解析:圖中∠AOB、∠COD均與∠BOC互余,根據(jù)角的和、差關(guān)系,可求得∠AOB與∠COD的度數(shù).通過計(jì)算發(fā)現(xiàn)∠AOB=∠COD,于是可以歸納∠AOB=∠COD.解:(1)∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°.∵∠BOC=30°,∴∠AOB=∠AOC-∠BOC=90°-30°=60°,∠COD=∠BOD-∠BOC=90°-30°=60°.(2)∠AOB=∠AOC-∠BOC=90°-54°=36°,∠COD=∠BOD-∠BOC=90°-54°=36°.(3)由(1)、(2)可發(fā)現(xiàn):∠AOB=∠COD.(4)∵∠AOB+∠BOC=∠AOC=90°,∠BOC+∠COD=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD.∴∠AOB=∠COD.方法總結(jié):檢驗(yàn)數(shù)學(xué)結(jié)論具體經(jīng)歷的過程是:觀察、度量、實(shí)驗(yàn)→猜想歸納→結(jié)論→推理→正確結(jié)論.三、板書設(shè)計(jì)為什么,要證明)推理的意義:數(shù)學(xué)結(jié)論必須經(jīng)過嚴(yán)格的論證檢驗(yàn)數(shù)學(xué)結(jié)論的常用方法實(shí)驗(yàn)驗(yàn)證舉出反例推理證明經(jīng)歷觀察、驗(yàn)證、歸納等過程,使學(xué)生對由這些方法得到的結(jié)論產(chǎn)生懷疑,以此激發(fā)學(xué)生的好奇心,從而認(rèn)識(shí)證明的必要性,培養(yǎng)學(xué)生的推理意識(shí),了解檢驗(yàn)數(shù)學(xué)結(jié)論的常用方法:實(shí)驗(yàn)驗(yàn)證、舉出反例、推理論證等.
8.一束光線從點(diǎn)A(3,3)出發(fā),經(jīng)過y軸上點(diǎn)C反射后經(jīng)過點(diǎn)B(1,0)則光線從A點(diǎn)到B點(diǎn)經(jīng)過的路線長是( )A.4 B.5 C.6 D.7第四環(huán)節(jié)課堂小結(jié)1、關(guān)于y軸對稱的兩個(gè)圖形上點(diǎn)的坐標(biāo)特征:(x , y)——(- x , y)2、關(guān)于x軸對稱的兩個(gè)圖形上點(diǎn)的坐標(biāo)特征:(x , y)——(x , - y)3、關(guān)于原點(diǎn)對稱的兩個(gè)圖形上點(diǎn)的坐標(biāo)特征:(x , y)——(- x , -y)第五環(huán)節(jié)布置作業(yè)習(xí)題3.5 1,2,3四、 教學(xué)反思通過“坐標(biāo)與軸對稱”,經(jīng)歷圖形坐標(biāo)變化與圖形的軸對稱之間的關(guān)系的探索過程, 掌握空間與圖形的基礎(chǔ)知識(shí)和基本技能,豐富對現(xiàn)實(shí)空間及圖形的認(rèn)識(shí),建立初步的空間觀念,發(fā)展形象思維,激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲,學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng);積極交流合作,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造。教學(xué)中務(wù)必給學(xué)生創(chuàng)造自主學(xué)習(xí)與合作交流的機(jī)會(huì),留給學(xué)生充足的動(dòng)手機(jī)會(huì)和思考空間,教師不要急于下結(jié)論。事先一定要準(zhǔn)備好坐標(biāo)紙等,提高課堂效率。
1.會(huì)用計(jì)算器求平方根和立方根;(重點(diǎn))2.運(yùn)用計(jì)算器探究數(shù)字規(guī)律,提高推理能力.一、情境導(dǎo)入前面我們通過平方和立方運(yùn)算求出一些特殊數(shù)的平方根和立方根,如4的平方根是±2,116的平方根是±14,0.064的立方根是0.4,-8的立方根是-2等.那么如何求3,189,-39,311的值呢?二、合作探究探究點(diǎn)一:利用計(jì)算器進(jìn)行開方運(yùn)算 用計(jì)算器求6+7的值.解:按鍵順序?yàn)椤?+7=SD,顯示結(jié)果為:9.449489743.方法總結(jié):當(dāng)被開方數(shù)不是一個(gè)數(shù)時(shí),輸入時(shí)一定要按鍵.解本題時(shí)常出現(xiàn)的錯(cuò)誤是:■6+7=SD,錯(cuò)的原因是被開方數(shù)是6,而不是6與7的和,這樣在輸入時(shí),對“6+7”進(jìn)行開方,使得計(jì)算的是6+7而不是6+7,從而導(dǎo)致錯(cuò)誤.K探究點(diǎn)二:利用科學(xué)計(jì)算器比較數(shù)的大小利用計(jì)算器,比較下列各組數(shù)的大小:(1)2,35;(2)5+12,15+2.解:(1)按鍵順序:■2=SD,顯示結(jié)果為1.414213562.按鍵順序:SHIFT■5=,顯示結(jié)果為1.709975947.所以2<35.
解析:從各點(diǎn)的位置可以發(fā)現(xiàn)A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔細(xì)觀察每四個(gè)點(diǎn)的橫、縱坐標(biāo),發(fā)現(xiàn)存在著一定規(guī)律性.因?yàn)?015=503×4+3,所以點(diǎn)A2015在第二象限,縱坐標(biāo)和橫坐標(biāo)互為相反數(shù),所以A2015的坐標(biāo)為(-504,504).故填(-504,504).方法總結(jié):解決此類題常用的方法是通過對幾種特殊情況的研究,歸納總結(jié)出一般規(guī)律,再根據(jù)一般規(guī)律探究特殊情況.三、板書設(shè)計(jì)軸對稱與坐標(biāo)變化關(guān)于坐標(biāo)軸對稱作圖——軸對稱變換通過本課時(shí)的學(xué)習(xí),學(xué)生經(jīng)歷圖形坐標(biāo)變化與圖形的軸對稱之間的關(guān)系的探索過程,掌握空間與圖形的基礎(chǔ)知識(shí)和基本作圖技能,豐富對現(xiàn)實(shí)空間及圖形的認(rèn)識(shí),建立初步的空間觀念,發(fā)展形象思維,激發(fā)數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲.教學(xué)過程中學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),積極交流合作,體驗(yàn)數(shù)學(xué)活動(dòng)的樂趣.
1、 如圖4-25,將一個(gè)圓分成三個(gè)大小相同的扇形,你能算出它們的圓心角的度數(shù)嗎?你知道每個(gè)扇形的面積和整個(gè)圓的面積的關(guān)系嗎?與同伴進(jìn)行交流2、 畫一個(gè)半徑是2cm的圓,并在其中畫一個(gè)圓心為60º的扇形,你會(huì)計(jì)算這個(gè)扇形的面積嗎?與同伴交流。教師對答案進(jìn)行匯總,講解本題解題思路:1、 因?yàn)橐粋€(gè)圓被分成了大小相同的扇形,所以每個(gè)扇形的圓心角相同,又因?yàn)閳A周角是360º,所以每個(gè)扇形的圓心角是360º÷3=120º,每個(gè)扇形的面積為整個(gè)圓的面積的三分之一。2、 先求出這個(gè)圓的面積S=πR²=4π,60÷360=1/6扇形面積=4π×1/6=2π/3【設(shè)計(jì)意圖】運(yùn)用小組合作交流的方式,既培養(yǎng)了學(xué)生的合作意識(shí)和能力,又達(dá)到了互幫互助以弱帶強(qiáng)的目的,使學(xué)習(xí)比較吃力的同學(xué)也能參與到學(xué)習(xí)中來,體現(xiàn)了學(xué)生是學(xué)習(xí)的主體。
方法總結(jié):在分辨一個(gè)圖形是否為多邊形時(shí),一定要抓住多邊形定義中的關(guān)鍵詞語,如“線段”“首尾順次連接”“封閉”“平面圖形”等.如此,對于某些似是而非的圖形,只要根據(jù)定義進(jìn)行對照和分析,即可判定.探究點(diǎn)二:確定多邊形的對角線一個(gè)多邊形從一個(gè)頂點(diǎn)最多能引出2015條對角線,這個(gè)多邊形的邊數(shù)是()A.2015 B.2016 C.2017 D.2018解析:這個(gè)多邊形的邊數(shù)為2015+3=2018.故選D.方法總結(jié):過n邊形的一個(gè)頂點(diǎn)可以畫出(n-3)條對角線.本題只要逆向求解即可.探究點(diǎn)三:求扇形圓心角將一個(gè)圓分割成三個(gè)扇形,它們的圓心角的度數(shù)之比為2:3:4,求這三個(gè)扇形圓心角的度數(shù).解析:用扇形圓心角所對應(yīng)的比去乘360°即可求出相應(yīng)扇形圓心角的度數(shù).解:三個(gè)扇形的圓心角度數(shù)分別為:360°×22+3+4=80°;360°×32+3+4=120°;
分析:(1)(2)用乘法的交換、結(jié)合律;(3)(4)用分配律,4.99寫成5-0.01學(xué)生板書完成,并說明根據(jù)什么?略例3、某校體育器材室共有60個(gè)籃球。一天課外活動(dòng),有3個(gè)班級(jí)分別計(jì)劃借籃球總數(shù)的 , 和 。請你算一算,這60個(gè)籃球夠借嗎?如果夠了,還多幾個(gè)籃球?如果不夠,還缺幾個(gè)?解:=60-30-20-15 =-5答:不夠借,還缺5個(gè)籃球。練習(xí)鞏固:第41頁1、2、7、探究活動(dòng) (1)如果2個(gè)數(shù)的積為負(fù)數(shù),那么這2個(gè)數(shù)中有幾個(gè)負(fù)數(shù)?如果3個(gè)數(shù)的積為負(fù)數(shù),那么這3個(gè)數(shù)中有幾個(gè)負(fù)數(shù)?4個(gè)數(shù)呢?5個(gè)數(shù)呢?6個(gè)數(shù)呢?有什么規(guī)律? (2)逆用分配律 第42頁 5、用簡便方法計(jì)算(三)課堂小結(jié)通過本節(jié)課的學(xué)習(xí),大家學(xué)會(huì)了什么?本節(jié)課我們探討了有理數(shù)乘法的運(yùn)算律及其應(yīng)用.乘法的運(yùn)算律有:乘法交換律:a×b=b×a;乘法結(jié)合律:(a×b)×c=a×(b×c);分配律:a×(b+c)=a×b+a×c.在有理數(shù)的運(yùn)算中,靈活運(yùn)用運(yùn)算律可以簡化運(yùn)算.(四)作業(yè):課本42頁作業(yè)題
解:原式=(-47)×(3.94+2.41-6.35)=(-47)×0=0.方法總結(jié):如果按照先算乘法,再算加減,則運(yùn)算較繁瑣,且符號(hào)容易出錯(cuò),但如果逆用乘法對加法的分配律,則可使運(yùn)算簡便.探究點(diǎn)三:有理數(shù)乘法的運(yùn)算律的實(shí)際應(yīng)用甲、乙兩地相距480千米,一輛汽車從甲地開往乙地,已經(jīng)行駛了全程的13,再行駛多少千米就可以到達(dá)中點(diǎn)?解析:把兩地間的距離看作單位“1”,中點(diǎn)即全程12處,根據(jù)題意用乘法分別求出480千米的12和13,再求差.解:480×12-480×13=480×(12-13)=80(千米).答:再行80千米就可以到達(dá)中點(diǎn).方法總結(jié):解答本題的關(guān)鍵是根據(jù)題意列出算式,然后根據(jù)乘法的分配律進(jìn)行簡便計(jì)算.新課程理念要求把學(xué)生“學(xué)”數(shù)學(xué)放在教師“教”之前,“導(dǎo)學(xué)”是教學(xué)的重點(diǎn).因此,在本節(jié)課的教學(xué)中,不要直接將結(jié)論告訴學(xué)生,而是引導(dǎo)學(xué)生從大量的實(shí)例中尋找解決問題的規(guī)律.學(xué)生經(jīng)歷積極探索知識(shí)的形成過程,最后總結(jié)得出有理數(shù)乘法的運(yùn)算律.整個(gè)教學(xué)過程要讓學(xué)生積極參與,獨(dú)立思考和合作探究相結(jié)合,教師適當(dāng)點(diǎn)評,以達(dá)到預(yù)期的教學(xué)效果.
二.思考:(-2) 可以寫成-2 嗎?( ) 可以寫成 嗎?(指名學(xué)生回答,師生共同總結(jié):負(fù)數(shù)和分?jǐn)?shù)的乘方書寫時(shí),一定要把整個(gè)負(fù)數(shù)和分?jǐn)?shù)用小括號(hào)括起來)三.計(jì)算:①(-2) ,②-2 ,③(- ) ,④ (叫4個(gè)學(xué)生上臺(tái)板演,其他練習(xí)本上完成,教師巡視,確保人人學(xué)得緊張高效).(四)討論更正,合作探究1.學(xué)生自由更正,或?qū)懗霾煌夥ǎ?.評講思考:將三題①③中將底數(shù)換成為正數(shù)或0,結(jié)果有什么規(guī)律?學(xué)生總結(jié):負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù),正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都為0。有理數(shù)的乘方就是幾個(gè)相同因數(shù)積的運(yùn)算,可以運(yùn)用有理數(shù)乘方法則進(jìn)行符號(hào)的確定和冪的求值.乘方的含義:①表示一種運(yùn)算;②表示運(yùn)算的結(jié)果.
解:由題意得a+b=0,cd=1,|m|=6,m=±6;∴(1)當(dāng)m=6時(shí),原式=06-1+6=5;(2)當(dāng)m=-6時(shí),原式=0-6-1+6=5.故a+bm-cd+|m|的值為5.方法總結(jié):解答此題的關(guān)鍵是先根據(jù)題意得出a+b=0,cd=1及m=±6,再代入所求代數(shù)式進(jìn)行計(jì)算.探究點(diǎn)三:有理數(shù)乘法的應(yīng)用性問題小紅家春天粉刷房間,雇用了5個(gè)工人,干了3天完成;用了某種涂料150升,費(fèi)用為4800元,粉刷的面積是150m2.最后結(jié)算工錢時(shí),有以下幾種方案:方案一:按工算,每個(gè)工100元;(1個(gè)工人干1天是一個(gè)工);方案二:按涂料費(fèi)用算,涂料費(fèi)用的30%作為工錢;方案三:按粉刷面積算,每平方米付工錢12元.請你幫小紅家出主意,選擇哪種方案付錢最合算(最省)?解析:根據(jù)有理數(shù)的乘法的意義列式計(jì)算.解:第一種方案的工錢為100×3×5=1500(元);第二種方案的工錢為4800×30%=1440(元);第三種方案的工錢為150×12=1800(元).答:選擇方案二付錢最合算(最省).方法總結(jié):解此題的關(guān)鍵是根據(jù)題意列出算式,計(jì)算出結(jié)果,比較得出最省的付錢方案.
討論歸納,總結(jié)出多個(gè)有理數(shù)相乘的規(guī)律:幾個(gè)不等于0的因數(shù)相乘,積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)決定。當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積的符號(hào)為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積的符號(hào)為正。只要有一個(gè)因數(shù)為0,積就為0。(2)幾個(gè)不等于0的因數(shù)相乘時(shí),積的絕對值是多少?(生:積的絕對值是這幾個(gè)因數(shù)的絕對值的乘積.)例2、計(jì)算:(1) ;(2) 分析:(1)有多個(gè)不為零的有理數(shù)相乘時(shí),可以先確定積的符號(hào),再把絕對值相乘;(2)若其中有一個(gè)因數(shù)為0,則積為0。解:(1) = (2) =0練習(xí)(1) ,(2) ,(3) 6、探索活動(dòng):把-6表示成兩個(gè)整數(shù)的積,有多少種可能性?把它們?nèi)繉懗鰜怼#ㄈ┱n堂小結(jié)通過本節(jié)課的學(xué)習(xí),大家學(xué)會(huì)了什么?(1)有理數(shù)的乘法法則。(2)多個(gè)不等于0的有理數(shù)相乘,積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)決定。(3)幾個(gè)數(shù)相乘時(shí),如果有一個(gè)因數(shù)是0,則積就為0。(4)乘積是1的兩個(gè)有理數(shù)互為倒數(shù)。(四)作業(yè):課本作業(yè)題
解析:∵ab>0,根據(jù)“兩數(shù)相除,同號(hào)得正”可知,a、b同號(hào),又∵a+b<0,∴可以判斷a、b均為負(fù)數(shù).故選D.方法總結(jié):此題考查了有理數(shù)乘法和加法法則,將二者綜合考查是考試中常見的題型,此題的側(cè)重點(diǎn)在于考查學(xué)生的邏輯推理能力.讓學(xué)生深刻理解除法是乘法的逆運(yùn)算,對學(xué)好本節(jié)內(nèi)容有比較好的作用.教學(xué)設(shè)計(jì)可以采用課本的引例作為探究除法法則的過程.讓學(xué)生自己探索并總結(jié)除法法則,同時(shí)也讓學(xué)生對比乘法法則和除法法則,加深印象.并講清楚除法的兩種運(yùn)算方法:(1)在除式的項(xiàng)和數(shù)字不復(fù)雜的情況下直接運(yùn)用除法法則求解.(2)在多個(gè)有理數(shù)進(jìn)行除法運(yùn)算,或者是乘、除混合運(yùn)算時(shí)應(yīng)該把除法轉(zhuǎn)化為乘法,然后統(tǒng)一用乘法的運(yùn)算律解決問題.
1.掌握有理數(shù)混合運(yùn)算的順序,并能熟練地進(jìn)行有理數(shù)加、減、乘、除、乘方的混合運(yùn)算.2.在運(yùn)算過程中能合理地應(yīng)用運(yùn)算律簡化運(yùn)算.一、情境導(dǎo)入在學(xué)完有理數(shù)的混合運(yùn)算后,老師為了檢驗(yàn)同學(xué)們的學(xué)習(xí)效果,出了下面這道題:計(jì)算-32+(-6)÷12×(-4).小明和小穎很快給出了答案.小明:-32+(-6)÷12×(-4)=-9+(-6)÷(-2)=-9+3=-6.小穎:-32+(-6)÷12×(-4)=-9+(-6)×2×(-4)=39.你能判斷出誰的計(jì)算正確嗎?二、合作探究探究點(diǎn)一:有理數(shù)的混合運(yùn)算計(jì)算:(1)(-5)-(-5)×110÷110×(-5);(2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)題是含有減法、乘法、除法的混合運(yùn)算,運(yùn)算時(shí),一定要注意運(yùn)算順序,尤其是本題中的乘除運(yùn)算.要從左到右進(jìn)行計(jì)算;(2)題有大括號(hào)、中括號(hào),在運(yùn)算時(shí),可從里到外進(jìn)行.注意要靈活掌握運(yùn)算順序.
1、掌握有理數(shù)混合運(yùn)算法則,并能進(jìn)行有理數(shù)的混合運(yùn)算的計(jì)算。2、經(jīng)歷“二十四”點(diǎn)游戲,培養(yǎng)學(xué)生的探究能力[教學(xué)重點(diǎn)]有理數(shù)混合運(yùn)算法則。[教學(xué)難點(diǎn)]培養(yǎng)探索思 維方式?!窘虒W(xué)過程】情境導(dǎo)入——有理數(shù)的混合運(yùn)算是指一個(gè)算式里含有加、減、乘、除、乘方的多種運(yùn)算.下面的算式里有哪幾種運(yùn)算?3+50÷22×( )-1.有理數(shù)混合運(yùn)算的運(yùn)算順序規(guī)定如下:1 先算乘方,再算乘除,最后算加減;2 同級(jí)運(yùn)算,按照從左至右的順序進(jìn)行;3 如果有括號(hào),就先算小括號(hào)里的,再算中括號(hào)里的,最后算大括號(hào)里的。 加法和減法叫做第一級(jí)運(yùn)算;乘法和除法叫做第二級(jí)運(yùn)算;乘方和開方(今后將會(huì)學(xué)到)叫做第三級(jí)運(yùn)算。注意:可以應(yīng)用運(yùn)算律,適當(dāng)改變運(yùn)算順序,使運(yùn)算簡便.合作探究——
解析:此題作為一道開放型題,分類的方法非常多,只要能說明分類的理由即可.但要注意:按某一標(biāo)準(zhǔn)分類時(shí),要做到不重不漏,分類標(biāo)準(zhǔn)不同時(shí),分類的結(jié)果也就不盡相同.解:本題答案不唯一,如按柱體、錐體、球體分類:(2)(3)(5)和(6)都是柱體,(4)(7)是錐體,(1)是球體.方法總結(jié):生活中常見幾何體有兩種分類:一種按柱體、錐體、球體分類;一種按平面和曲面分類.探究點(diǎn)二:幾何體的形成筆尖畫線可以理解為點(diǎn)動(dòng)成線.使用數(shù)學(xué)知識(shí)解釋下列生活中的現(xiàn)象:(1)流星劃破夜空,留下美麗的弧線;(2)一條拉直的細(xì)線切開了一塊豆腐;(3)把一枚硬幣立在桌面上用力一轉(zhuǎn),形成一個(gè)球.解析:解釋現(xiàn)象關(guān)鍵是看其屬于什么運(yùn)動(dòng).解:(1)點(diǎn)動(dòng)成線;(2)線動(dòng)成面;(3)面動(dòng)成體.方法總結(jié):生活中的很多現(xiàn)象都可以用數(shù)學(xué)知識(shí)來解釋,關(guān)鍵是要找到生活實(shí)例與數(shù)學(xué)知識(shí)的連接點(diǎn),如第(1)題可將流星看作一個(gè)點(diǎn),則“點(diǎn)動(dòng)成線”.如圖所示,將平面圖形繞軸旋轉(zhuǎn)一周,得到的幾何體是()
四、做一做(實(shí)踐)1、用牙簽和橡皮泥制作球體和一些柱體和錐體,看哪些同學(xué)做得比較標(biāo)準(zhǔn)。2、使出事先準(zhǔn)備好的等邊三角形紙片,試將它折成一個(gè)正四面體。五、試一試(探索)課前,發(fā)給學(xué)生閱讀材料《晶體--自然界的多面體》,讓學(xué)生通過閱讀了解什么是正多面體,正多面體是柏拉圖約在公元400年獨(dú)立發(fā)現(xiàn)的,在這之前,埃及人已經(jīng)用于建筑(埃及金字塔),以此激勵(lì)學(xué)生探索的欲望。教師出示實(shí)物模型:正四面體、正方體、正八面體、正十二面體、正二十面體1、以正四面體為例,說出它的頂點(diǎn)數(shù)、棱數(shù)和面數(shù)。2、再讓學(xué)生觀察、討論其它正多面體的頂點(diǎn)數(shù)、棱數(shù)和面數(shù)。將結(jié)果記入書上的P128的表格。引導(dǎo)學(xué)生發(fā)現(xiàn)結(jié)論。3、(延伸):若隨意做一個(gè)多面體,看看是否還是那個(gè)結(jié)果。
1.了解“兩點(diǎn)之間,線段最短”.2.能借助尺、規(guī)等工具比較兩條線段的大小,能用圓規(guī)作一條線段等于已知線段.3.了解線段的中點(diǎn)及線段的和、差、倍、分的意義,并能根據(jù)條件求出線段的長.一、情境導(dǎo)入愛護(hù)花草樹木是我們每個(gè)人都應(yīng)具備的優(yōu)秀品質(zhì).從教學(xué)樓到圖書館,總有少數(shù)同學(xué)不走人行道而橫穿草坪(如圖),同學(xué)們,你覺得這樣做對嗎?為了解釋這種現(xiàn)象,學(xué)習(xí)了下面的知識(shí),你就會(huì)知道.二、合作探究探究點(diǎn)一:線段長度的計(jì)算【類型一】 根據(jù)線段的中點(diǎn)求線段的長如圖,若線段AB=20cm,點(diǎn)C是線段AB上一點(diǎn),M、N分別是線段AC、BC的中點(diǎn).(1)求線段MN的長;(2)根據(jù)(1)中的計(jì)算過程和結(jié)果,設(shè)AB=a,其它條件不變,你能猜出MN的長度嗎?請用簡潔的話表達(dá)你發(fā)現(xiàn)的規(guī)律.
教學(xué)反思: 1.本課時(shí)設(shè)計(jì)的主導(dǎo)思想是:將數(shù)形結(jié)合的思想滲透給學(xué)生,使學(xué)生對數(shù)與形有一個(gè)初步的認(rèn)識(shí).為將來的學(xué)習(xí)打下基礎(chǔ),這節(jié)課是一堂起始課,它為學(xué)生的思維開拓了一個(gè)新的天地.在傳統(tǒng)的教學(xué)安排中,這節(jié)課的地位沒有提到一定的高度,只是交給學(xué)生比較線段的方法,沒有從數(shù)形結(jié)合的高度去認(rèn)識(shí).實(shí)際上這節(jié)課大有可講,可以挖掘出較深的內(nèi)容.在教知識(shí)的同時(shí),交給學(xué)生一種很重要的數(shù)學(xué)思想.這一點(diǎn)不容忽視,在日常的教學(xué)中要時(shí)時(shí)注意.2.學(xué)生在小學(xué)時(shí)只會(huì)用圓規(guī)畫圓,不會(huì)用圓規(guī)去度量線段的大小以及截取線段,通過這節(jié)課,學(xué)生對圓規(guī)的用法有一個(gè)新的認(rèn)識(shí).3.在課堂練習(xí)中安排了度量一些三角形的邊的長度,目的是想通過度量使學(xué)生對“兩點(diǎn)之間線段最短”這一結(jié)論有一個(gè)感性的認(rèn)識(shí),并為下面的教學(xué)做一個(gè)鋪墊.
1.經(jīng)歷從不同方向觀察物體的活動(dòng)過程,發(fā)展空間觀念.2.在觀察的過程中,初步體會(huì)從不同方向觀察同一物體可能看到不同的形狀.3.能識(shí)別從三個(gè)方向看到的簡單物體的形狀,會(huì)畫立方體及簡單組合體從三個(gè)方向看到的形狀,并能根據(jù)看到的形狀描述基本幾何體或?qū)嵨镌停?、情境?dǎo)入觀察圖中不同方向拍攝的廬山美景.你能從蘇東坡《題西林壁》詩句:“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同.不識(shí)廬山真面目,只緣身在此山中.”體驗(yàn)出其中的意境嗎?你能挖掘出其中蘊(yùn)含的數(shù)學(xué)道理嗎?讓我們一起探索新知吧!二、合作探究探究點(diǎn)一:從不同的方向看物體如圖所示的幾何體是由一些小正方體組合而成的,從上面看到的平面圖形是()解析:這個(gè)幾何體從上面看,共有2行,第一行能看到3個(gè)小正方形,第二行能看到2個(gè)小正方形.故選D.
【教學(xué)目標(biāo)】1.經(jīng)歷從不同方向觀察物體的活動(dòng)過程,發(fā)展空間觀念;能在與他人交流的過程中,合理清晰地表達(dá)自己的思維過程.2.在觀察的過程中,初步體會(huì)從不同方向觀察同一物體可能看到不同的圖形.3.能識(shí)別簡單物體的三視圖,會(huì)畫立方體及其簡單組合體的三視圖.【基礎(chǔ)知識(shí)精講】1.主視圖、左視圖、俯視圖的定義從不同方向觀察同一物體,從正面看到的圖叫主視圖,從左面看到的圖叫左視圖,從上面看到的圖叫做俯視圖.2.幾種幾何體的三視圖(1)正方體:三視圖都是正方形.圓錐的主視圖、左視圖都是三角形,而俯視圖的圖中有一個(gè)點(diǎn)表示圓錐的頂點(diǎn),因?yàn)閺纳贤驴磮A錐時(shí)先看到圓錐的頂點(diǎn),再看到底面的圓.3.如何畫三視圖 當(dāng)用若干個(gè)小正方體搭成新的幾何體,如何畫這個(gè)新的幾何體的三視圖?
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。