提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

勞動合同版本一word文檔

  • 人教版高中地理選修3第一章第二節(jié)現代旅游對區(qū)域發(fā)展的意義教案

    人教版高中地理選修3第一章第二節(jié)現代旅游對區(qū)域發(fā)展的意義教案

    三、影響區(qū)域環(huán)境說明:環(huán)境是旅游業(yè)的基礎,旅游對環(huán)境保護具有促進作用。世界上很多國家在發(fā)展旅游業(yè)的同時,都很重視對旅游資源和環(huán)境的保護,以實現旅游業(yè)的可持續(xù)發(fā)展。旅游業(yè)的發(fā)展對環(huán)境也有消極作用,如果旅游與環(huán)境的關系不處理好,環(huán)境也會朝著惡化的方向發(fā)展。圖1.10古建修復圖1.10對比顯示古建筑修復前后景觀的變化,說明旅游業(yè)的發(fā)展有利于文物古跡和古建筑的保護。討論:1.列舉旅游業(yè)發(fā)展有利于環(huán)境的措施。提示:建立各種自然保護區(qū)、申報歷史文物保護單位等措施都有利于保護旅游環(huán)境。2.舉例說明旅游對環(huán)境的消極作用。提示:旅游對環(huán)境的消極作用主要表現在:由于對旅游資源開發(fā)建設不當或失誤,使生態(tài)環(huán)境惡化;由于大量游客的涌入,排放的各類廢棄物超過了環(huán)境自凈能力而造成環(huán)境污染;由于大量游客的接觸或不文明行為引起的對風景、文物的破壞等。

  • 人教A版高中數學必修一兩角和與差的正弦、余弦和正切公式教學設計(1)

    人教A版高中數學必修一兩角和與差的正弦、余弦和正切公式教學設計(1)

    本節(jié)課選自《普通高中課程標準實驗教科書數學必修1本(A版)》第五章的5.5.1 兩角和與差的正弦、余弦和正切公式。本節(jié)的主要內容是由兩角差的余弦公式的推導,運用誘導公式、同角三角函數的基本關系和代數變形,得到其它的和差角公式。讓學生感受數形結合及轉化的思想方法。發(fā)展學生數學直觀、數學抽象、邏輯推理、數學建模的核心素養(yǎng)。課程目標 學科素養(yǎng)1.了解兩角差的余弦公式的推導過程.2.掌握由兩角差的余弦公式推導出兩角和的余弦公式及兩角和與差的正弦、正切公式.3.熟悉兩角和與差的正弦、余弦、正切公式的靈活運用,了解公式的正用、逆用以及角的變換的常用方法.4.通過正切函數圖像與性質的探究,培養(yǎng)學生數形結合和類比的思想方法。 a.數學抽象:公式的推導;b.邏輯推理:公式之間的聯系;c.數學運算:運用和差角角公式求值;d.直觀想象:兩角差的余弦公式的推導;e.數學建模:公式的靈活運用;

  • 人教A版高中數學必修一兩角和與差的正弦、余弦和正切公式教學設計(2)

    人教A版高中數學必修一兩角和與差的正弦、余弦和正切公式教學設計(2)

    本節(jié)內容是三角恒等變形的基礎,是正弦線、余弦線和誘導公式等知識的延伸,同時,它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內容,對于三角變換、三角恒等式的證明和三角函數式的化簡、求值等三角問題的解決有著重要的支撐作用。 課程目標1、能夠推導出兩角和與差的正弦、余弦、正切公式并能應用; 2、掌握二倍角公式及變形公式,能靈活運用二倍角公式解決有關的化簡、求值、證明問題.數學學科素養(yǎng)1.數學抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運用公式解決基本三角函數式的化簡、證明等問題;3.數學運算:運用公式解決基本三角函數式求值問題.4.數學建模:學生體會到一般與特殊,換元等數學思想在三角恒等變換中的作用。.

  • 空間向量及其運算的坐標表示教學設計人教A版高中數學選擇性必修第一冊

    空間向量及其運算的坐標表示教學設計人教A版高中數學選擇性必修第一冊

    一、情境導學我國著名數學家吳文俊先生在《數學教育現代化問題》中指出:“數學研究數量關系與空間形式,簡單講就是形與數,歐幾里得幾何體系的特點是排除了數量關系,對于研究空間形式,你要真正的‘騰飛’,不通過數量關系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學幾何的“騰飛”是“數量化”,也就是坐標系的引入,使得幾何問題“代數化”,為了使得空間幾何“代數化”,我們引入了坐標及其運算.二、探究新知一、空間直角坐標系與坐標表示1.空間直角坐標系在空間選定一點O和一個單位正交基底{i,j,k},以點O為原點,分別以i,j,k的方向為正方向、以它們的長為單位長度建立三條數軸:x軸、y軸、z軸,它們都叫做坐標軸.這時我們就建立了一個空間直角坐標系Oxyz,O叫做原點,i,j,k都叫做坐標向量,通過每兩個坐標軸的平面叫做坐標平面,分別稱為Oxy平面,Oyz平面,Ozx平面.

  • 雙曲線的簡單幾何性質(1)教學設計人教A版高中數學選擇性必修第一冊

    雙曲線的簡單幾何性質(1)教學設計人教A版高中數學選擇性必修第一冊

    問題導學類比橢圓幾何性質的研究,你認為應該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質,如何研究這些性質1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點的坐標( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關于x軸、y軸和原點都是對稱。x軸、y軸是雙曲線的對稱軸,原點是對稱中心,又叫做雙曲線的中心。3、頂點(1)雙曲線與對稱軸的交點,叫做雙曲線的頂點 .頂點是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實軸,它的長為2a,a叫做實半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準確的畫出雙曲線的草圖

  • 拋物線的簡單幾何性質(1)教學設計人教A版高中數學選擇性必修第一冊

    拋物線的簡單幾何性質(1)教學設計人教A版高中數學選擇性必修第一冊

    問題導學類比用方程研究橢圓雙曲線幾何性質的過程與方法,y2 = 2px (p>0)你認為應研究拋物線的哪些幾何性質,如何研究這些性質?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側,開口向右,這條拋物線上的任意一點M 的坐標 (x, y) 的橫坐標滿足不等式 x ≥ 0;當x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現,拋物線 y2 = 2px (p>0)關于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點拋物線和它軸的交點叫做拋物線的頂點.拋物線的頂點坐標是坐標原點 (0, 0) .4. 離心率拋物線上的點M 到焦點的距離和它到準線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標準方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 拋物線的簡單幾何性質(2)教學設計人教A版高中數學選擇性必修第一冊

    拋物線的簡單幾何性質(2)教學設計人教A版高中數學選擇性必修第一冊

    二、直線與拋物線的位置關系設直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯立整理成關于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當Δ>0時,直線與拋物線相交,有兩個交點;當Δ=0時,直線與拋物線相切,有一個切點;當Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設拋物線的標準方程為:y2=2px(p>0).設A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設直線AB的方程為:my=x﹣ ,與拋物線的方程聯立化為y2﹣2pm﹣p2=0,

  • 拋物線及其標準方程教學設計人教A版高中數學選擇性必修第一冊

    拋物線及其標準方程教學設計人教A版高中數學選擇性必修第一冊

    本節(jié)課選自《2019人教A版高中數學選擇性必修第一冊》第二章《直線和圓的方程》,本節(jié)課主要學習拋物線及其標準方程在經歷了橢圓和雙曲線的學習后再學習拋物線,是在學生原有認知的基礎上從幾何與代數兩 個角度去認識拋物線.教材在拋物線的定義這個內容的安排上是:先從直觀上認識拋物線,再從畫法中提煉出拋物線的幾何特征,由此抽象概括出拋物線的定義,最后是拋物線定義的簡單應用.這樣的安排不僅體現出《課程標準》中要求通過豐富的實例展開教學的理念,而且符合學生從具體到抽象的認知規(guī)律,有利于學生對概念的學習和理解.坐標法的教學貫穿了整個“圓錐曲線方程”一章,是學生應重點掌握的基本數學方法 運動變化和對立統(tǒng)一的思想觀點在這節(jié)知識中得到了突出體現,我們必須充分利用好這部分教材進行教學

  • 雙曲線的簡單幾何性質(2)教學設計人教A版高中數學選擇性必修第一冊

    雙曲線的簡單幾何性質(2)教學設計人教A版高中數學選擇性必修第一冊

    二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標高112.5m,試建立適當的坐標系,求出此雙曲線的標準方程(精確到1m)解:設雙曲線的標準方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標為塔頂直徑的一半即 ,其縱坐標為塔的總高度與喉部標高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設而不求,運用韋達定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經過右焦點F2,所以,直線AB的方程為

  • 雙曲線及其標準方程教學設計人教A版高中數學選擇性必修第一冊

    雙曲線及其標準方程教學設計人教A版高中數學選擇性必修第一冊

    ∵在△EFP中,|EF|=2c,EF上的高為點P的縱坐標,∴S△EFP=4/3c2=12,∴c=3,即P點坐標為(5,4).由兩點間的距離公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求雙曲線的方程為x^2/5-y^2/4=1.5.求適合下列條件的雙曲線的標準方程.(1)兩個焦點的坐標分別是(-5,0),(5,0),雙曲線上的點與兩焦點的距離之差的絕對值等于8;(2)以橢圓x^2/8+y^2/5=1長軸的端點為焦點,且經過點(3,√10);(3)a=b,經過點(3,-1).解:(1)由雙曲線的定義知,2a=8,所以a=4,又知焦點在x軸上,且c=5,所以b2=c2-a2=25-16=9,所以雙曲線的標準方程為x^2/16-y^2/9=1.(2)由題意得,雙曲線的焦點在x軸上,且c=2√2.設雙曲線的標準方程為x^2/a^2 -y^2/b^2 =1(a>0,b>0),則有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求雙曲線的標準方程為x^2/3-y^2/5=1.(3)當焦點在x軸上時,可設雙曲線方程為x2-y2=a2,將點(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線的標準方程為x^2/8-y^2/8=1.當焦點在y軸上時,可設雙曲線方程為y2-x2=a2,將點(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點不可能在y軸上.綜上,所求雙曲線的標準方程為x^2/8-y^2/8=1.

  • 橢圓的簡單幾何性質(1)教學設計人教A版高中數學選擇性必修第一冊

    橢圓的簡單幾何性質(1)教學設計人教A版高中數學選擇性必修第一冊

    1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標及離心率;(2)寫出橢圓C2的方程,并研究其性質.解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.

  • 橢圓的簡單幾何性質(2)教學設計人教A版高中數學選擇性必修第一冊

    橢圓的簡單幾何性質(2)教學設計人教A版高中數學選擇性必修第一冊

    二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉橢圓面(橢圓繞其對稱軸旋轉一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經過旋轉橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當的平面直角坐標系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標系,設所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質求標準方程的思路1.利用橢圓的幾何性質求橢圓的標準方程時,通常采用待定系數法,其步驟是:(1)確定焦點位置;(2)設出相應橢圓的標準方程(對于焦點位置不確定的橢圓可能有兩種標準方程);(3)根據已知條件構造關于參數的關系式,利用方程(組)求參數,列方程(組)時常用的關系式有b2=a2-c2等.

  • 用空間向量研究距離、夾角問題(1)教學設計人教A版高中數學選擇性必修第一冊

    用空間向量研究距離、夾角問題(1)教學設計人教A版高中數學選擇性必修第一冊

    二、探究新知一、點到直線的距離、兩條平行直線之間的距離1.點到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點,P是直線l外一點.設(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點P,則兩條平行直線間的距離就等于點P到直線m的距離.點睛:點到直線的距離,即點到直線的垂線段的長度,由于直線與直線外一點確定一個平面,所以空間點到直線的距離問題可轉化為空間某一個平面內點到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長為2,E,F分別是C1C,D1A1的中點,則點A到直線EF的距離為 . 答案: √174/6解析:如圖,以點D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),

  • 用空間向量研究直線、平面的位置關系(1)教學設計人教A版高中數學選擇性必修第一冊

    用空間向量研究直線、平面的位置關系(1)教學設計人教A版高中數學選擇性必修第一冊

    二、探究新知一、空間中點、直線和平面的向量表示1.點的位置向量在空間中,我們取一定點O作為基點,那么空間中任意一點P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設P是直線l上的任意一點,則點P在直線l上的充要條件是存在實數t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點O,可以得到點P在直線l上的充要條件是存在實數t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項正確.

  • 用空間向量研究直線、平面的位置關系(2)教學設計人教A版高中數學選擇性必修第一冊

    用空間向量研究直線、平面的位置關系(2)教學設計人教A版高中數學選擇性必修第一冊

    跟蹤訓練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系.設正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內的兩個不共線向量都垂直,從而根據線面垂直的判定定理證得結論;另一種思路是建立空間直角坐標系,通過坐標運算證明(D_1 M) ?與平面EFB1內的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.

  • 五一銷售工作計劃

    五一銷售工作計劃

    1)建立一支熟悉業(yè)務,而相對穩(wěn)定的銷售團隊。人才是企業(yè)最寶貴的資源,一切銷售業(yè)績都起源于有一個好的銷售人員,建立一支具有凝聚力,合作精神的銷售團隊是企業(yè)的根本。在明年的工作中建立一個和諧,具有殺傷力的團隊作為一項主要的工作來抓。2)完善銷售制度,建立一套明確系統(tǒng)的業(yè)務管理辦法。銷售管理是企業(yè)的老大難問題,銷售人員出差,見客戶處于放任自流的狀態(tài)。完善銷售管理制度的目的是讓銷售人員在工作中發(fā)揮主觀能動性,對工作有高度的責任心,提高銷售人員的主人翁意識。

  • 初一工作計劃報告

    初一工作計劃報告

    一、管理思想:  用六個字概括:嚴、情、理、尊、法、力。"嚴"對學生的管理無論是品行、還是學習必須從嚴要求;"理"就是講道理,嚴格要求的必須有道理,讓學生口服、心服;"情"就是感情投入,用老師真摯的感情去感化每一個學生,或者理解為老師有嚴厲的一面,也有溫柔的一面,更多的關愛問題生。再小的孩子也能感受到你對他是真好還是假好;"尊"當然就是尊重學生,無論哪一類學生。"法"即定法律,也可以理解為定制度;"力"即懲罰,沒有懲罰的教育不是真正意義上的教育,但要懲罰分明,懲罰合理。在實際的工作中,我是以此為基礎,以此為依據的。

  • 一名普通員工工作計劃

    一名普通員工工作計劃

    一、人事管理方面根據部門人員的實際需要,有針對性、合理地招聘一批員工,以配備各崗位。規(guī)范了各部門的人員檔案并建立電子檔案,嚴格審查全體員工檔案,對資料不齊全的一律補齊。配合采購和財務部門,嚴格把好促銷員的進、出關。有步驟的完善培訓機制,不斷的外派員工學習并要求知名公司來培訓員工,同時加強內部的培訓管理工作。

  • 高一年級工作總結

    高一年級工作總結

    重視與家長、社會的聯系,構建比較完整的德育教育網絡:  本期來,通過周會課、法制與心理健康教育課,對學生進行了針對性的思想教育。年級組、各班根據學生實際情況,通過家訪、電話聯系等形式,加強教師與家長、學校與家庭、社會的聯系,溝通了學校教育和家庭教育。

  • 初一德育工作計劃書

    初一德育工作計劃書

    一、抓住閃光點,及時鼓勵賞識學生  人都喜歡被表揚。優(yōu)等生需要表揚,學困生更需要表揚。作為語文教師,要善于發(fā)現他們身上的閃光點,要善于給他們以信任,引導他們有意識地去發(fā)揚優(yōu)點,克服缺點,揚長避短,從而向好的方面發(fā)展?! 』诎嗉墝W生的現狀,從七年級下學期開始就使用這種鼓勵賞識教育方法,對七年級期末考試的語文學科優(yōu)秀學生進行了表揚,激勵他們學習。在表揚他們的同時,我并告訴其他同學在月考、期中、期末考試中有進步的學生也會一如既往地獎勵。激勵措施的目的是提高學生學習的用心性?;诖耍耪{動了所有學生的用心性,有利于提高學生的思想意識。

上一頁123...484950515253545556575859下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!