提供各類(lèi)精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

關(guān)于小學(xué)教師個(gè)人教學(xué)心得體會(huì)優(yōu)選八篇

  • 2023年度人事管理人員個(gè)人工作總結(jié)(述職報(bào)告)

    2023年度人事管理人員個(gè)人工作總結(jié)(述職報(bào)告)

    二、存在的問(wèn)題和不足一是留人機(jī)制有待完善。一方面,面試過(guò)程中已通過(guò)面試的部分應(yīng)聘人員,后期并未入職報(bào)道;另一方面,本年度新進(jìn)人員辭離職人數(shù)達(dá)到X人,其中X人為研究生學(xué)歷?,F(xiàn)有的人員用工方式不夠有吸引力,造成了引不進(jìn)、留不住局面。二是人事管理制度辦法有待健全。人員錄用、試用期和解聘的相關(guān)管理辦法,人員證書(shū)管理、專(zhuān)業(yè)技術(shù)崗位設(shè)置管理辦法,人員辭離職的相關(guān)工作程序和管理辦法,都還需要進(jìn)一步制定和完善。三、下一步工作努力方向?yàn)檫m應(yīng)在深化機(jī)構(gòu)改革中,面臨的新形勢(shì)、新任務(wù)和新要求,下一步工作中,人力資源室全體人員將繼續(xù)埋頭苦干、勇毅前行,立足本職崗位職責(zé),不斷調(diào)整工作思路、改進(jìn)工作方式方法;通過(guò)對(duì)現(xiàn)有人事管理制度的執(zhí)行情況進(jìn)行分析和梳理,有針對(duì)性的查漏補(bǔ)缺,確保各項(xiàng)制度的健康持續(xù)運(yùn)行,為干部職工創(chuàng)造更加良好的成長(zhǎng)環(huán)境和制度保障,充分激發(fā)人才隊(duì)伍的生機(jī)活力,為持續(xù)推進(jìn)XXX的高質(zhì)量發(fā)展做出應(yīng)有的貢獻(xiàn)。

  • 公司領(lǐng)導(dǎo)干部輪崗個(gè)人工作總結(jié)集團(tuán)企業(yè)述職報(bào)告匯報(bào)

    公司領(lǐng)導(dǎo)干部輪崗個(gè)人工作總結(jié)集團(tuán)企業(yè)述職報(bào)告匯報(bào)

    三、擔(dān)當(dāng)籌備主責(zé),無(wú)縫隙對(duì)接建設(shè)、營(yíng)運(yùn)我主動(dòng)分擔(dān)xx領(lǐng)導(dǎo)班子工程建設(shè)壓力,牽頭負(fù)責(zé)營(yíng)運(yùn)籌備工作。一是把握大局,制定籌備、并網(wǎng)等工作方案。成立領(lǐng)導(dǎo)及工作小組,倒排工作計(jì)劃,有序推進(jìn)各項(xiàng)工作順利開(kāi)展。二是綜合協(xié)調(diào),完成通車(chē)各類(lèi)政策性文件審批。協(xié)調(diào)省交通廳、發(fā)改委、交通部路網(wǎng)中心及地方單位,完成收費(fèi)站開(kāi)通、費(fèi)率核算、路政大隊(duì)成立等xx余項(xiàng)工作審批。三是建章立制,保障通車(chē)收費(fèi)平穩(wěn)過(guò)渡。制定實(shí)施了收費(fèi)管理辦法、收費(fèi)作業(yè)規(guī)程等xx部系列制度及預(yù)案,確保通車(chē)收費(fèi)有章可循,有據(jù)可依。四是加強(qiáng)培訓(xùn),提升新員工業(yè)務(wù)水平。組織開(kāi)展xx名新員工入職培訓(xùn),舉辦收費(fèi)、監(jiān)控等各類(lèi)業(yè)務(wù)培訓(xùn)xx次,共xx人次。五是狠抓落實(shí),有序推進(jìn)籌備系列工作。每周召開(kāi)工作推進(jìn)會(huì);深入現(xiàn)場(chǎng),靠前指揮,督促各項(xiàng)工作落到實(shí)處。及時(shí)溝通房建、機(jī)電等部門(mén),提出合理化建議xx多條,實(shí)現(xiàn)建設(shè)與運(yùn)營(yíng)無(wú)縫對(duì)接。

  • 空間向量及其運(yùn)算的坐標(biāo)表示教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    空間向量及其運(yùn)算的坐標(biāo)表示教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)我國(guó)著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問(wèn)題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡(jiǎn)單講就是形與數(shù),歐幾里得幾何體系的特點(diǎn)是排除了數(shù)量關(guān)系,對(duì)于研究空間形式,你要真正的‘騰飛’,不通過(guò)數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問(wèn)題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運(yùn)算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點(diǎn)O和一個(gè)單位正交基底{i,j,k},以點(diǎn)O為原點(diǎn),分別以i,j,k的方向?yàn)檎较?、以它們的長(zhǎng)為單位長(zhǎng)度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時(shí)我們就建立了一個(gè)空間直角坐標(biāo)系Oxyz,O叫做原點(diǎn),i,j,k都叫做坐標(biāo)向量,通過(guò)每?jī)蓚€(gè)坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱(chēng)為Oxy平面,Oyz平面,Ozx平面.

  • 雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    問(wèn)題導(dǎo)學(xué)類(lèi)比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線(xiàn)x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線(xiàn)的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線(xiàn)上點(diǎn)的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對(duì)稱(chēng)性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點(diǎn)都是對(duì)稱(chēng)。x軸、y軸是雙曲線(xiàn)的對(duì)稱(chēng)軸,原點(diǎn)是對(duì)稱(chēng)中心,又叫做雙曲線(xiàn)的中心。3、頂點(diǎn)(1)雙曲線(xiàn)與對(duì)稱(chēng)軸的交點(diǎn),叫做雙曲線(xiàn)的頂點(diǎn) .頂點(diǎn)是A_1 (-a,0)、A_2 (a,0),只有兩個(gè)。(2)如圖,線(xiàn)段A_1 A_2 叫做雙曲線(xiàn)的實(shí)軸,它的長(zhǎng)為2a,a叫做實(shí)半軸長(zhǎng);線(xiàn)段B_1 B_2 叫做雙曲線(xiàn)的虛軸,它的長(zhǎng)為2b,b叫做雙曲線(xiàn)的虛半軸長(zhǎng)。(3)實(shí)軸與虛軸等長(zhǎng)的雙曲線(xiàn)叫等軸雙曲線(xiàn)4、漸近線(xiàn)(1)雙曲線(xiàn)x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線(xiàn)方程為:y=±b/a x(2)利用漸近線(xiàn)可以較準(zhǔn)確的畫(huà)出雙曲線(xiàn)的草圖

  • 拋物線(xiàn)的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    拋物線(xiàn)的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    問(wèn)題導(dǎo)學(xué)類(lèi)比用方程研究橢圓雙曲線(xiàn)幾何性質(zhì)的過(guò)程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線(xiàn)的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線(xiàn) y2 = 2px (p>0) 在 y 軸的右側(cè),開(kāi)口向右,這條拋物線(xiàn)上的任意一點(diǎn)M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿(mǎn)足不等式 x ≥ 0;當(dāng)x 的值增大時(shí),|y| 也增大,這說(shuō)明拋物線(xiàn)向右上方和右下方無(wú)限延伸.拋物線(xiàn)是無(wú)界曲線(xiàn).2. 對(duì)稱(chēng)性觀察圖象,不難發(fā)現(xiàn),拋物線(xiàn) y2 = 2px (p>0)關(guān)于 x 軸對(duì)稱(chēng),我們把拋物線(xiàn)的對(duì)稱(chēng)軸叫做拋物線(xiàn)的軸.拋物線(xiàn)只有一條對(duì)稱(chēng)軸. 3. 頂點(diǎn)拋物線(xiàn)和它軸的交點(diǎn)叫做拋物線(xiàn)的頂點(diǎn).拋物線(xiàn)的頂點(diǎn)坐標(biāo)是坐標(biāo)原點(diǎn) (0, 0) .4. 離心率拋物線(xiàn)上的點(diǎn)M 到焦點(diǎn)的距離和它到準(zhǔn)線(xiàn)的距離的比,叫做拋物線(xiàn)的離心率. 用 e 表示,e = 1.探究如果拋物線(xiàn)的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 拋物線(xiàn)的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    拋物線(xiàn)的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、直線(xiàn)與拋物線(xiàn)的位置關(guān)系設(shè)直線(xiàn)l:y=kx+m,拋物線(xiàn):y2=2px(p>0),將直線(xiàn)方程與拋物線(xiàn)方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時(shí),直線(xiàn)與拋物線(xiàn)相交,有兩個(gè)交點(diǎn);當(dāng)Δ=0時(shí),直線(xiàn)與拋物線(xiàn)相切,有一個(gè)切點(diǎn);當(dāng)Δ<0時(shí),直線(xiàn)與拋物線(xiàn)相離,沒(méi)有公共點(diǎn).(2)若k=0,直線(xiàn)與拋物線(xiàn)有一個(gè)交點(diǎn),此時(shí)直線(xiàn)平行于拋物線(xiàn)的對(duì)稱(chēng)軸或與對(duì)稱(chēng)軸重合.因此直線(xiàn)與拋物線(xiàn)有一個(gè)公共點(diǎn)是直線(xiàn)與拋物線(xiàn)相切的必要不充分條件.二、典例解析例5.過(guò)拋物線(xiàn)焦點(diǎn)F的直線(xiàn)交拋物線(xiàn)于A、B兩點(diǎn),通過(guò)點(diǎn)A和拋物線(xiàn)頂點(diǎn)的直線(xiàn)交拋物線(xiàn)的準(zhǔn)線(xiàn)于點(diǎn)D,求證:直線(xiàn)DB平行于拋物線(xiàn)的對(duì)稱(chēng)軸.【分析】設(shè)拋物線(xiàn)的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線(xiàn)OA的方程為: = = ,可得yD= .設(shè)直線(xiàn)AB的方程為:my=x﹣ ,與拋物線(xiàn)的方程聯(lián)立化為y2﹣2pm﹣p2=0,

  • 拋物線(xiàn)及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    拋物線(xiàn)及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)》第二章《直線(xiàn)和圓的方程》,本節(jié)課主要學(xué)習(xí)拋物線(xiàn)及其標(biāo)準(zhǔn)方程在經(jīng)歷了橢圓和雙曲線(xiàn)的學(xué)習(xí)后再學(xué)習(xí)拋物線(xiàn),是在學(xué)生原有認(rèn)知的基礎(chǔ)上從幾何與代數(shù)兩 個(gè)角度去認(rèn)識(shí)拋物線(xiàn).教材在拋物線(xiàn)的定義這個(gè)內(nèi)容的安排上是:先從直觀上認(rèn)識(shí)拋物線(xiàn),再?gòu)漠?huà)法中提煉出拋物線(xiàn)的幾何特征,由此抽象概括出拋物線(xiàn)的定義,最后是拋物線(xiàn)定義的簡(jiǎn)單應(yīng)用.這樣的安排不僅體現(xiàn)出《課程標(biāo)準(zhǔn)》中要求通過(guò)豐富的實(shí)例展開(kāi)教學(xué)的理念,而且符合學(xué)生從具體到抽象的認(rèn)知規(guī)律,有利于學(xué)生對(duì)概念的學(xué)習(xí)和理解.坐標(biāo)法的教學(xué)貫穿了整個(gè)“圓錐曲線(xiàn)方程”一章,是學(xué)生應(yīng)重點(diǎn)掌握的基本數(shù)學(xué)方法 運(yùn)動(dòng)變化和對(duì)立統(tǒng)一的思想觀點(diǎn)在這節(jié)知識(shí)中得到了突出體現(xiàn),我們必須充分利用好這部分教材進(jìn)行教學(xué)

  • 雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、典例解析例4.如圖,雙曲線(xiàn)型冷卻塔的外形,是雙曲線(xiàn)的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線(xiàn)的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線(xiàn)的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線(xiàn)方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線(xiàn)方程為 .例5.已知點(diǎn) 到定點(diǎn) 的距離和它到定直線(xiàn)l: 的距離的比是 ,則點(diǎn) 的軌跡方程為?解:設(shè)點(diǎn) ,由題知, ,即 .整理得: .請(qǐng)你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過(guò)雙曲線(xiàn) 的右焦點(diǎn)F2,傾斜角為30度的直線(xiàn)交雙曲線(xiàn)于A,B兩點(diǎn),求|AB|.分析:求弦長(zhǎng)問(wèn)題有兩種方法:法一:如果交點(diǎn)坐標(biāo)易求,可直接用兩點(diǎn)間距離公式代入求弦長(zhǎng);法二:但有時(shí)為了簡(jiǎn)化計(jì)算,常設(shè)而不求,運(yùn)用韋達(dá)定理來(lái)處理.解:由雙曲線(xiàn)的方程得,兩焦點(diǎn)分別為F1(-3,0),F2(3,0).因?yàn)橹本€(xiàn)AB的傾斜角是30°,且直線(xiàn)經(jīng)過(guò)右焦點(diǎn)F2,所以,直線(xiàn)AB的方程為

  • 雙曲線(xiàn)及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    雙曲線(xiàn)及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    ∵在△EFP中,|EF|=2c,EF上的高為點(diǎn)P的縱坐標(biāo),∴S△EFP=4/3c2=12,∴c=3,即P點(diǎn)坐標(biāo)為(5,4).由兩點(diǎn)間的距離公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求雙曲線(xiàn)的方程為x^2/5-y^2/4=1.5.求適合下列條件的雙曲線(xiàn)的標(biāo)準(zhǔn)方程.(1)兩個(gè)焦點(diǎn)的坐標(biāo)分別是(-5,0),(5,0),雙曲線(xiàn)上的點(diǎn)與兩焦點(diǎn)的距離之差的絕對(duì)值等于8;(2)以橢圓x^2/8+y^2/5=1長(zhǎng)軸的端點(diǎn)為焦點(diǎn),且經(jīng)過(guò)點(diǎn)(3,√10);(3)a=b,經(jīng)過(guò)點(diǎn)(3,-1).解:(1)由雙曲線(xiàn)的定義知,2a=8,所以a=4,又知焦點(diǎn)在x軸上,且c=5,所以b2=c2-a2=25-16=9,所以雙曲線(xiàn)的標(biāo)準(zhǔn)方程為x^2/16-y^2/9=1.(2)由題意得,雙曲線(xiàn)的焦點(diǎn)在x軸上,且c=2√2.設(shè)雙曲線(xiàn)的標(biāo)準(zhǔn)方程為x^2/a^2 -y^2/b^2 =1(a>0,b>0),則有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求雙曲線(xiàn)的標(biāo)準(zhǔn)方程為x^2/3-y^2/5=1.(3)當(dāng)焦點(diǎn)在x軸上時(shí),可設(shè)雙曲線(xiàn)方程為x2-y2=a2,將點(diǎn)(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線(xiàn)的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.當(dāng)焦點(diǎn)在y軸上時(shí),可設(shè)雙曲線(xiàn)方程為y2-x2=a2,將點(diǎn)(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點(diǎn)不可能在y軸上.綜上,所求雙曲線(xiàn)的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.

  • 橢圓的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    橢圓的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長(zhǎng)軸長(zhǎng)是a. ( )(2)若橢圓的對(duì)稱(chēng)軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個(gè)焦點(diǎn),M為其上任一點(diǎn),則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個(gè)焦點(diǎn)為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)分別相等,且橢圓C2的焦點(diǎn)在y軸上.(1)求橢圓C1的半長(zhǎng)軸長(zhǎng)、半短軸長(zhǎng)、焦點(diǎn)坐標(biāo)及離心率;(2)寫(xiě)出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長(zhǎng)軸長(zhǎng)為10,半短軸長(zhǎng)為8,焦點(diǎn)坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對(duì)稱(chēng)性:關(guān)于x軸、y軸、原點(diǎn)對(duì)稱(chēng);③頂點(diǎn):長(zhǎng)軸端點(diǎn)(0,10),(0,-10),短軸端點(diǎn)(-8,0),(8,0);④焦點(diǎn):(0,6),(0,-6);⑤離心率:e=3/5.

  • 橢圓的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    橢圓的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對(duì)稱(chēng)軸旋轉(zhuǎn)一周形成的曲面)的一部分。過(guò)對(duì)稱(chēng)軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個(gè)焦點(diǎn)F_1上,片門(mén)位另一個(gè)焦點(diǎn)F_2上,由橢圓一個(gè)焦點(diǎn)F_1 發(fā)出的光線(xiàn),經(jīng)過(guò)旋轉(zhuǎn)橢圓面反射后集中到另一個(gè)橢圓焦點(diǎn)F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時(shí),通常采用待定系數(shù)法,其步驟是:(1)確定焦點(diǎn)位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對(duì)于焦點(diǎn)位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時(shí)常用的關(guān)系式有b2=a2-c2等.

  • 用空間向量研究距離、夾角問(wèn)題(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    用空間向量研究距離、夾角問(wèn)題(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、探究新知一、點(diǎn)到直線(xiàn)的距離、兩條平行直線(xiàn)之間的距離1.點(diǎn)到直線(xiàn)的距離已知直線(xiàn)l的單位方向向量為μ,A是直線(xiàn)l上的定點(diǎn),P是直線(xiàn)l外一點(diǎn).設(shè)(AP) ?=a,則向量(AP) ?在直線(xiàn)l上的投影向量(AQ) ?=(a·μ)μ.點(diǎn)P到直線(xiàn)l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線(xiàn)之間的距離求兩條平行直線(xiàn)l,m之間的距離,可在其中一條直線(xiàn)l上任取一點(diǎn)P,則兩條平行直線(xiàn)間的距離就等于點(diǎn)P到直線(xiàn)m的距離.點(diǎn)睛:點(diǎn)到直線(xiàn)的距離,即點(diǎn)到直線(xiàn)的垂線(xiàn)段的長(zhǎng)度,由于直線(xiàn)與直線(xiàn)外一點(diǎn)確定一個(gè)平面,所以空間點(diǎn)到直線(xiàn)的距離問(wèn)題可轉(zhuǎn)化為空間某一個(gè)平面內(nèi)點(diǎn)到直線(xiàn)的距離問(wèn)題.1.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,E,F分別是C1C,D1A1的中點(diǎn),則點(diǎn)A到直線(xiàn)EF的距離為 . 答案: √174/6解析:如圖,以點(diǎn)D為原點(diǎn),DA,DC,DD1所在直線(xiàn)分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),

  • 用空間向量研究直線(xiàn)、平面的位置關(guān)系(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    用空間向量研究直線(xiàn)、平面的位置關(guān)系(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、探究新知一、空間中點(diǎn)、直線(xiàn)和平面的向量表示1.點(diǎn)的位置向量在空間中,我們?nèi)∫欢c(diǎn)O作為基點(diǎn),那么空間中任意一點(diǎn)P就可以用向量(OP) ?來(lái)表示.我們把向量(OP) ?稱(chēng)為點(diǎn)P的位置向量.如圖.2.空間直線(xiàn)的向量表示式如圖①,a是直線(xiàn)l的方向向量,在直線(xiàn)l上取(AB) ?=a,設(shè)P是直線(xiàn)l上的任意一點(diǎn),則點(diǎn)P在直線(xiàn)l上的充要條件是存在實(shí)數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點(diǎn)O,可以得到點(diǎn)P在直線(xiàn)l上的充要條件是存在實(shí)數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱(chēng)為空間直線(xiàn)的向量表示式.由此可知,空間任意直線(xiàn)由直線(xiàn)上一點(diǎn)及直線(xiàn)的方向向量唯一確定.1.下列說(shuō)法中正確的是( )A.直線(xiàn)的方向向量是唯一的B.與一個(gè)平面的法向量共線(xiàn)的非零向量都是該平面的法向量C.直線(xiàn)的方向向量有兩個(gè)D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項(xiàng)正確.

  • 用空間向量研究直線(xiàn)、平面的位置關(guān)系(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    用空間向量研究直線(xiàn)、平面的位置關(guān)系(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點(diǎn).求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點(diǎn),DA,DC,DD1所在直線(xiàn)分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長(zhǎng)為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點(diǎn).求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線(xiàn)向量都垂直,從而根據(jù)線(xiàn)面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過(guò)坐標(biāo)運(yùn)算證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線(xiàn)向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說(shuō)明(D_1 M) ?與法向量共線(xiàn),從而證得結(jié)論.證明:(方法1)因?yàn)镋,F,M分別為棱AB,BC,B1B的中點(diǎn),所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因?yàn)?B_1 E) ?,(B_1 F) ?不共線(xiàn),因此D1M⊥平面EFB1.

  • 人教版高中數(shù)學(xué)選修3分類(lèi)加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理(1)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3分類(lèi)加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理(1)教學(xué)設(shè)計(jì)

    問(wèn)題1. 用一個(gè)大寫(xiě)的英文字母或一個(gè)阿拉伯?dāng)?shù)字給教室里的一個(gè)座位編號(hào),總共能編出多少種不同的號(hào)碼?因?yàn)橛⑽淖帜腹灿?6個(gè),阿拉伯?dāng)?shù)字共有10個(gè),所以總共可以編出26+10=36種不同的號(hào)碼.問(wèn)題2.你能說(shuō)說(shuō)這個(gè)問(wèn)題的特征嗎?上述計(jì)數(shù)過(guò)程的基本環(huán)節(jié)是:(1)確定分類(lèi)標(biāo)準(zhǔn),根據(jù)問(wèn)題條件分為字母號(hào)碼和數(shù)字號(hào)碼兩類(lèi);(2)分別計(jì)算各類(lèi)號(hào)碼的個(gè)數(shù);(3)各類(lèi)號(hào)碼的個(gè)數(shù)相加,得出所有號(hào)碼的個(gè)數(shù).你能舉出一些生活中類(lèi)似的例子嗎?一般地,有如下分類(lèi)加法計(jì)數(shù)原理:完成一件事,有兩類(lèi)辦法. 在第1類(lèi)辦法中有m種不同的方法,在第2類(lèi)方法中有n種不同的方法,則完成這件事共有:N= m+n種不同的方法.二、典例解析例1.在填寫(xiě)高考志愿時(shí),一名高中畢業(yè)生了解到,A,B兩所大學(xué)各有一些自己感興趣的強(qiáng)項(xiàng)專(zhuān)業(yè),如表,

  • 人教版高中數(shù)學(xué)選修3分類(lèi)加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理(2)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3分類(lèi)加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理(2)教學(xué)設(shè)計(jì)

    當(dāng)A,C顏色相同時(shí),先染P有4種方法,再染A,C有3種方法,然后染B有2種方法,最后染D也有2種方法.根據(jù)分步乘法計(jì)數(shù)原理知,共有4×3×2×2=48(種)方法;當(dāng)A,C顏色不相同時(shí),先染P有4種方法,再染A有3種方法,然后染C有2種方法,最后染B,D都有1種方法.根據(jù)分步乘法計(jì)數(shù)原理知,共有4×3×2×1×1=24(種)方法.綜上,共有48+24=72(種)方法.故選B.答案:B5.某藝術(shù)小組有9人,每人至少會(huì)鋼琴和小號(hào)中的一種樂(lè)器,其中7人會(huì)鋼琴,3人會(huì)小號(hào),從中選出會(huì)鋼琴與會(huì)小號(hào)的各1人,有多少種不同的選法?解:由題意可知,在藝術(shù)小組9人中,有且僅有1人既會(huì)鋼琴又會(huì)小號(hào)(把該人記為甲),只會(huì)鋼琴的有6人,只會(huì)小號(hào)的有2人.把從中選出會(huì)鋼琴與會(huì)小號(hào)各1人的方法分為兩類(lèi).第1類(lèi),甲入選,另1人只需從其他8人中任選1人,故這類(lèi)選法共8種;第2類(lèi),甲不入選,則會(huì)鋼琴的只能從6個(gè)只會(huì)鋼琴的人中選出,有6種不同的選法,會(huì)小號(hào)的也只能從只會(huì)小號(hào)的2人中選出,有2種不同的選法,所以這類(lèi)選法共有6×2=12(種).因此共有8+12=20(種)不同的選法.

  • 小學(xué)美術(shù)人教版六年級(jí)下冊(cè)《第15課我國(guó)古代建筑藝術(shù)》教學(xué)設(shè)計(jì)說(shuō)課稿

    小學(xué)美術(shù)人教版六年級(jí)下冊(cè)《第15課我國(guó)古代建筑藝術(shù)》教學(xué)設(shè)計(jì)說(shuō)課稿

    2重點(diǎn)難點(diǎn)教學(xué)重點(diǎn)了解我國(guó)古代建筑的外觀造型、建筑結(jié)構(gòu)、群體布局、裝飾色彩。教學(xué)難點(diǎn)對(duì)我國(guó)古代建筑的欣賞感受能力,能夠從外觀、結(jié)構(gòu)、布局、裝飾、類(lèi)別來(lái)欣賞祖國(guó)古代的建筑藝術(shù)。3教學(xué)過(guò)程3.1 第一學(xué)時(shí)教學(xué)活動(dòng)活動(dòng)1【導(dǎo)入】觀察建筑,點(diǎn)出建筑(設(shè)計(jì)意圖:了解建筑的基本特點(diǎn))1、同學(xué)們,我們坐在什么地方?(教室)2、讓我們來(lái)觀察一下,它都有哪些部分組成?(墻壁、天花板、地面、門(mén)窗)3、還有什么地方有這些特點(diǎn)?(電影院、家… …)4、 [課件1:現(xiàn)代建筑]這些都叫做“建筑”。(板書(shū))

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):6.3《等比數(shù)列》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):6.3《等比數(shù)列》教學(xué)設(shè)計(jì)

    課題序號(hào)6-3授課形式講授與練習(xí)課題名稱(chēng)等比數(shù)列課時(shí)2教學(xué) 目標(biāo)知識(shí) 目標(biāo)理解并掌握等比數(shù)列的概念,掌握并能應(yīng)用等比數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式。能力 目標(biāo)通過(guò)公式的推導(dǎo)和應(yīng)用,使學(xué)生體會(huì)從特殊到一般,再?gòu)囊话愕教厥獾乃季S規(guī)律,初步形成認(rèn)識(shí)問(wèn)題、分析問(wèn)題、解決問(wèn)題的一般思路和方法 。素質(zhì) 目標(biāo)通過(guò)對(duì)等比數(shù)列知識(shí)的學(xué)習(xí),培養(yǎng)學(xué)生細(xì)心觀察、認(rèn)真分析、正確總結(jié)的科學(xué)思維習(xí)慣和嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。教學(xué) 重點(diǎn)等比數(shù)列的概念及通項(xiàng)公式、前n項(xiàng)和公式的推導(dǎo)過(guò)程及運(yùn)用。教學(xué) 難點(diǎn)對(duì)等比數(shù)列的通項(xiàng)公式與求和公式變式運(yùn)用。教學(xué)內(nèi)容 調(diào)整無(wú)學(xué)生知識(shí)與 能力準(zhǔn)備數(shù)列的概念課后拓展 練習(xí) 習(xí)題(P.21): 3,4.教學(xué) 反思 教研室 審核

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):8.2《直線(xiàn)的方程》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):8.2《直線(xiàn)的方程》教學(xué)設(shè)計(jì)

    課程名稱(chēng)數(shù)學(xué)課題名稱(chēng)8.2 直線(xiàn)的方程課時(shí)2授課日期2016.3任課教師劉娜目標(biāo)群體14級(jí)五高班教學(xué)環(huán)境教室學(xué)習(xí)目標(biāo)知識(shí)目標(biāo): (1)理解直線(xiàn)的傾角、斜率的概念; (2)掌握直線(xiàn)的傾角、斜率的計(jì)算方法. 職業(yè)通用能力目標(biāo): 正確分析問(wèn)題的能力 制造業(yè)通用能力目標(biāo): 正確分析問(wèn)題的能力學(xué)習(xí)重點(diǎn)直線(xiàn)的斜率公式的應(yīng)用.學(xué)習(xí)難點(diǎn)直線(xiàn)的斜率概念和公式的理解.教法、學(xué)法講授、分析、討論、引導(dǎo)、提問(wèn)教學(xué)媒體黑板、粉筆

  • 【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊(cè):3.3《函數(shù)的實(shí)際應(yīng)用舉例》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊(cè):3.3《函數(shù)的實(shí)際應(yīng)用舉例》教學(xué)設(shè)計(jì)

    課程分析中專(zhuān)數(shù)學(xué)課程教學(xué)是專(zhuān)業(yè)建設(shè)與專(zhuān)業(yè)課程體系改革的一部分,應(yīng)與專(zhuān)業(yè)課教學(xué)融為一體,立足于為專(zhuān)業(yè)課服務(wù),解決實(shí)際生活中常見(jiàn)問(wèn)題,結(jié)合中專(zhuān)學(xué)生的實(shí)際,強(qiáng)調(diào)數(shù)學(xué)的應(yīng)用性,以滿(mǎn)足學(xué)生在今后的工作崗位上的實(shí)際應(yīng)用為主,這也體現(xiàn)了新課標(biāo)中突出應(yīng)用性的理念。分段函數(shù)的實(shí)際應(yīng)用在本課程中的地位:(1) 函數(shù)是中專(zhuān)數(shù)學(xué)學(xué)習(xí)的重點(diǎn)和難點(diǎn),函數(shù)的思想貫穿于整個(gè)中專(zhuān)數(shù)學(xué)之中,分段函數(shù)在科技和生活的各個(gè)領(lǐng)域有著十分廣泛的應(yīng)用。(2) 本節(jié)所探討學(xué)習(xí)分段函數(shù)在生活生產(chǎn)中的實(shí)際問(wèn)題上應(yīng)用,培養(yǎng)學(xué)生分析與解決問(wèn)題的能力,養(yǎng)成正確的數(shù)學(xué)化理性思維的同時(shí),形成一種意識(shí),即數(shù)學(xué)“源于生活、寓于生活、用于生活”。教材分析 教材使用的是中等職業(yè)教育課程改革國(guó)家規(guī)劃教材,依照13級(jí)教學(xué)計(jì)劃,函數(shù)的實(shí)際應(yīng)用舉例內(nèi)容安排在第三章函數(shù)的最后一部分講解。本節(jié)內(nèi)容是在學(xué)生熟知函數(shù)的概念,表示方法和對(duì)函數(shù)性質(zhì)有一定了解的基礎(chǔ)上研究分段函數(shù),同時(shí)深化學(xué)生對(duì)函數(shù)概念的理解和認(rèn)識(shí),也為接下來(lái)學(xué)習(xí)指數(shù)函數(shù)和對(duì)數(shù)函數(shù)作了良好鋪墊。根據(jù)13級(jí)學(xué)生實(shí)際情況,由生活生產(chǎn)中的實(shí)際問(wèn)題入手,求得分段函數(shù)此部分知識(shí)以學(xué)生生活常識(shí)為背景,可以引導(dǎo)學(xué)生分析得出。

上一頁(yè)123...272829303132333435363738下一頁(yè)
提供各類(lèi)高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫(huà),PPT模板免費(fèi)下載,專(zhuān)注素材下載!