本課是高中數(shù)學(xué)第一章第4節(jié),充要條件是中學(xué)數(shù)學(xué)中最重要的數(shù)學(xué)概念之一, 它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學(xué)學(xué)習(xí)特別是數(shù)學(xué)推理的學(xué)習(xí)打下基礎(chǔ)。從學(xué)生學(xué)習(xí)的角度看,與舊教材相比,教學(xué)時(shí)間的前置,造成學(xué)生在學(xué)習(xí)充要條件這一概念時(shí)的知識儲備不夠豐富,邏輯思維能力的訓(xùn)練不夠充分,這也為教師的教學(xué)帶來一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個(gè)概念,由于這些概念比較抽象,中學(xué)生不易理解,用它們?nèi)ソ鉀Q具體問題則更為困難,因此”充要條件”的教學(xué)成為中學(xué)數(shù)學(xué)的難點(diǎn)之一,而必要條件的定義又是本節(jié)內(nèi)容的難點(diǎn).A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會判斷命題的充分條件、必要條件、充要條件.C.通過學(xué)習(xí),使學(xué)生明白對條件的判定應(yīng)該歸結(jié)為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學(xué)生思維能力的嚴(yán)密性品質(zhì).
知識目標(biāo)1.了解傳統(tǒng)工業(yè)區(qū)的分布、條件和工業(yè)部門。2.掌握傳統(tǒng)的魯爾工業(yè)區(qū)優(yōu)越的區(qū)位條件,了解它的衰落原因及其綜合整治途徑。能力目標(biāo)1.讀圖分析礦產(chǎn)資源與工業(yè)部門之間的聯(lián)系,培養(yǎng)學(xué)生的地理思維能力、綜合分析能力,明確工業(yè)生產(chǎn)也應(yīng)因地制宜。2.聯(lián)系實(shí)際,了解當(dāng)?shù)貍鹘y(tǒng)工業(yè)發(fā)展?fàn)顩r,為適應(yīng)當(dāng)今世界經(jīng)濟(jì)發(fā)展?fàn)顩r,應(yīng)有哪些改善措施,培養(yǎng)學(xué)生的創(chuàng)新能力。德育目標(biāo)1.通過了解魯爾區(qū)的發(fā)展變化,用發(fā)展的觀點(diǎn)看待傳統(tǒng)工業(yè)區(qū)的改造,適應(yīng)世界發(fā)展潮流。2.中國已經(jīng)“入世”,我們應(yīng)用辯證唯物主義觀點(diǎn)分析我國傳統(tǒng)工業(yè)今后遇到的機(jī)遇和挑戰(zhàn)。
為城市居民提供休養(yǎng)生息的場所,是城市最基本的功能區(qū).城市中最為廣泛的土地利用方式就是住宅用地.一般住宅區(qū)占據(jù)城市空間的40%—60%。(閱讀圖2.3)請同學(xué)講解高級住宅區(qū)與低級住宅區(qū)的差別(學(xué)生答)(教師總結(jié))(教師講解)另外還有行政區(qū)、文化區(qū)等。而在中小城市,這些部門占地面積很小,或者布局分散,形成不了相應(yīng)的功能 區(qū)。(教師提問)我們把城市功能區(qū)分了好幾種,比如說住宅區(qū),是不是土地都是被居住地占據(jù)呢?是不是就沒有其他的功能了呢?(學(xué)生回答)不是(教師總結(jié))不是的。我們說的住宅區(qū)只是在占地面積上,它是占絕大多數(shù),但還是有土地是被其它功能占據(jù)的,比如說住宅區(qū)里的商店、綠化等也要占據(jù)一定的土地, 只是占的比例比較小而已。下面請看書上的活動題。
(分析:北京的商業(yè)中心分布和變化大致分三個(gè)階段:鐘鼓樓市場、三足鼎立格局形成、環(huán)路沿線商業(yè)中心出現(xiàn)。相對應(yīng)的交通變化,鐘鼓樓市場衰退與大運(yùn)河運(yùn)輸?shù)匚凰ヂ洹⑦\(yùn)輸方式的變化密切相關(guān),后兩個(gè)階段與城市交通干線形態(tài)變化緊密聯(lián)系)。〔承轉(zhuǎn)〕商業(yè)中心的發(fā)展是隨著交通的發(fā)展而變化的,集鎮(zhèn)也是在交通要道上發(fā)展起來 的。(3)對集鎮(zhèn)發(fā)展的影響〔舉例說明〕陜西省勉縣的長林鎮(zhèn),過去地處漢中經(jīng)褒河去甘肅、四川的必經(jīng)之路,來往客商眾多,商業(yè)十分繁榮。后來由于改線,集鎮(zhèn)逐漸衰落,至今連定期的集市貿(mào)易都沒有了,完全退化為單純的居民點(diǎn)。以及運(yùn)河沿線城鎮(zhèn)如山東等的興衰,亦可說明交通線的改變對聚落的影響?!部偨Y(jié)〕交通線路的改變常會引起集鎮(zhèn)的繁榮或衰落。
(2)修建通向西藏的鐵路,要克服哪些自然障礙?①凍土的季節(jié)凍融作用使路基不穩(wěn)固,也使修路技術(shù)難度大,成本高②生態(tài)脆弱,植被破壞后難以修復(fù)③高原缺氧,使施工困難④廣布的荒漠,多山的地形都使建設(shè)難度加大(3)結(jié)合初中所學(xué)知識分析,未來穿行于青藏高原鐵路運(yùn)輸線上的貨車中主要運(yùn)輸?shù)呢浳镉心男??以鹽湖中礦物為原料的化工產(chǎn)品,有色金屬及其加工產(chǎn)品,畜產(chǎn)品及外省運(yùn)入的各種工業(yè)品等?!究偨Y(jié)新課】交通運(yùn)輸網(wǎng)的基本要素包括:交通線(鐵路、公路、航道、管道)和交通點(diǎn)(港口、車站、航空港);運(yùn)輸網(wǎng)有單一和綜合運(yùn)輸網(wǎng)二種形式。分國家級、省級和大區(qū)級三個(gè)層次。交通運(yùn)輸網(wǎng)的點(diǎn)線布局受經(jīng)濟(jì)、社會、技術(shù)和自然等因素的影響?!菊n后作業(yè)】:完成高一地理第二冊填圖冊 第五章第一節(jié)
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1》5.6.2節(jié) 函數(shù)y=Asin(ωx+φ)的圖象通過圖象變換,揭示參數(shù)φ、ω、A變化時(shí)對函數(shù)圖象的形狀和位置的影響。通過引導(dǎo)學(xué)生對函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律的探索,讓學(xué)生體會到由簡單到復(fù)雜、由特殊到一般的化歸思想;并通過對周期變換、相位變換先后順序調(diào)整后,將影響圖象變換這一難點(diǎn)的突破,讓學(xué)生學(xué)會抓住問題的主要矛盾來解決問題的基本思想方法;通過對參數(shù)φ、ω、A的分類討論,讓學(xué)生深刻認(rèn)識圖象變換與函數(shù)解析式變換的內(nèi)在聯(lián)系。通過圖象變換和“五點(diǎn)”作圖法,正確找出函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律,這也是本節(jié)課的重點(diǎn)所在。提高學(xué)生的推理能力。讓學(xué)生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理、數(shù)學(xué)建模的核心素養(yǎng)。
反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個(gè)基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時(shí),一般要結(jié)合圖形,運(yùn)用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運(yùn)算法則,逐步向基向量過渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時(shí),通常選取公共起點(diǎn)最集中的向量或關(guān)系最明確的向量作為基底,例如,在正方體、長方體、平行六面體、四面體中,一般選用從同一頂點(diǎn)出發(fā)的三條棱所對應(yīng)的向量作為基底.例2.在棱長為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點(diǎn),點(diǎn)G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個(gè)空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(shè)(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構(gòu)成空間的一個(gè)正交基底.
(2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時(shí)實(shí)數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計(jì)算方法(1)判斷兩點(diǎn)的橫坐標(biāo)是否相等,若相等,則直線的斜率不存在.(2)若兩點(diǎn)的橫坐標(biāo)不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進(jìn)行計(jì)算.金題典例 光線從點(diǎn)A(2,1)射到y(tǒng)軸上的點(diǎn)Q,經(jīng)y軸反射后過點(diǎn)B(4,3),試求點(diǎn)Q的坐標(biāo)及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點(diǎn)Q的坐標(biāo)為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點(diǎn)B(4,3)關(guān)于y軸的對稱點(diǎn)為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點(diǎn)共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點(diǎn)Q的坐標(biāo)為(0,5/3).
王安石,字介甫,號半山。北宋著名政治家、思想家、文學(xué)家、改革家,唐宋八大家之一。歐陽修稱贊王安石:“翰林風(fēng)月三千首,吏部文章二百年。老去自憐心尚在,后來誰與子爭先?!眰魇牢募小锻跖R川集》、《臨川集拾遺》等。其詩文各體兼擅,詞雖不多,但亦擅長,世人哄傳之詩句莫過于《泊船瓜洲》中的“春風(fēng)又綠江南岸,明月何時(shí)照我還?!鼻矣忻鳌豆鹬ο恪返?。介紹之后設(shè)置這樣的導(dǎo)入語:今天我們共同走進(jìn)王安石,一起欣賞名作《桂枝香·金陵懷古》。(板書標(biāo)題)(二)整體感知整體感知是賞析文章的前提,通過初讀,可以使學(xué)生初步了解將要學(xué)到的基本內(nèi)容,了解文章大意及思想意圖,使學(xué)生對課文內(nèi)容形成整體感知。首先,我會讓學(xué)生根據(jù)課前預(yù)習(xí),出聲誦讀課文,同時(shí)注意朗讀的快慢、停頓、語調(diào)、輕重音等,然后再播放音頻,糾正他們的讀音與停頓。其次,我會引導(dǎo)學(xué)生談?wù)勊惺?。學(xué)生通過朗讀,能夠說出本詞雄壯、豪放、有氣勢,有對景物的贊美和對歷史的感喟。
一、溫故導(dǎo)入好的導(dǎo)入未成曲調(diào)先有情,可以取得事半功信的教學(xué)效果。對于本節(jié)課我以溫故知新的方式導(dǎo)入,以蘇軾的《赤壁賦》和《念奴嬌》引導(dǎo)學(xué)生感受蘇軾的豪放和闊達(dá),從學(xué)生熟悉領(lǐng)域出發(fā),引導(dǎo)學(xué)生探究他內(nèi)心深處的“柔情似水”,感受他的“十年生死”之夢。二、誦讀感知(亮點(diǎn)一)《語文課程標(biāo)準(zhǔn)》中建議“教師要充分關(guān)注學(xué)生閱讀需求的多樣性,閱讀心理的獨(dú)特性”。所以在本環(huán)節(jié)我將綜合運(yùn)用聽、讀、問、答四種方式教學(xué)。首先通過多媒體聽讀,激發(fā)學(xué)生學(xué)習(xí)興趣,直觀感受蘇軾的痛徹心扉和傷心欲絕。其次指定學(xué)生誦讀,并在誦讀之后,由學(xué)生點(diǎn)評,加深學(xué)生對于斷句、輕重、快慢的理解,進(jìn)一步感受本詞的凄苦哀怨。最后配樂讀,利用凄清的音樂引導(dǎo)學(xué)生通過自己的誦讀來表現(xiàn)詩中所蘊(yùn)含的真摯之感。設(shè)計(jì)意圖:通過多種閱讀方法,反復(fù)閱讀本詞,引導(dǎo)學(xué)生由淺入深的理解本詞的思想內(nèi)容和藝術(shù)風(fēng)格,初步感受作者對妻子的摯愛之情和他的痛徹心扉,加深學(xué)生對文章的理解。
答案:銅車馬的輝煌,來自原料的精挑細(xì)選、工藝的精巧極致和工匠的精心雕琢??梢哉f,是精益求精的工匠精神鍛造出了“青銅之冠”的銅車馬。2.“工匠精神”如此重要,那么,你認(rèn)為“工匠精神”有著怎樣的現(xiàn)實(shí)意義?觀點(diǎn)一:工匠精神在企業(yè)層面,可以認(rèn)為是企業(yè)精神。具體而言,表現(xiàn)在以下幾個(gè)方面。第一,創(chuàng)新是企業(yè)不斷發(fā)展的精神內(nèi)核。第二,敬業(yè)是企業(yè)領(lǐng)導(dǎo)者精神的動力。第三,執(zhí)著是企業(yè)走得長久的底氣。改革開放40 多年來,我國涌現(xiàn)出大批有工匠精神的企業(yè),但也有一些企業(yè)缺乏企業(yè)精神,只追求“短平快”的經(jīng)濟(jì)效益。這正是經(jīng)濟(jì)發(fā)展的隱憂所在。觀點(diǎn)二:工匠精神在員工層面,就是一-種認(rèn)真精神、敬業(yè)精神。其核心是: 不僅僅把工作當(dāng)作賺錢養(yǎng)家糊口的工具,而是樹立起對職業(yè)敬畏、對工作執(zhí)著、對產(chǎn)品負(fù)責(zé)的態(tài)度,極度注重細(xì)節(jié),不斷追求完美和極致,給客戶無可挑剔的體驗(yàn)。我國制造業(yè)存在大而不強(qiáng)、產(chǎn)品檔次整體不高、自主創(chuàng)新能力較弱等現(xiàn)象,多少與工匠精神稀缺、“差不多精神”有關(guān)。
(一)導(dǎo)入新課“時(shí)勢造英雄”,惡劣的環(huán)境造就名詩名篇。正因如此,懷才不遇于古人是恒久的情感素材。同學(xué)們,請大家回憶我們學(xué)過哪些抒發(fā)作者懷才不遇的詩詞?(二)解釋題意擬:仿照,模擬《行路難》,是樂府雜曲,本為漢代歌謠,晉人袁山松改變其音調(diào),創(chuàng)制新詞,流行一時(shí)。 鮑照《擬行路難》共十八首,歌詠人世的種種憂慮,寄寓悲憤,今天我們學(xué)習(xí)的是其中第四首。(三)作者簡介、寫作背景門閥制度之下,“上品無寒門,下品無世族”,出身寒微的文人往往空懷一腔熱忱,卻報(bào)國無門,不得不在壯志未酬的遺恨中坐視時(shí)光流逝。即使躋身仕途,也多是充當(dāng)幕僚、府掾,備受壓抑,在困頓坎坷中徒然掙扎,只落得身心交瘁。
一、教材解析《桂枝香·金陵懷古》選自統(tǒng)教版必修下冊古詩詞誦讀單元,此詞通過對金陵景物的贊美和歷史興亡的感喟,寄托了作者對當(dāng)時(shí)朝政的擔(dān)憂和對國家政治大事的關(guān)心。全詞情景交融,境界雄渾闊大,風(fēng)格沉郁悲壯,把壯麗的景色和歷史內(nèi)容和諧地融合在一起,自成一格,堪稱名篇。二、學(xué)情分析高中一年級的學(xué)生已具有一定的詩歌閱讀鑒賞能力,對學(xué)生來說,最重要的是積累誦讀方法,提升鑒賞能力。在本文的教學(xué)過程中著重落實(shí)“讀”,通過多樣化的“讀”,提升對詩歌“美”的感悟鑒賞能力。三、教學(xué)目標(biāo)從課程標(biāo)準(zhǔn)中“全面提高學(xué)生語文素養(yǎng)”的基本理念出發(fā),我設(shè)計(jì)了以下教學(xué)目標(biāo):1.語言建構(gòu)與運(yùn)用:疏通疑難字詞,讀懂詩句體會詞的誦讀要領(lǐng)。
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1本(A版)》第五章的5.5.1 兩角和與差的正弦、余弦和正切公式。本節(jié)的主要內(nèi)容是由兩角差的余弦公式的推導(dǎo),運(yùn)用誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系和代數(shù)變形,得到其它的和差角公式。讓學(xué)生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理、數(shù)學(xué)建模的核心素養(yǎng)。課程目標(biāo) 學(xué)科素養(yǎng)1.了解兩角差的余弦公式的推導(dǎo)過程.2.掌握由兩角差的余弦公式推導(dǎo)出兩角和的余弦公式及兩角和與差的正弦、正切公式.3.熟悉兩角和與差的正弦、余弦、正切公式的靈活運(yùn)用,了解公式的正用、逆用以及角的變換的常用方法.4.通過正切函數(shù)圖像與性質(zhì)的探究,培養(yǎng)學(xué)生數(shù)形結(jié)合和類比的思想方法。 a.數(shù)學(xué)抽象:公式的推導(dǎo);b.邏輯推理:公式之間的聯(lián)系;c.數(shù)學(xué)運(yùn)算:運(yùn)用和差角角公式求值;d.直觀想象:兩角差的余弦公式的推導(dǎo);e.數(shù)學(xué)建模:公式的靈活運(yùn)用;
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個(gè)焦點(diǎn)F_1上,片門位另一個(gè)焦點(diǎn)F_2上,由橢圓一個(gè)焦點(diǎn)F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個(gè)橢圓焦點(diǎn)F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時(shí),通常采用待定系數(shù)法,其步驟是:(1)確定焦點(diǎn)位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對于焦點(diǎn)位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時(shí)常用的關(guān)系式有b2=a2-c2等.
跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點(diǎn).求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點(diǎn).求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過坐標(biāo)運(yùn)算證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因?yàn)镋,F,M分別為棱AB,BC,B1B的中點(diǎn),所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因?yàn)?B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.
一、情境導(dǎo)學(xué)我國著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點(diǎn)是排除了數(shù)量關(guān)系,對于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運(yùn)算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點(diǎn)O和一個(gè)單位正交基底{i,j,k},以點(diǎn)O為原點(diǎn),分別以i,j,k的方向?yàn)檎较?、以它們的長為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時(shí)我們就建立了一個(gè)空間直角坐標(biāo)系Oxyz,O叫做原點(diǎn),i,j,k都叫做坐標(biāo)向量,通過每兩個(gè)坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱為Oxy平面,Oyz平面,Ozx平面.
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點(diǎn) 到定點(diǎn) 的距離和它到定直線l: 的距離的比是 ,則點(diǎn) 的軌跡方程為?解:設(shè)點(diǎn) ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點(diǎn)F2,傾斜角為30度的直線交雙曲線于A,B兩點(diǎn),求|AB|.分析:求弦長問題有兩種方法:法一:如果交點(diǎn)坐標(biāo)易求,可直接用兩點(diǎn)間距離公式代入求弦長;法二:但有時(shí)為了簡化計(jì)算,常設(shè)而不求,運(yùn)用韋達(dá)定理來處理.解:由雙曲線的方程得,兩焦點(diǎn)分別為F1(-3,0),F2(3,0).因?yàn)橹本€AB的傾斜角是30°,且直線經(jīng)過右焦點(diǎn)F2,所以,直線AB的方程為
本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第一冊》第二章《直線和圓的方程》,本節(jié)課主要學(xué)習(xí)拋物線及其標(biāo)準(zhǔn)方程在經(jīng)歷了橢圓和雙曲線的學(xué)習(xí)后再學(xué)習(xí)拋物線,是在學(xué)生原有認(rèn)知的基礎(chǔ)上從幾何與代數(shù)兩 個(gè)角度去認(rèn)識拋物線.教材在拋物線的定義這個(gè)內(nèi)容的安排上是:先從直觀上認(rèn)識拋物線,再從畫法中提煉出拋物線的幾何特征,由此抽象概括出拋物線的定義,最后是拋物線定義的簡單應(yīng)用.這樣的安排不僅體現(xiàn)出《課程標(biāo)準(zhǔn)》中要求通過豐富的實(shí)例展開教學(xué)的理念,而且符合學(xué)生從具體到抽象的認(rèn)知規(guī)律,有利于學(xué)生對概念的學(xué)習(xí)和理解.坐標(biāo)法的教學(xué)貫穿了整個(gè)“圓錐曲線方程”一章,是學(xué)生應(yīng)重點(diǎn)掌握的基本數(shù)學(xué)方法 運(yùn)動變化和對立統(tǒng)一的思想觀點(diǎn)在這節(jié)知識中得到了突出體現(xiàn),我們必須充分利用好這部分教材進(jìn)行教學(xué)
二、探究新知一、點(diǎn)到直線的距離、兩條平行直線之間的距離1.點(diǎn)到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點(diǎn),P是直線l外一點(diǎn).設(shè)(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點(diǎn)P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點(diǎn)P,則兩條平行直線間的距離就等于點(diǎn)P到直線m的距離.點(diǎn)睛:點(diǎn)到直線的距離,即點(diǎn)到直線的垂線段的長度,由于直線與直線外一點(diǎn)確定一個(gè)平面,所以空間點(diǎn)到直線的距離問題可轉(zhuǎn)化為空間某一個(gè)平面內(nèi)點(diǎn)到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長為2,E,F分別是C1C,D1A1的中點(diǎn),則點(diǎn)A到直線EF的距離為 . 答案: √174/6解析:如圖,以點(diǎn)D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),