發(fā)展的環(huán)節(jié)。在現(xiàn)實(shí)生活中,0作為辨證的否定,也體現(xiàn)出聯(lián)系和發(fā)展的性質(zhì)。如0度不是沒有溫度,而是非常確定的溫度。

上一頁123...596061626364656667686970下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動畫,PPT模板免費(fèi)下載,專注素材下載!