一、說(shuō)教材《分?jǐn)?shù)的簡(jiǎn)單應(yīng)用》是人教版小學(xué)數(shù)學(xué)三年級(jí)上冊(cè)第八單元的知識(shí)。教材安排主要是先讓學(xué)生理解一個(gè)物體或者幾個(gè)物體都可以當(dāng)成一個(gè)整體進(jìn)行平均分,會(huì)把一個(gè)整體平均分為幾部分,選擇其中的幾部分。根據(jù)學(xué)生的生活經(jīng)驗(yàn)和知識(shí)背景及課本的知識(shí)特點(diǎn),本節(jié)課的教學(xué)目標(biāo)定為:1、知識(shí)與技能:經(jīng)歷解決問(wèn)題的過(guò)程,能根據(jù)分?jǐn)?shù)的含義,利用整數(shù)乘、除法來(lái)解決問(wèn)題。2、過(guò)程與方法:通過(guò)分一分、拿一拿,理解情境中的數(shù)量關(guān)系,探求解決求一個(gè)數(shù)的幾分之幾的方法.3、情感態(tài)度與價(jià)值觀:感悟數(shù)形結(jié)合的思想,初步了解分?jǐn)?shù)的在實(shí)際生活中的應(yīng)用和價(jià)值。本課教學(xué)的重點(diǎn)是:引導(dǎo)學(xué)生根據(jù)分?jǐn)?shù)含義分析數(shù)量關(guān)系,并用整數(shù)乘除法來(lái)解決問(wèn)題。
一、教材分析本課是人教版3年級(jí)上冊(cè)數(shù)學(xué)第3單元的第1課時(shí),本課內(nèi)容是在學(xué)習(xí)了長(zhǎng)度單位米和厘米的基礎(chǔ)上進(jìn)行教學(xué)的,通過(guò)學(xué)習(xí),使學(xué)生對(duì)常用的長(zhǎng)度單位有一個(gè)比較完整的認(rèn)識(shí),對(duì)于今后學(xué)習(xí)面積單位和體積單位,發(fā)展學(xué)生的空間觀念具有重要意義。二、教學(xué)目標(biāo):根據(jù)對(duì)教材的理解,同時(shí)結(jié)合學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,制定如下教學(xué)目標(biāo):(1)、知識(shí)目標(biāo):認(rèn)識(shí)長(zhǎng)度單位毫米和分米, 初步建立1毫米和1分米的長(zhǎng)度觀念;知道1分米=10厘米,1厘米=10毫米,1米=10分米,并能進(jìn)行長(zhǎng)度單位間的簡(jiǎn)單換算。(2)、能力目標(biāo):通過(guò)估一估、量一量等活動(dòng),培養(yǎng)和發(fā)展學(xué)生的空間觀念、估測(cè)能力、動(dòng)手操作能力和推理能力。(3)、情感目標(biāo):經(jīng)歷實(shí)際測(cè)量的過(guò)程,體會(huì)長(zhǎng)度單位在日常生活中的應(yīng)用,感受數(shù)學(xué)和生活的密切聯(lián)系,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的樂(lè)趣。
活動(dòng)目標(biāo):1、在對(duì)自己的家進(jìn)行觀察后,能大膽地表達(dá)出自己的見(jiàn)解。2、充分發(fā)揮幼兒的想象,設(shè)計(jì)自己心中的家庭用具?;顒?dòng)準(zhǔn)備:1、課前對(duì)自己家進(jìn)行觀察。2、積木若干;繪畫(huà)材料。3、多媒體課件?;顒?dòng)過(guò)程:一、課件出示,直導(dǎo)課題?! ∏皫滋?,我們說(shuō)起了家,都說(shuō)自己家里的東西好,那請(qǐng)你們來(lái)講講看,你們家的什么東西好,好在什么地方?(鼓勵(lì)幼兒發(fā)表見(jiàn)解)二、啟發(fā)討論。 今天老師給你們帶來(lái)了一個(gè)“家”,你們來(lái)看看,這個(gè)家怎么樣?(引導(dǎo)幼兒討論`如何為這個(gè)家設(shè)計(jì)家庭用具)
2.增進(jìn)幼兒裝飾美和色彩美的感受和經(jīng)驗(yàn)。 活動(dòng)準(zhǔn)備:1.剪好花邊的鉛畫(huà)紙2.記號(hào)筆、油畫(huà)棒。(人手一份) 3.集郵冊(cè)3本。活動(dòng)重點(diǎn): 幼兒學(xué)會(huì)用鮮明、柔和的色彩裝飾郵票?;顒?dòng)流程:欣賞郵票--師生討論--幼兒作畫(huà)--評(píng)價(jià)活動(dòng)
2.增進(jìn)幼兒裝飾美和色彩美的感受和經(jīng)驗(yàn)。 活動(dòng)準(zhǔn)備:1.剪好花邊的鉛畫(huà)紙2.記號(hào)筆、油畫(huà)棒。(人手一份) 3.集郵冊(cè)3本?;顒?dòng)重點(diǎn): 幼兒學(xué)會(huì)用鮮明、柔和的色彩裝飾郵票。活動(dòng)流程:欣賞郵票--師生討論--幼兒作畫(huà)--評(píng)價(jià)活動(dòng)
我設(shè)計(jì)的這個(gè)活動(dòng)是受到一個(gè)經(jīng)典的體育游戲的啟發(fā)對(duì)其加以修改而成。游戲的名字叫《熊和小孩》,為了提高幼兒的興趣,我為游戲編了一首簡(jiǎn)短的兒歌《熊來(lái)啦》,將規(guī)則反映在了兒歌中,幫助幼兒掌握游戲規(guī)則。同時(shí)我發(fā)現(xiàn)大班幼兒的求知欲很強(qiáng),所以這個(gè)游戲中也插入熊的習(xí)性方面的內(nèi)容。另外,其實(shí)很多幼兒早就會(huì)玩《木頭人》的游戲,這兩個(gè)游戲的玩法很相似,然而游戲換一首兒歌體現(xiàn),會(huì)帶給幼兒新鮮感。我設(shè)計(jì)了讓幼兒自己商定游戲規(guī)則的環(huán)節(jié),這樣幼兒在活動(dòng)中能主動(dòng)學(xué)習(xí),并且按自己的想法玩游戲,能提高幼兒的積極性,并體驗(yàn)成功感。活動(dòng)名稱:體育游戲《熊來(lái)啦》活動(dòng)目標(biāo):1、幼兒喜歡參與游戲,情緒積極愉快。2、幼兒通過(guò)游戲培養(yǎng)抑制自己行為的能力,訓(xùn)練反應(yīng)的靈敏性。 3、幼兒能按游戲規(guī)則進(jìn)行游戲?;顒?dòng)準(zhǔn)備:“熊”頭飾一只,圈劃幼兒活動(dòng)范圍和“熊家”活動(dòng)過(guò)程:1、導(dǎo)入活動(dòng)。 教師:“如果你突然遇到一頭大狗熊,你該怎么樣,它才不會(huì)吃你?”幼兒討論提出意見(jiàn)。
求函數(shù)的導(dǎo)數(shù)的策略(1)先區(qū)分函數(shù)的運(yùn)算特點(diǎn),即函數(shù)的和、差、積、商,再根據(jù)導(dǎo)數(shù)的運(yùn)算法則求導(dǎo)數(shù);(2)對(duì)于三個(gè)以上函數(shù)的積、商的導(dǎo)數(shù),依次轉(zhuǎn)化為“兩個(gè)”函數(shù)的積、商的導(dǎo)數(shù)計(jì)算.跟蹤訓(xùn)練1 求下列函數(shù)的導(dǎo)數(shù):(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓(xùn)練2 求下列函數(shù)的導(dǎo)數(shù)(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經(jīng)過(guò)凈化的,隨著水的純凈度的提高,所需進(jìn)化費(fèi)用不斷增加,已知將1t水進(jìn)化到純凈度為x%所需費(fèi)用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進(jìn)化到下列純凈度時(shí),所需進(jìn)化費(fèi)用的瞬時(shí)變化率:(1) 90% ;(2) 98%解:凈化費(fèi)用的瞬時(shí)變化率就是凈化費(fèi)用函數(shù)的導(dǎo)數(shù);c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2
情景導(dǎo)學(xué)古語(yǔ)云:“勤學(xué)如春起之苗,不見(jiàn)其增,日有所長(zhǎng)”如果對(duì)“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個(gè)數(shù)列. 那么什么叫數(shù)列呢?二、問(wèn)題探究1. 王芳從一歲到17歲,每年生日那天測(cè)量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時(shí)的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號(hào)K90,約生產(chǎn)于公元前7世紀(jì))上,有一列依次表示一個(gè)月中從第1天到第15天,每天月亮可見(jiàn)部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②
1.判斷正誤(正確的打“√”,錯(cuò)誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個(gè)區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)越大,函數(shù)在該點(diǎn)處的切線越“陡峭”. ( )(3)函數(shù)在某個(gè)區(qū)間上變化越快,函數(shù)在這個(gè)區(qū)間上導(dǎo)數(shù)的絕對(duì)值越大.( )(4)判斷函數(shù)單調(diào)性時(shí),在區(qū)間內(nèi)的個(gè)別點(diǎn)f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個(gè)區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯(cuò)誤.(3)√ 函數(shù)在某個(gè)區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對(duì)值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因?yàn)閒(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示
課程名稱數(shù)學(xué)課題名稱8.2 直線的方程課時(shí)2授課日期2016.3任課教師劉娜目標(biāo)群體14級(jí)五高班教學(xué)環(huán)境教室學(xué)習(xí)目標(biāo)知識(shí)目標(biāo): (1)理解直線的傾角、斜率的概念; (2)掌握直線的傾角、斜率的計(jì)算方法. 職業(yè)通用能力目標(biāo): 正確分析問(wèn)題的能力 制造業(yè)通用能力目標(biāo): 正確分析問(wèn)題的能力學(xué)習(xí)重點(diǎn)直線的斜率公式的應(yīng)用.學(xué)習(xí)難點(diǎn)直線的斜率概念和公式的理解.教法、學(xué)法講授、分析、討論、引導(dǎo)、提問(wèn)教學(xué)媒體黑板、粉筆
課題序號(hào) 授課班級(jí) 授課課時(shí)2授課形式新課授課章節(jié) 名稱§9-1 平面基本性質(zhì)使用教具多媒體課件教學(xué)目的1.了解平面的定義、表示法及特點(diǎn),會(huì)用符號(hào)表示點(diǎn)、線、面之間的關(guān)系—基礎(chǔ)模塊 2.了解平面的基本性質(zhì)和推論,會(huì)應(yīng)用定理和推論解釋生活中的一些現(xiàn)象—基礎(chǔ)模塊 3.會(huì)用斜二測(cè)畫(huà)法畫(huà)立體圖形的直觀圖—基礎(chǔ)模塊 4.培養(yǎng)學(xué)生的空間想象能力教學(xué)重點(diǎn)用適當(dāng)?shù)姆?hào)表示點(diǎn)、線、面之間的關(guān)系;會(huì)用斜二測(cè)畫(huà)法畫(huà)立體圖形的直觀圖教學(xué)難點(diǎn)從平面幾何向立體幾何的過(guò)渡,培養(yǎng)學(xué)生的空間想象能力.更新補(bǔ)充 刪節(jié)內(nèi)容 課外作業(yè) 教學(xué)后記能動(dòng)手畫(huà),動(dòng)腦想,但立體幾何的語(yǔ)言及想象能力差
新知探究我們知道,等差數(shù)列的特征是“從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù)” 。類比等差數(shù)列的研究思路和方法,從運(yùn)算的角度出發(fā),你覺(jué)得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時(shí)期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬(wàn)世不竭.”如果把“一尺之錘”的長(zhǎng)度看成單位“1”,那么從第1天開(kāi)始,每天得到的“錘”的長(zhǎng)度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營(yíng)養(yǎng)和生存空間沒(méi)有限制的情況下,某種細(xì)菌每20 min 就通過(guò)分裂繁殖一代,那么一個(gè)這種細(xì)菌從第1次分裂開(kāi)始,各次分裂產(chǎn)生的后代個(gè)數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復(fù)利,他5年內(nèi)每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥
高斯(Gauss,1777-1855),德國(guó)數(shù)學(xué)家,近代數(shù)學(xué)的奠基者之一. 他在天文學(xué)、大地測(cè)量學(xué)、磁學(xué)、光學(xué)等領(lǐng)域都做出過(guò)杰出貢獻(xiàn). 問(wèn)題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實(shí)際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項(xiàng)的和問(wèn)題.等差數(shù)列中,下標(biāo)和相等的兩項(xiàng)和相等.設(shè) an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問(wèn)題2: 你能用上述方法計(jì)算1+2+3+… +101嗎?問(wèn)題3: 你能計(jì)算1+2+3+… +n嗎?需要對(duì)項(xiàng)數(shù)的奇偶進(jìn)行分類討論.當(dāng)n為偶數(shù)時(shí), S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當(dāng)n為奇數(shù)數(shù)時(shí), n-1為偶數(shù)
由樣本相關(guān)系數(shù)??≈0.97,可以推斷脂肪含量和年齡這兩個(gè)變量正線性相關(guān),且相關(guān)程度很強(qiáng)。脂肪含量與年齡變化趨勢(shì)相同.歸納總結(jié)1.線性相關(guān)系數(shù)是從數(shù)值上來(lái)判斷變量間的線性相關(guān)程度,是定量的方法.與散點(diǎn)圖相比較,線性相關(guān)系數(shù)要精細(xì)得多,需要注意的是線性相關(guān)系數(shù)r的絕對(duì)值小,只是說(shuō)明線性相關(guān)程度低,但不一定不相關(guān),可能是非線性相關(guān).2.利用相關(guān)系數(shù)r來(lái)檢驗(yàn)線性相關(guān)顯著性水平時(shí),通常與0.75作比較,若|r|>0.75,則線性相關(guān)較為顯著,否則不顯著.例2. 有人收集了某城市居民年收入(所有居民在一年內(nèi)收入的總和)與A商品銷售額的10年數(shù)據(jù),如表所示.畫(huà)出散點(diǎn)圖,判斷成對(duì)樣本數(shù)據(jù)是否線性相關(guān),并通過(guò)樣本相關(guān)系數(shù)推斷居民年收入與A商品銷售額的相關(guān)程度和變化趨勢(shì)的異同.
新知探究前面我們研究了兩類變化率問(wèn)題:一類是物理學(xué)中的問(wèn)題,涉及平均速度和瞬時(shí)速度;另一類是幾何學(xué)中的問(wèn)題,涉及割線斜率和切線斜率。這兩類問(wèn)題來(lái)自不同的學(xué)科領(lǐng)域,但在解決問(wèn)題時(shí),都采用了由“平均變化率”逼近“瞬時(shí)變化率”的思想方法;問(wèn)題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問(wèn)題。探究1: 對(duì)于函數(shù)y=f(x) ,設(shè)自變量x從x_0變化到x_0+ ?x ,相應(yīng)地,函數(shù)值y就從f(x_0)變化到f(〖x+x〗_0) 。這時(shí), x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數(shù)從x_0到x_0+?x的平均變化率。1.導(dǎo)數(shù)的概念如果當(dāng)Δx→0時(shí),平均變化率ΔyΔx無(wú)限趨近于一個(gè)確定的值,即ΔyΔx有極限,則稱y=f (x)在x=x0處____,并把這個(gè)________叫做y=f (x)在x=x0處的導(dǎo)數(shù)(也稱為_(kāi)_________),記作f ′(x0)或________,即
二、典例解析例4. 用 10 000元購(gòu)買某個(gè)理財(cái)產(chǎn)品一年.(1)若以月利率0.400%的復(fù)利計(jì)息,12個(gè)月能獲得多少利息(精確到1元)?(2)若以季度復(fù)利計(jì)息,存4個(gè)季度,則當(dāng)每季度利率為多少時(shí),按季結(jié)算的利息不少于按月結(jié)算的利息(精確到10^(-5))?分析:復(fù)利是指把前一期的利息與本金之和算作本金,再計(jì)算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開(kāi)始,各期的本利和a , a(1+r),a(1+r)^2…構(gòu)成等比數(shù)列.解:(1)設(shè)這筆錢存 n 個(gè)月以后的本利和組成一個(gè)數(shù)列{a_n },則{a_n }是等比數(shù)列,首項(xiàng)a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個(gè)月后的利息為10 490.7-10^4≈491(元).解:(2)設(shè)季度利率為 r ,這筆錢存 n 個(gè)季度以后的本利和組成一個(gè)數(shù)列{b_n },則{b_n }也是一個(gè)等比數(shù)列,首項(xiàng) b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.
新知探究國(guó)際象棋起源于古代印度.相傳國(guó)王要獎(jiǎng)賞國(guó)際象棋的發(fā)明者,問(wèn)他想要什么.發(fā)明者說(shuō):“請(qǐng)?jiān)谄灞P的第1個(gè)格子里放上1顆麥粒,第2個(gè)格子里放上2顆麥粒,第3個(gè)格子里放上4顆麥粒,依次類推,每個(gè)格子里放的麥粒都是前一個(gè)格子里放的麥粒數(shù)的2倍,直到第64個(gè)格子.請(qǐng)給我足夠的麥粒以實(shí)現(xiàn)上述要求.”國(guó)王覺(jué)得這個(gè)要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國(guó)王是否能實(shí)現(xiàn)他的諾言.問(wèn)題1:每個(gè)格子里放的麥粒數(shù)可以構(gòu)成一個(gè)數(shù)列,請(qǐng)判斷分析這個(gè)數(shù)列是否是等比數(shù)列?并寫(xiě)出這個(gè)等比數(shù)列的通項(xiàng)公式.是等比數(shù)列,首項(xiàng)是1,公比是2,共64項(xiàng). 通項(xiàng)公式為〖a_n=2〗^(n-1)問(wèn)題2:請(qǐng)將發(fā)明者的要求表述成數(shù)學(xué)問(wèn)題.
我們知道數(shù)列是一種特殊的函數(shù),在函數(shù)的研究中,我們?cè)诶斫饬撕瘮?shù)的一般概念,了解了函數(shù)變化規(guī)律的研究?jī)?nèi)容(如單調(diào)性,奇偶性等)后,通過(guò)研究基本初等函數(shù)不僅加深了對(duì)函數(shù)的理解,而且掌握了冪函數(shù),指數(shù)函數(shù),對(duì)數(shù)函數(shù),三角函數(shù)等非常有用的函數(shù)模型。類似地,在了解了數(shù)列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數(shù)列,建立它們的通項(xiàng)公式和前n項(xiàng)和公式,并應(yīng)用它們解決實(shí)際問(wèn)題和數(shù)學(xué)問(wèn)題,從中感受數(shù)學(xué)模型的現(xiàn)實(shí)意義與應(yīng)用,下面,我們從一類取值規(guī)律比較簡(jiǎn)單的數(shù)列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內(nèi)到外各圈的示板數(shù)依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號(hào)的女裝上對(duì)應(yīng)的尺碼分別是38,40,42,44,46,48 ②3.測(cè)量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③
二、典例解析例3.某公司購(gòu)置了一臺(tái)價(jià)值為220萬(wàn)元的設(shè)備,隨著設(shè)備在使用過(guò)程中老化,其價(jià)值會(huì)逐年減少.經(jīng)驗(yàn)表明,每經(jīng)過(guò)一年其價(jià)值會(huì)減少d(d為正常數(shù))萬(wàn)元.已知這臺(tái)設(shè)備的使用年限為10年,超過(guò)10年 ,它的價(jià)值將低于購(gòu)進(jìn)價(jià)值的5%,設(shè)備將報(bào)廢.請(qǐng)確定d的范圍.分析:該設(shè)備使用n年后的價(jià)值構(gòu)成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設(shè)備的價(jià)值不小于(220×5%=)11萬(wàn)元;10年后,該設(shè)備的價(jià)值需小于11萬(wàn)元.利用{an}的通項(xiàng)公式列不等式求解.解:設(shè)使用n年后,這臺(tái)設(shè)備的價(jià)值為an萬(wàn)元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個(gè)公差為-d的等差數(shù)列.因?yàn)閍1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9
二、典例解析例10. 如圖,正方形ABCD 的邊長(zhǎng)為5cm ,取正方形ABCD 各邊的中點(diǎn)E,F,G,H, 作第2個(gè)正方形 EFGH,然后再取正方形EFGH各邊的中點(diǎn)I,J,K,L,作第3個(gè)正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開(kāi)始,連續(xù)10個(gè)正方形的面積之和;(2) 如果這個(gè)作圖過(guò)程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個(gè)等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個(gè)正方形的頂點(diǎn)分別是第k個(gè)正方形各邊的中點(diǎn),所以a_(k+1)=〖1/2 a〗_k,因此{(lán)a_n},是以25為首項(xiàng),1/2為公比的等比數(shù)列.設(shè){a_n}的前項(xiàng)和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個(gè)正方形的面積之和為25575/512cm^2.(2)當(dāng)無(wú)限增大時(shí),無(wú)限趨近于所有正方形的面積和