1、在中華民族發(fā)展的歷程中,形成了代代傳承的中華傳統(tǒng)美德。下列詩句中,體現(xiàn)中華傳統(tǒng)美德是 ( )。①茍利國(guó)家,不求富貴 ②捧著一顆心來,不帶半根草去③天下興亡, 匹夫有責(zé) ④老吾老以及人之老, 幼吾幼以及人之幼A.①②③ B.②③④ C.①②④ D.①②③④2、戲曲是中國(guó)傳統(tǒng)文化中的燦爛瑰寶。近年來, 湖北京劇二團(tuán)堅(jiān)持開展“戲曲進(jìn)校園”活動(dòng), 舉辦戲曲知識(shí)講座, 并進(jìn)行經(jīng)典戲曲展演, 弘揚(yáng)和傳承了中華 傳統(tǒng)文化。下列屬于弘揚(yáng)和傳承中華傳統(tǒng)文化的有 ( )。①全校舉行剪紙活動(dòng)比賽 ②端午節(jié)吃粽子、插艾草、賽龍舟③清明節(jié)學(xué)校組織學(xué)生到烈士陵園祭拜先烈 ④學(xué)校開展法治進(jìn)校園活動(dòng)A.①②③ B.①③④ C.②③④ D.①②④3、近年來,“沙塵暴”“霧霾”等惡劣天氣頻頻出現(xiàn),給人們的生產(chǎn)生活產(chǎn)生很大影響。對(duì)此下列說法正確的是 ( )。①我們應(yīng)正確處理經(jīng)濟(jì)發(fā)展與資源、環(huán)境之間的關(guān)系
示例二:建設(shè)美麗安徽,人人參與,人人共享。(2)【答案】有利于落實(shí)節(jié)約資源和保護(hù)環(huán)境的基本國(guó)策; 有利于走綠色發(fā)展 道路;有利于促進(jìn)人與自然和諧共生等。(3)【答案】自覺履行節(jié)約資源、保護(hù)環(huán)境的義務(wù); 踐行綠色生活方式; 向身 邊的人宣傳破壞水資源的危害;及時(shí)舉報(bào)各種破壞水資源的違法行為等。【設(shè)計(jì)意圖】加大對(duì)中學(xué)生資源環(huán)境國(guó)情教育和生態(tài)意識(shí)教育培育的力度, 增強(qiáng) 青少年對(duì)環(huán)境的憂患意識(shí), 引導(dǎo)學(xué)生持續(xù)關(guān)注生態(tài)文明建設(shè), 促進(jìn)人與自然和諧 共生, 是建設(shè)美麗中國(guó)、實(shí)現(xiàn)中華民族永續(xù)發(fā)展不可或缺的重要一環(huán), 也是促進(jìn) 中學(xué)生全面發(fā)展和核心素養(yǎng)培育的內(nèi)在要求。【作業(yè)分析】第(1) 問:寫宣傳口號(hào),注意兩個(gè)要求,一是圍繞材料;二是語 言言簡(jiǎn)意賅。第(2) 問:本題考查改善環(huán)境的意義,考查運(yùn)用所學(xué)知識(shí)分析問題的能力。改 善環(huán)境的意義, 可以從基本國(guó)策、可持續(xù)發(fā)展戰(zhàn)略、綠色發(fā)展理念及道路、人與 自然和諧共生理念等方面作答。第(3)問:本題的落腳點(diǎn),落實(shí)于學(xué)生的實(shí)際行動(dòng),學(xué)習(xí)、宣傳、具體做法。
活動(dòng)6:通過隨堂小測(cè)的方式辨別圓的相關(guān)概念。目的:讓學(xué)生準(zhǔn)確地掌握直徑與弦,弧與半圓的關(guān)系,以及準(zhǔn)確理解等圓和等弧的概念?;顒?dòng)7:讓學(xué)生分組討論“投圈游戲”,解決生活中的實(shí)際問題。目的:提高學(xué)生運(yùn)用所學(xué)圓的知識(shí),解決實(shí)際問題的能力;也是為了鞏固圓的定義,同時(shí)再次激發(fā)學(xué)生的學(xué)習(xí)興趣?;顒?dòng)8:給學(xué)生一個(gè)草坪情境,要求作出半徑為5m的圓,并說明原理。目的:提高學(xué)生的綜合運(yùn)用能力,并鞏固圓的定義?;顒?dòng)9:讓學(xué)生根據(jù)樹木的年輪的直徑和生長(zhǎng)年齡,計(jì)算樹木每年的生長(zhǎng)情況。目的:鞏固圓的知識(shí)?;顒?dòng)10:讓學(xué)生回顧本節(jié)課的重要內(nèi)容并布置課后作業(yè)。目的:前者的目的是梳理圓及圓的相關(guān)元素的概念,便于識(shí)記、理解和運(yùn)用。后者的目的是:第一題,檢測(cè)學(xué)生的動(dòng)手能力和提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;第二題,檢測(cè)學(xué)生對(duì)本節(jié)課的重要內(nèi)容的理解情況;第三題,檢測(cè)學(xué)生的綜合運(yùn)用能力。以上是我對(duì)本節(jié)課內(nèi)容的理解和設(shè)計(jì)。
第三條家教老師應(yīng)有之教學(xué)態(tài)度1.開課前,應(yīng)充分準(zhǔn)備教材并了解學(xué)生的學(xué)習(xí)背景。2.請(qǐng)重視服裝儀容。3.不因個(gè)人情緒影響教學(xué)。4.多給學(xué)生正面的鼓勵(lì)。5.教學(xué)應(yīng)具應(yīng)有的熱忱。6.與學(xué)生之間保持良好的師生溝通關(guān)系。7.學(xué)生之學(xué)習(xí)狀況,應(yīng)與家長(zhǎng)建立固定溝通管道,站在關(guān)懷的立場(chǎng),共同協(xié)助學(xué)生突破學(xué)習(xí)瓶頸。8.家教老師之言行舉止,對(duì)學(xué)生有示范影響,請(qǐng)塑造端正形象。
一、家教要求甲方安排乙方自______年____月____日至______年____月____日,對(duì)授課學(xué)生_________于每個(gè)星期的________時(shí)間,在________地點(diǎn),教授_________課程。時(shí)間和要求一經(jīng)商定,雙方必須嚴(yán)格遵守,一方有變故必須提前12小時(shí)通知另一方,并報(bào)勤工助學(xué)中心。二、勞酬方式甲方于每個(gè)月的_________日,現(xiàn)金支付乙方上個(gè)月家教酬金_________元。(參考標(biāo)準(zhǔn):對(duì)小學(xué)生,初中生,高中生一門課程的授課勞酬最低標(biāo)準(zhǔn)分別為_________元/小時(shí),_________元/小時(shí),_________元/小時(shí)。特長(zhǎng)類家教勞酬和交通費(fèi)用另算。)
【學(xué)習(xí)目標(biāo)】1.知識(shí)與技能:知道氧氣的制取及檢驗(yàn)方法,復(fù)習(xí)鞏固氧氣的相關(guān)性質(zhì)。2.過程與方法:通過“探究能使帶火星木條復(fù)燃所需氧氣的最低體積分?jǐn)?shù)”的探究性學(xué)習(xí),學(xué)習(xí)科學(xué)探究的基本方法。3.情感態(tài)度與價(jià)值觀:提高實(shí)驗(yàn)設(shè)計(jì)的能力和合作意識(shí),復(fù)習(xí)鞏固相關(guān)的基本操作,培養(yǎng)學(xué)習(xí)化學(xué)的興趣?!緦W(xué)習(xí)重點(diǎn)】氧氣的實(shí)驗(yàn)室制取操作步驟和性質(zhì)檢驗(yàn)?!緦W(xué)習(xí)難點(diǎn)】實(shí)驗(yàn)操作過程中的注意事項(xiàng)?!菊n前準(zhǔn)備】《精英新課堂》:預(yù)習(xí)學(xué)生用書的“早預(yù)習(xí)先起步”?!睹麕煖y(cè)控》:預(yù)習(xí)贈(zèng)送的《提分寶典》。情景導(dǎo)入 生成問題1.復(fù)習(xí)引入:實(shí)驗(yàn)室用高錳酸鉀制取氧氣的反應(yīng)原理是什么?操作步驟有哪些?2.明確學(xué)習(xí)目標(biāo),由學(xué)生對(duì)學(xué)習(xí)目標(biāo)進(jìn)行解讀。合作探究 生成能力閱讀課本P45~P46的內(nèi)容。提出問題:實(shí)驗(yàn)室加熱高錳酸鉀制取氧氣的實(shí)驗(yàn)中,使用了哪些儀器?哪部分是氣體發(fā)生裝置?哪部分是氣體收集裝置?為什么可用排水法收集氣體?討論交流:結(jié)合化學(xué)實(shí)驗(yàn)基本操作和氧氣的性質(zhì)討論歸納。
教學(xué)目標(biāo):1.會(huì)畫直棱柱(僅限于直三棱柱和直四棱柱)的三種視圖,體會(huì)這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。2. 會(huì)根據(jù)三視圖描述原幾何體。教學(xué)重點(diǎn):掌握直棱柱的三視圖的畫法。能根據(jù)三視圖描述原幾何體。教學(xué)難點(diǎn):幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學(xué)方法:觀察實(shí)踐法一、實(shí)物觀察、空間想像觀察:請(qǐng)同學(xué)們拿出事先準(zhǔn)備好的直三棱柱、直四棱柱,根據(jù)你所擺放的位置經(jīng)過 想像,再抽象出這兩個(gè)直棱柱的主視圖,左視圖和俯視圖。繪制:請(qǐng)你將抽象出來的三種視圖畫出來,并與同伴交流。比較:小亮畫出了其中一個(gè)幾何體的主視圖、左視圖和俯視圖,你認(rèn)為他畫的對(duì)不對(duì)?談?wù)勀愕目捶?。拓展:?dāng)你手中的兩個(gè)直棱柱擺放的角度變化時(shí),它們的三種視圖是否會(huì)隨之改變?試一試。
四、范例學(xué)習(xí)、理解領(lǐng)會(huì)例2 某校墻邊有甲、乙兩根木桿。已知乙木桿的高度為1.5m.(1)某一時(shí)刻甲木桿在陽光下的影子如圖5-6所示,你能畫出此時(shí)乙木桿的影子嗎?(用線段表示影子)(2)在圖中,當(dāng)乙木桿移動(dòng)到什么位置時(shí),其影子剛好不落在墻上?(3)在(2)的情況下,如果測(cè)得甲、乙木桿的影子長(zhǎng)分別為1.24m和1m,那么你能求出甲木桿的高度嗎?學(xué)生畫圖、 實(shí)驗(yàn)、觀察、探索。五、隨堂練習(xí)課本隨堂練習(xí) 學(xué)生觀察、畫圖、合作交流。六、課堂總結(jié)本節(jié)課通過各種實(shí)踐活動(dòng),促進(jìn)大家對(duì)內(nèi)容的理解,本課內(nèi)容,要體會(huì)物體在太陽光下形成的不同影子,在操作中觀察不 同時(shí)刻影子的方向和大小變化特征。在同一時(shí)刻,物體的影子與它們的高度成比 例.
探索1:上節(jié)我們列出了與地毯的花邊寬度有關(guān)的方程。地毯花邊的寬x(m),滿足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動(dòng)的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動(dòng)距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進(jìn)一步計(jì)算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當(dāng)堂訓(xùn)練:完成課本34頁隨堂練習(xí)四、學(xué)習(xí)體會(huì):五、課后作業(yè)
三、課堂檢測(cè):(一)、判斷題(是一無二次方程的在括號(hào)內(nèi)劃“√”,不是一元二次方程的,在括號(hào)內(nèi)劃“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a為常數(shù)) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空題.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次項(xiàng)是__________,一次項(xiàng)是__________,常數(shù)項(xiàng)是__________.2.如果方程ax2+5=(x+2)(x-1)是關(guān)于x的一元二次方程,則a__________.3.關(guān)于x的方程(m-4)x2+(m+4)x+2m+3=0,當(dāng)m__________時(shí),是一元二次方程,當(dāng)m__________時(shí),是一元一次方程。四、學(xué)習(xí)體會(huì):五、課后作業(yè)
(4)議一議:頻率與概率有什么區(qū)別和聯(lián)系?隨著重復(fù)實(shí)驗(yàn)次數(shù)的不斷增加,頻率的變化趨勢(shì)如何?結(jié)論:從上面的試驗(yàn)可以看到:當(dāng)重復(fù)實(shí)驗(yàn)的次數(shù)大量增加時(shí),事件發(fā) 生的頻率就穩(wěn)定在相應(yīng)的概率附近,因此,我們可以通過大量重復(fù)實(shí)驗(yàn),用一個(gè)事件發(fā)生的頻率來估計(jì)這一事件發(fā)生的概率。三、做一做:1.某運(yùn)動(dòng)員投籃5次, 投中4次,能否說該運(yùn)動(dòng)員投一次籃,投中的概率為4/5?為什么?2.回答下列問題:(1)抽檢1000件襯衣,其中不合格的襯衣有2件,由 此估計(jì)抽1件襯衣合格的概率是多少?(2)1998年,在美國(guó)密歇根州漢諾城市的一個(gè)農(nóng)場(chǎng)里出生了1頭白色的小奶牛,據(jù)統(tǒng)計(jì),平均出生1千萬頭牛才會(huì)有1頭是白色的,由此估計(jì)出生一頭奶牛為白色的概率為多少?
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對(duì)角線分成4個(gè)等腰直角三角形,因此在正方形中解決問題時(shí)常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對(duì)角線BD上一點(diǎn)P,作PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時(shí)只需說明AP=CP,由正方形對(duì)角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對(duì)角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對(duì)角線,這樣可以使分散的條件集中.
解:(1)∵點(diǎn)(1,5)在反比例函數(shù)y=kx的圖象上,∴5=k1,即k=5,∴反比例函數(shù)的解析式為y=5x.又∵點(diǎn)(1,5)在一次函數(shù)y=3x+m的圖象上,∴5=3+m,即m=2,∴一次函數(shù)的解析式為y=3x+2;(2)由題意,聯(lián)立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴這兩個(gè)函數(shù)圖象的另一個(gè)交點(diǎn)的坐標(biāo)為(-53,-3).三、板書設(shè)計(jì)反比例函數(shù)的圖象形狀:雙曲線位置當(dāng)k>0時(shí),兩支曲線分別位于 第一、三象限內(nèi)當(dāng)k<0時(shí),兩支曲線分別位于 第二、四象限內(nèi)畫法:列表、描點(diǎn)、連線(描點(diǎn)法)通過學(xué)生自己動(dòng)手列表、描點(diǎn)、連線,提高學(xué)生的作圖能力.理解函數(shù)的三種表示方法及相互轉(zhuǎn)換,對(duì)函數(shù)進(jìn)行認(rèn)識(shí)上的整合,逐步明確研究函數(shù)的一般要求.反比例函數(shù)的圖象具體展現(xiàn)了反比例函數(shù)的整體直觀形象,為學(xué)生探索反比例函數(shù)的性質(zhì)提供了思維活動(dòng)的空間.
如圖,四邊形OABC是邊長(zhǎng)為1的正方形,反比例函數(shù)y=kx的圖象經(jīng)過點(diǎn)B(x0,y0),則k的值為.解析:∵四邊形OABC是邊長(zhǎng)為1的正方形,∴它的面積為1,且BA⊥y軸.又∵點(diǎn)B(x0,y0)是反比例函數(shù)y=kx圖象上的一點(diǎn),則有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵點(diǎn)B在第二象限,∴k=-1.方法總結(jié):利用正方形或矩形或三角形的面積確定|k|的值之后,要注意根據(jù)函數(shù)圖象所在位置或函數(shù)的增減性確定k的符號(hào).三、板書設(shè)計(jì)反比例函數(shù)的性質(zhì)性質(zhì)當(dāng)k>0時(shí),在每一象限內(nèi),y的值隨x的值的增大而減小當(dāng)k<0時(shí),在每一象限內(nèi),y的值隨x的值的增大而增大反比例函數(shù)圖象中比例系數(shù)k的幾何意義通過對(duì)反比例函數(shù)圖象的全面觀察和比較,發(fā)現(xiàn)函數(shù)自身的規(guī)律,概括反比例函數(shù)的有關(guān)性質(zhì),進(jìn)行語言表述,訓(xùn)練學(xué)生的概括、總結(jié)能力,在相互交流中發(fā)展從圖象中獲取信息的能力.讓學(xué)生積極參與到數(shù)學(xué)學(xué)習(xí)活動(dòng)中,增強(qiáng)他們對(duì)數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲.
因?yàn)榉幢壤瘮?shù)的圖象經(jīng)過點(diǎn)A(1.5,400),所以有k=600.所以反比例函數(shù)的關(guān)系式為p=600S(S>0);(2)當(dāng)S=0.2時(shí),p=6000.2=3000,即壓強(qiáng)是3000Pa;(3)由題意知600S≤6000,所以S≥0.1,即木板面積至少要有0.1m2.方法總結(jié):本題滲透了物理學(xué)中壓強(qiáng)、壓力與受力面積之間的關(guān)系p= ,當(dāng)壓力F一定時(shí),p與S成反比例.另外,利用反比例函數(shù)的知識(shí)解決實(shí)際問題時(shí),要善于發(fā)現(xiàn)實(shí)際問題中變量之間的關(guān)系,從而進(jìn)一步建立反比例函數(shù)模型.三、板書設(shè)計(jì)反比例函數(shù)的應(yīng)用實(shí)際問題與反比例函數(shù)反比例函數(shù)與其他學(xué)科知識(shí)的綜合經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題的過程,提高運(yùn)用代數(shù)方法解決問題的能力,體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí).通過反比例函數(shù)在其他學(xué)科中的運(yùn)用,體驗(yàn)學(xué)科整合思想.
解析:熟記常見幾何體的三種視圖后首先可排除選項(xiàng)A,因?yàn)殚L(zhǎng)方體的三視圖都是矩形;因?yàn)樗o的主視圖中間是兩條虛線,故可排除選項(xiàng)B;選項(xiàng)D的幾何體中的俯視圖應(yīng)為一個(gè)梯形,與所給俯視圖形狀不符.只有C選項(xiàng)的幾何體與已知的三視圖相符.故選C.方法總結(jié):由幾何體的三種視圖想象其立體形狀可以從如下途徑進(jìn)行分析:(1)根據(jù)主視圖想象物體的正面形狀及上下、左右位置,根據(jù)俯視圖想象物體的上面形狀及左右、前后位置,再結(jié)合左視圖驗(yàn)證該物體的左側(cè)面形狀,并驗(yàn)證上下和前后位置;(2)從實(shí)線和虛線想象幾何體看得見部分和看不見部分的輪廓線.在得出原立體圖形的形狀后,也可以反過來想象一下這個(gè)立體圖形的三種視圖,看與已知的三種視圖是否一致.探究點(diǎn)四:三視圖中的計(jì)算如圖所示是一個(gè)工件的三種視圖,圖中標(biāo)有尺寸,則這個(gè)工件的體積是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三種視圖可以看出,該工件是上下兩個(gè)圓柱的組合,其中下面的圓柱高為4cm,底面直徑為4cm;上面的圓柱高為1cm,底面直徑為2cm,則V=4×π×22+1×π×12=17π(cm3).故選B.
三、典型例題,應(yīng)用新知例2、一個(gè)盒子中有兩個(gè)紅球,兩個(gè)白球和一個(gè)藍(lán)球,這些球除顏色外其它都相同,從中隨機(jī)摸出一球,記下顏色后放回,再從中隨機(jī)摸出一球。求兩次摸到的球的顏色能配成紫色的概率. 分析:把兩個(gè)紅球記為紅1、紅2;兩個(gè)白球記為白1、白2.則列表格如下:總共有25種可能的結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,能配成紫色的共4種(紅1,藍(lán))(紅2,藍(lán))(藍(lán),紅1)(藍(lán),紅2),所以P(能配成紫色)= 四、分層提高,完善新知1.用如圖所示的兩個(gè)轉(zhuǎn)盤做“配紫色”游戲,每個(gè)轉(zhuǎn)盤都被分成三個(gè)面積相等的三個(gè)扇形.請(qǐng)求出配成紫色的概率是多少?2.設(shè)計(jì)兩個(gè)轉(zhuǎn)盤做“配紫色”游戲,使游戲者獲勝的概率為 五、課堂小結(jié),回顧新知1. 利用樹狀圖和列表法求概率時(shí)應(yīng)注意什么?2. 你還有哪些收獲和疑惑?
觀察 和 的圖象,它們有什么相同點(diǎn)和不同點(diǎn)?學(xué)生小組討論,弄清上述兩個(gè)圖象的異同點(diǎn)。交流討論反比 例函數(shù)圖象是中心對(duì)稱圖形嗎?如果是,請(qǐng)找出對(duì)稱中心.反比例函數(shù)圖象是軸對(duì)稱圖形嗎?如果是,請(qǐng)指出它的對(duì)稱軸.二、隨堂練習(xí)課本隨堂練習(xí) [探索與交流]對(duì)于函數(shù) , 兩支曲線分別位于哪個(gè)象限內(nèi)?對(duì)于函數(shù) ,兩支曲線又分別位于哪個(gè)象限內(nèi)?怎樣區(qū)別這兩個(gè)函數(shù)的圖象。學(xué)生分四人小組全班探索。 三、課堂總結(jié)在進(jìn)行函數(shù)的列表,描點(diǎn)作圖的活動(dòng)中,就已經(jīng)滲透了反比例函數(shù)圖象的特征,因此在作圖象的過程中,大家要進(jìn)行積極的探索 。另外,(1)反比例函數(shù)的圖象是非線性的,它的圖象是雙曲線;(2)反比例 函數(shù)y= 的圖像,當(dāng)k>0時(shí),它的圖像位于一、三象限內(nèi),當(dāng)k<0時(shí),它的圖像位于二、四象限內(nèi);(3)反比例函數(shù)既是中心對(duì)稱圖形,又是軸對(duì)稱圖形。
補(bǔ)充題:為了預(yù)防“非典”,某學(xué)校對(duì)教室采用藥熏消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(毫克)與時(shí)間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如右圖),現(xiàn)測(cè)得藥物8分鐘燃畢,此時(shí)室內(nèi)空氣中每立方米的含藥量6毫克,請(qǐng)根據(jù)題中所提供的信息,解答下列問題:(1)藥物燃燒時(shí),y關(guān)于x的函數(shù)關(guān)系式為 ,自變量x的取值范圍為 ;藥物燃燒后,y關(guān)于x的函數(shù)關(guān)系式為 .(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6毫克時(shí)學(xué)生方可進(jìn)教室,那么從消毒開始,至少需要經(jīng)過______分鐘后,學(xué)生才能回到教室;(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3毫克且持續(xù)時(shí)間不低于10分鐘時(shí),才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?答案:(1)y= x, 010,即空氣中的含藥量不低于3毫克/m3的持續(xù)時(shí)間為12分鐘,大于10分鐘的有效消毒時(shí)間.
(1)請(qǐng)估計(jì):當(dāng)n很大時(shí),摸到白球的頻率將會(huì)接近(精確到0.1);(2)假如你摸一次,估計(jì)你摸到白球的概率P(白球)=;(3)試估算盒子里黑球有多少個(gè).解:(1)0.6(2)0.6(3)設(shè)黑球有x個(gè),則2424+x=0.6,解得x=16.經(jīng)檢驗(yàn),x=16是方程的解且符合題意.所以盒子里有黑球16個(gè).方法總結(jié):本題主要考查用頻率估計(jì)概率的方法,當(dāng)摸球次數(shù)增多時(shí),摸到白球的頻率mn將會(huì)接近一個(gè)數(shù)值,則可把這個(gè)數(shù)值近似看作概率,知道了概率就能估算盒子里黑球有多少個(gè).三、板書設(shè)計(jì)用頻率估計(jì)概率用頻率估計(jì)概率用替代物模擬試驗(yàn)估計(jì)概率通過實(shí)驗(yàn),理解當(dāng)實(shí)驗(yàn)次數(shù)較大時(shí)實(shí)驗(yàn)頻率穩(wěn)定于理論頻率,并據(jù)此估計(jì)某一事件發(fā)生的概率.經(jīng)歷實(shí)驗(yàn)、統(tǒng)計(jì)等活動(dòng)過程,進(jìn)一步發(fā)展學(xué)生合作交流的意識(shí)和能力.通過動(dòng)手實(shí)驗(yàn)和課堂交流,進(jìn)一步培養(yǎng)學(xué)生收集、描述、分析數(shù)據(jù)的技能,提高數(shù)學(xué)交流水平,發(fā)展探索、合作的精神.